001     810967
005     20240712101057.0
024 7 _ |2 doi
|a 10.1002/2016GL068390
024 7 _ |2 ISSN
|a 0094-8276
024 7 _ |2 ISSN
|a 1944-8007
024 7 _ |2 WOS
|a WOS:000379851800037
024 7 _ |2 Handle
|a 2128/16071
024 7 _ |a altmetric:7490971
|2 altmetric
037 _ _ |a FZJ-2016-03522
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Kracher, Daniela
|b 0
|e Corresponding author
245 _ _ |a Climate change reduces warming potential of nitrous oxide by an enhanced Brewer-Dobson circulation
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1512377883_12599
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The Brewer-Dobson circulation (BDC), which is an important driver of the stratosphere-troposphere exchange, is expected to accelerate with climate change. One particular consequence of this acceleration is the enhanced transport of nitrous oxide (N2O) from its sources at the Earth's surface toward its main sink region in the stratosphere, thus inducing a reduction in its lifetime. N2O is a potent greenhouse gas and the most relevant currently emitted ozone-depleting substance. Here we examine the implications of a reduced N2O lifetime in the context of climate change. We find a decrease in its global warming potential (GWP) and, due to a decline in the atmospheric N2O burden, also a reduction in its total radiative forcing. From the idealized transient global warming simulation we can identify linear regressions for N2O sink, lifetime, and GWP with temperature rise. Our findings are thus not restricted to a particular scenario.
536 _ _ |0 G:(DE-HGF)POF3-243
|a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|c POF3-243
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Reick, Christian H.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Manzini, Elisa
|b 2
700 1 _ |0 P:(DE-Juel1)6952
|a Schultz, Martin
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)3709
|a Stein, Olaf
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)2021599-X
|a 10.1002/2016GL068390
|g Vol. 43, no. 11, p. 5851 - 5859
|n 11
|p 5851 - 5859
|t Geophysical research letters
|v 43
|x 0094-8276
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/810967/files/Kracher_et_al-2016-Geophysical_Research_Letters.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:810967
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)6952
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)3709
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-243
|1 G:(DE-HGF)POF3-240
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Atmosphäre und Klima
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 1
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b GEOPHYS RES LETT : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21