000810970 001__ 810970
000810970 005__ 20220930130102.0
000810970 0247_ $$2doi$$a10.3389/fpls.2016.00944
000810970 0247_ $$2Handle$$a2128/11818
000810970 0247_ $$2WOS$$aWOS:000378603200001
000810970 0247_ $$2altmetric$$aaltmetric:9108320
000810970 0247_ $$2pmid$$apmid:27446171
000810970 037__ $$aFZJ-2016-03525
000810970 041__ $$aEnglish
000810970 082__ $$a570
000810970 1001_ $$0P:(DE-Juel1)174492$$aHecht, Vera Lisa$$b0$$ufzj
000810970 245__ $$aSowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.)
000810970 260__ $$aLausanne$$bFrontiers Media88991$$c2016
000810970 3367_ $$2DRIVER$$aarticle
000810970 3367_ $$2DataCite$$aOutput Types/Journal article
000810970 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536586375_12669
000810970 3367_ $$2BibTeX$$aARTICLE
000810970 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810970 3367_ $$00$$2EndNote$$aJournal Article
000810970 520__ $$aStudies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm−3) increases in the topsoil as well as specific root length (root length per root dry weight, cm g−1) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24–340 seeds m−2) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0–10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4–1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m−2 suggest that this efficiency did not translate into greater yield. We conclude that plant density is a modifier of root architecture and that root traits and their utility in breeding for greater productivity have to be understood in the context of high sowing densities.
000810970 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000810970 588__ $$aDataset connected to CrossRef
000810970 7001_ $$0P:(DE-Juel1)129409$$aTemperton, Vicky$$b1
000810970 7001_ $$0P:(DE-Juel1)129373$$aNagel, Kerstin$$b2
000810970 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b3
000810970 7001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes Auke$$b4$$eCorresponding author
000810970 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2016.00944$$gVol. 7$$p944$$tFrontiers in Functional Plant Ecology$$v7$$x1664-462X$$y2016
000810970 8564_ $$uhttps://juser.fz-juelich.de/record/810970/files/Hecht%20et%20al%202016.pdf$$yOpenAccess
000810970 8564_ $$uhttps://juser.fz-juelich.de/record/810970/files/Hecht%20et%20al%202016.gif?subformat=icon$$xicon$$yOpenAccess
000810970 8564_ $$uhttps://juser.fz-juelich.de/record/810970/files/Hecht%20et%20al%202016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000810970 8564_ $$uhttps://juser.fz-juelich.de/record/810970/files/Hecht%20et%20al%202016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810970 8564_ $$uhttps://juser.fz-juelich.de/record/810970/files/Hecht%20et%20al%202016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000810970 8564_ $$uhttps://juser.fz-juelich.de/record/810970/files/Hecht%20et%20al%202016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810970 8767_ $$92016-07-25$$d2016-07-25$$eAPC$$jDeposit$$lDeposit: Frontiers$$zUSD 1900,-
000810970 909CO $$ooai:juser.fz-juelich.de:810970$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000810970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174492$$aForschungszentrum Jülich$$b0$$kFZJ
000810970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129373$$aForschungszentrum Jülich$$b2$$kFZJ
000810970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b3$$kFZJ
000810970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich$$b4$$kFZJ
000810970 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000810970 9141_ $$y2016
000810970 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810970 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810970 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810970 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000810970 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000810970 920__ $$lyes
000810970 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000810970 980__ $$ajournal
000810970 980__ $$aVDB
000810970 980__ $$aI:(DE-Juel1)IBG-2-20101118
000810970 980__ $$aAPC
000810970 980__ $$aUNRESTRICTED
000810970 9801_ $$aAPC
000810970 9801_ $$aFullTexts