000810995 001__ 810995
000810995 005__ 20210129223649.0
000810995 0247_ $$2doi$$a10.1186/s13014-016-0665-z
000810995 0247_ $$2Handle$$a2128/11707
000810995 0247_ $$2WOS$$aWOS:000378576700001
000810995 0247_ $$2altmetric$$aaltmetric:9082051
000810995 0247_ $$2pmid$$apmid:27342976
000810995 037__ $$aFZJ-2016-03533
000810995 082__ $$a610
000810995 1001_ $$0P:(DE-HGF)0$$aPiroth, Marc D.$$b0$$eCorresponding author
000810995 245__ $$aRelapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume
000810995 260__ $$aLondon$$bBioMed Central$$c2016
000810995 3367_ $$2DRIVER$$aarticle
000810995 3367_ $$2DataCite$$aOutput Types/Journal article
000810995 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482156848_5864
000810995 3367_ $$2BibTeX$$aARTICLE
000810995 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000810995 3367_ $$00$$2EndNote$$aJournal Article
000810995 520__ $$aBackgroundO-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized target volume definition.MethodsA relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4 and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to optimally cover recurrent tumor.ResultsThe tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0–32) and at time of recurrence (13 %; 0–100). Recurrent tumor volume in FET-2 was localized to 39 % (12–91) in the initial tumor volume (FET-1). Over the time a shrinking (mean 12 (5–26) ml) and shifting (mean 6 (1–10 mm) of the resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 % (54–100) versus 85 % (0–100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional 7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based PTV applied in this study (median 160 (112–297) ml versus 231 (117–386) ml, p < 0.001).ConclusionsIn this small study recurrent tumor volume in FET-PET (FET-2) overlapped only to one third with the boost target volume, based on FET-1. The shrinking and shifting of the resection cavity may have an influence considering the limited overlap of initial and relapse tumor volume. A simulated target volume, based on FET-1 with 7 mm margin covered 100 % of relapse volume in median and led to a significantly reduced PTV, compared to MRI-based PTVs. This approach may achieve similar therapeutic efficacy but lower side effects offering a broader window to intensify concomitant systemic treatment focusing distant failures.
000810995 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000810995 588__ $$aDataset connected to CrossRef
000810995 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b1
000810995 7001_ $$0P:(DE-HGF)0$$aPinkawa, Michael$$b2
000810995 7001_ $$0P:(DE-HGF)0$$aHoly, Richard$$b3
000810995 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b4
000810995 7001_ $$0P:(DE-Juel1)131818$$aErmert, Johannes$$b5
000810995 7001_ $$0P:(DE-Juel1)132318$$aMottaghy, Felix M.$$b6
000810995 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b7
000810995 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b8
000810995 7001_ $$0P:(DE-HGF)0$$aEble, Michael J.$$b9
000810995 773__ $$0PERI:(DE-600)2224965-5$$a10.1186/s13014-016-0665-z$$gVol. 11, no. 1, p. 87$$n1$$p87$$tRadiation oncology$$v11$$x1748-717X$$y2016
000810995 8564_ $$uhttps://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.pdf$$yOpenAccess
000810995 8564_ $$uhttps://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.gif?subformat=icon$$xicon$$yOpenAccess
000810995 8564_ $$uhttps://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000810995 8564_ $$uhttps://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000810995 8564_ $$uhttps://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000810995 8564_ $$uhttps://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000810995 909CO $$ooai:juser.fz-juelich.de:810995$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000810995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b1$$kFZJ
000810995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b4$$kFZJ
000810995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131818$$aForschungszentrum Jülich$$b5$$kFZJ
000810995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132318$$aForschungszentrum Jülich$$b6$$kFZJ
000810995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
000810995 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b8$$kFZJ
000810995 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000810995 9141_ $$y2016
000810995 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000810995 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000810995 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000810995 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000810995 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000810995 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000810995 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000810995 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000810995 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000810995 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000810995 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000810995 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000810995 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000810995 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x3
000810995 980__ $$ajournal
000810995 980__ $$aVDB
000810995 980__ $$aI:(DE-Juel1)INM-3-20090406
000810995 980__ $$aI:(DE-Juel1)INM-4-20090406
000810995 980__ $$aI:(DE-Juel1)INM-5-20090406
000810995 980__ $$aI:(DE-82)080010_20140620
000810995 980__ $$aUNRESTRICTED
000810995 9801_ $$aFullTexts
000810995 981__ $$aI:(DE-Juel1)INM-4-20090406
000810995 981__ $$aI:(DE-Juel1)INM-5-20090406