Hauptseite > Publikationsdatenbank > Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume > print |
001 | 810995 | ||
005 | 20210129223649.0 | ||
024 | 7 | _ | |a 10.1186/s13014-016-0665-z |2 doi |
024 | 7 | _ | |a 2128/11707 |2 Handle |
024 | 7 | _ | |a WOS:000378576700001 |2 WOS |
024 | 7 | _ | |a altmetric:9082051 |2 altmetric |
024 | 7 | _ | |a pmid:27342976 |2 pmid |
037 | _ | _ | |a FZJ-2016-03533 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Piroth, Marc D. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume |
260 | _ | _ | |a London |c 2016 |b BioMed Central |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1482156848_5864 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a BackgroundO-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized target volume definition.MethodsA relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4 and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to optimally cover recurrent tumor.ResultsThe tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0–32) and at time of recurrence (13 %; 0–100). Recurrent tumor volume in FET-2 was localized to 39 % (12–91) in the initial tumor volume (FET-1). Over the time a shrinking (mean 12 (5–26) ml) and shifting (mean 6 (1–10 mm) of the resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 % (54–100) versus 85 % (0–100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional 7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based PTV applied in this study (median 160 (112–297) ml versus 231 (117–386) ml, p < 0.001).ConclusionsIn this small study recurrent tumor volume in FET-PET (FET-2) overlapped only to one third with the boost target volume, based on FET-1. The shrinking and shifting of the resection cavity may have an influence considering the limited overlap of initial and relapse tumor volume. A simulated target volume, based on FET-1 with 7 mm margin covered 100 % of relapse volume in median and led to a significantly reduced PTV, compared to MRI-based PTVs. This approach may achieve similar therapeutic efficacy but lower side effects offering a broader window to intensify concomitant systemic treatment focusing distant failures. |
536 | _ | _ | |a 573 - Neuroimaging (POF3-573) |0 G:(DE-HGF)POF3-573 |c POF3-573 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Galldiks, Norbert |0 P:(DE-Juel1)143792 |b 1 |
700 | 1 | _ | |a Pinkawa, Michael |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Holy, Richard |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Stoffels, Gabriele |0 P:(DE-Juel1)131627 |b 4 |
700 | 1 | _ | |a Ermert, Johannes |0 P:(DE-Juel1)131818 |b 5 |
700 | 1 | _ | |a Mottaghy, Felix M. |0 P:(DE-Juel1)132318 |b 6 |
700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 7 |
700 | 1 | _ | |a Langen, Karl-Josef |0 P:(DE-Juel1)131777 |b 8 |
700 | 1 | _ | |a Eble, Michael J. |0 P:(DE-HGF)0 |b 9 |
773 | _ | _ | |a 10.1186/s13014-016-0665-z |g Vol. 11, no. 1, p. 87 |0 PERI:(DE-600)2224965-5 |n 1 |p 87 |t Radiation oncology |v 11 |y 2016 |x 1748-717X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/810995/files/art_10.1186_s13014-016-0665-z.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:810995 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)143792 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)131627 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)131818 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)132318 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)131794 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)131777 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |2 G:(DE-HGF)POF3-500 |v Neuroimaging |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-5-20090406 |k INM-5 |l Nuklearchemie |x 2 |
920 | 1 | _ | |0 I:(DE-82)080010_20140620 |k JARA-BRAIN |l JARA-BRAIN |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-5-20090406 |
980 | _ | _ | |a I:(DE-82)080010_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
981 | _ | _ | |a I:(DE-Juel1)INM-5-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|