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Abstract

Background: O-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target

volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and

MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized

target volume definition.

Methods: A relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy

within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost

intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on

baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4

and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to

initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to

optimally cover recurrent tumor.

Results: The tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0–32) and at

time of recurrence (13 %; 0–100). Recurrent tumor volume in FET-2 was localized to 39 % (12–91) in the initial

tumor volume (FET-1). Over the time a shrinking (mean 12 (5–26) ml) and shifting (mean 6 (1–10 mm) of the

resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety

margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a

corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 %

(54–100) versus 85 % (0–100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional

7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based

PTV applied in this study (median 160 (112–297) ml versus 231 (117–386) ml, p < 0.001).
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Conclusions: In this small study recurrent tumor volume in FET-PET (FET-2) overlapped only to one third with the

boost target volume, based on FET-1. The shrinking and shifting of the resection cavity may have an influence

considering the limited overlap of initial and relapse tumor volume. A simulated target volume, based on FET-1

with 7 mm margin covered 100 % of relapse volume in median and led to a significantly reduced PTV, compared

to MRI-based PTVs. This approach may achieve similar therapeutic efficacy but lower side effects offering a broader

window to intensify concomitant systemic treatment focusing distant failures.
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Introduction
To date, external fractionated radiotherapy is a mainstay

in the multimodal treatment strategy of glioblastomas.

The diagnostic method of choice for radiation treatment

planning is contrast-enhanced MRI owing to its higher

anatomical contrast and spatial resolution compared

with CT. The differentiation of glioma tissue from sur-

rounding edema, however, may be difficult with MRI

and CT particularly when the tumor is not sharply de-

lineated from normal brain tissue, and when the blood-

brain barrier (BBB) remains intact [1]. Tumor cells have

been detected beyond the margins of contrast enhance-

ment, in the perifocal edema, and even in the adjacent

normal-appearing brain parenchyma [2, 3]. Furthermore,

after neurosurgical resection BBB disturbances and

edema can also be treatment-related and cannot be dif-

ferentiated from residual tumor or tumor recurrence/

progression using conventional MRI [4]. In order to

cover all brain areas potentially infiltrated by the tumor,

these difficulties lead to rather large target volumes for

radiotherapy of glioblastoma [5–9].

In the last decades, amino acid PET using O-(2-18F-

fluoroethyl)-L-tyrosine (FET) or L-[methyl-11C]methio-

nine (MET) have been shown to be particularly useful to

determine the extent of cerebral gliomas more precisely

than conventional MRI alone [10–15]. Incorporating

such molecular or “biological” imaging information has

generated the radiooncological concept of the so called

“biological target volume” (BTV) [16]. A number of cen-

ters have started to integrate amino acid imaging into

CT- and MRI-based radiotherapy planning, particularly

when high-precision radiotherapy is planned or in the

setting of dose escalation studies or for the re-irradiation

of recurrent tumors [17–21].

Some studies have examined the recurrence pattern of

glioblastoma in relation to the planning target volume

(PTV), either based on treatment planning including

FET-PET [22], on MET uptake in the baseline study

without using PET for planning [23] or based on the

localization of tumor recurrence using FET-PET [24].

The matching observation of all these studies was that

the recurrences occurred mainly within the PTV. These

studies raised the question whether the “in-field”-

recurrences can be reduced by dose escalation to the

FET-based BTV, e.g., as a stereotactic dose escalation or

by means of a simultaneous integrated boost.

In a recent prospective phase-II trial we performed an

integrated-boost intensity-modulated radiotherapy (IB-

IMRT) with a dose escalation concept giving 72 Gy in

30 fractions to the boost volume based on pre-

irradiation 18F-FET PET imaging [25]. Compared with

historical controls and published MRI-based dose-

escalation studies, however, no improvement of

progression-free or overall survival could be observed.

Despite this disappointing result, there remains the

notion to optimize the irradiation volume using FET

PET and thus to possibly reduce side effects. Therefore,

we reviewed the follow-up data of the patients in the

above-mentioned study in order to analyze the overlap be-

tween residual tumor in the baseline FET-PET (FET-1)

post-surgery and the relapse tumor volumes as detected

also by FET-PET (FET-2). Based on the results different

radiation target volumes were simulated in order to

achieve optimal coverage of the tumors with minimal ir-

radiation volume.

To the best of our knowledge, this is the first study

comparing the tumor volume in FET PET and MRI at

the time of radiation treatment planning to that of FET

PET and MRI at the time of tumor recurrence.

Material and methods
Ethical consideration

This study was approved by the university ethics com-

mittee at the RWTH Aachen faculty of medicine (Ref.

No. EK027/07). All participants had given written in-

formed consent for their participation in the study and

for publication of the data.

Patients

This retrospective analysis is based on a previous pro-

spective phase II study [25]. In that study, 22 patients

with primary glioblastoma (median age, 55 years; range,

36–73 years) were treated with radiotherapy and concomi-

tant temozolomide chemotherapy (RCX) followed by adju-

vant temozolomide between 01/2008 and 12/2009 [25]. All

patients had pre- and postoperative MRI (T1-, T2- and

Piroth et al. Radiation Oncology  (2016) 11:87 Page 2 of 9



FLAIR-weighted images) and postoperative FET-PET for

radiation treatment planning. The respective MRI- and

FET-PET scans, initial (FET-PET1/MRI1) and also at time

of relapse (FET-PET2/MRI2), were performed on the same

day. Thereafter, all patients were treated with an IB-IMRT.

Within the follow-up time of 15 months (range, 3–

34 months) 19 patients presented with tumor recurrence

on contrast-enhanced MRI. According to the graduation

used by Chan et al. [26], a local, local and distant, and

distant only recurrence on MRI was seen in 15, 3, and 1

patient(s), respectively. In 13 patients, a repeated FET-

PET scan was done so that MRI and PET data were

available both at the time of the planning of radiother-

apy and at the time of recurrence. These 13 patients

were included in this relapse pattern analysis. Due to a

poor medical condition at the time of recurrence, in the

remaining 6 patients FET-PET could not be obtained.

18F-FET PET imaging

The amino acid 18F-FET was produced via nucleophilic
18F-fluorination with a specific radioactivity of >200 GBq/

μmol as described previously. Dynamic PET studies were

acquired up to 50 min after intravenous injection of

200 MBq FET in 3-dimensional mode and reconstructed

as described previously [27]. The subsequent evaluation

was based on the summarized FET-PET data from 20 to

40 min post injection.

Radiotherapy

The clinical target volumes (CTV) and planning target

volume (PTV) were defined as previously described [25].

In brief, a CTV1 was defined from the postoperative

FET-PET using an autocontouring process using a

tumor-to-brain ratio (TBR) of FET uptake ≥1.6, which is

equivalent to the BTV as mentioned above. This cut-off

is based on a biopsy-controlled study in cerebral gliomas

where a TBR of 1.6 separated best tumoral from peritu-

moral tissue [14]. Further, a CTV2 was defined as the

contrast-enhanced area from pre- and postoperative

MRI including a safety margin of 1.5 cm and including

the preoperative edema, individually adapted to organs

at risk and osseous structures. The PTV1 was based on

CTV1 with no additional margin. The PTV2 was gener-

ated automatically by adding a 0.5 cm margin around

the CTV2. The whole dose was 72 Gy for the PTV1 and

60 Gy for the PTV2 applied with an IB-IMRT (single

doses 2.4 and 2 Gy, respectively).

Analysis of tumor volumes at baseline and at the time of

recurrence

In order to analyze the spatial relationship of tumor vol-

umes derived from contrast enhancement in MRI and

FET PET at baseline for radiation treatment planning

and at the time of recurrence the corresponding data

sets were transferred to the Philips Syntegra™ image

registration tool. After coregistration of MRI and FET-

PET scans the different volumes were compared volu-

metrically. The contouring and volume analysis was

performed using the Philips Pinnacle3 treatment plan-

ning software (Version 8.0 m, Philips Medical Systems,

Eindhoven, NL).

The volume of the tumor showing contrast enhance-

ment of Gd-DTPA on T1-weighted MRI was determined

in baseline MRI for radiation treatment planning (MRI-1)

and at the time of relapse (MRI-2). Correspondingly, the

tumor volume of FET uptake with a TBR ≥ 1.6 was evalu-

ated in the baseline FET PET scan (FET-1) and at the time

of recurrence (FET-2).

Intersect tumor volumes of Gd-enhancement in MRI

and of increased FET-uptake at baseline (MRI-1 ∩ FET-1)

and corresponding intersect at the time of relapse

(MRI-2 ∩ FET-2) were determined.

Analysis of the location of tumor recurrence in relation to

PTV1 and PTV2

The primary aim of this study was to analyze the loca-

tion of the tumor recurrence in FET PET in relation to

the tumor area irradiated with a 72 Gy boost (PTV1)

which was based on initial FET PET. Furthermore, the

recurrence pattern in FET PET in relation to brain area

irradiated with a conventional dose of 60 Gy (PTV2)

was also considered. This analysis was based on the

evaluation of FET-PET data because increased tracer up-

take can be considered as a more reliable parameter to

determine metabolically active recurrent tumor than

contrast enhancement on MRI [28, 29]. For this purpose

the tumor volume and fraction of FET positive recurrent

tumor within the area irradiated with 60 Gy (PTV2) and

within the boost area irradiated with 72 Gy (PTV1) was

determined (Table 2).

Analysis of shifting and shrinking of the resection cavity

The shrinking of the resection cavity was analyzed,

measuring the volume of the cavity initial and at time of

relapse comparatively. Also, the shifting was analyzed

measuring the shift of a manually determined represen-

tative center point within the cavity.

Simulation of the optimal target volume to cover

potential relapse areas

Based on FET-PET and MRI at baseline (FET-1 and

MRT-1) different target volumes were simulated in order

to analyze the coverage of the recurrent tumors in FET-2.

Therefore, the surface of baseline tumor volumes in FET-

1 and of contrast enhancement in MRI-1 were surrounded

by expanded volumes at a distance of 5, 7 and 10 mm to

generate different target volumes.
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Statistical analysis

The Wilcoxon test was used to compare the tumor vol-

umes and coverage of recurrent tumor tissue by different

simulated PTVs based on FET-PET and contrast-

enhanced MRI. The global significance level for the stat-

istical test procedure conducted was chosen as α = 5 %.

Statistical analysis was performed using the SPSS Statis-

tics software (Release 20.0, SPSS Inc., Chicago, IL, USA)

software.

Results
Analysis of tumor volumes at baseline and at the time of

recurrence

The tumor volumes for each patient at baseline (FET-1

and MRI-1) and at the time of recurrence (FET-2 and

MRI-2) are shown in Table 1. At baseline, the median

tumor volume in FET-PET (FET-1) was significantly lar-

ger than that of contrast enhancement on MRI-1 (9

(range 1–63) ml vs. 5 (0.6–20) ml; p = 0.01) while there

was no significant difference between the tumor volumes

of FET-PET and MRI at the time of recurrence (FET-2

and MRI-2; 13 (4–67) ml vs. 19 (4–113) ml; p = 0.7) The

intersect between increased FET uptake (TBR > 1.6) and

contrast enhancement in MRI was generally poor both

at baseline and at the time of relapse (12 % (0–32) and

13 % (0–100), respectively). The discrepancy between

FET uptake and contrast enhancement on MRI is illus-

trated in Fig. 1b and d.

Analysis of the location of tumor recurrence in relation to

PTV1 and PTV2

Data on the location of pathological tracer uptake in

FET PET in relation to PTV1 and PTV2 at the time of

tumor recurrence are shown in Table 2. The fraction of

the recurrent FET tumor volume within the 72 Gy boost

volume PTV1, was only 39 % (12–91), i.e., nearly two

thirds of recurrent tumor tissue was located outside the

boost volume. In contrast, recurrent FET tumor volume

was located to 100 % within the large PTV-2 based on

conventional MRI which was irradiated by the standard

dose of 60 Gy.

Analysis of shifting and shrinking of the resection cavity

The resection cavity shrinked by 12 ml (4.8–26) and

shifted by 6 mm (1–10.3) in mean over time.

Simulation of the optimal PTV to cover potential

recurrence areas

The target volumes simulated on the basis of FET-PET

after resection (FET-1) exhibited generally better coverage

of the recurrent FET tumor volume (FET-2) than the cor-

responding target volumes simulated on the basis of the

Table 1 Tumor volumes of increased FET-uptake and of Gd-enhancement in MRI at baseline and at time of relapse

Pat. No Tumor volumes at baseline Tumor volumes at relapse

FET-1 (ml) MRI-1 (ml) Intersect FET-1 ∩
MRI-1 (ml)

Intersect FET-1 ∩
MRI-1 (% of FET-1)

FET-2 (ml) MRI-2 (ml) Intersect FET-2 ∩
MRI-2 (ml)

Intersect FET-2 ∩
MRI-2 (% of FET-2)

1 10.4 0.8 0.4 3.8 3.7 3.7 0.0 0

2 6.9 0.6 0.2 2.9 10.9 8.9 0.7 8.7

3 6.8 3.7 2.2 32.4 11.3 8.1 5.0 44.2

4 1.1 6.8 1.3 9.9 12.2 9.3 7.6 62.3

5 13.4 6.0 3.5 26.1 13.9 12.0 1.1 7.9

6 15.0 1.3 0.5 3.3 35.1 16.2 23.5 67.0

7 6.7 6.4 0.0 0.0 6.2 19.4 0.8 12.9

8 25.2 1.3 1.3 5.2 22.1 26.8 10.0 45.3

9 4.7 6.5 1.5 31.9 5.6 27.0 5.6 100

10 6.8 4.9 1.6 23.5 56.0 39.6 0.0 0.0

11 62.9 19.4 12.0 19.1 46.7 41.8 23.4 50.1

12 59.0 19.5 11.3 19.2 66.8 43.5 5.5 8.2

13 9.1 1.1 1.1 12.1 12.8 113.0 1.7 13.3

Mean 17.5 6.0 3.0 14.6 23.3 28.4 6.5 32.3

Median 9.1 4.9 1.3 12.1 12.8 19.4 5.0 13.3

SD 19.6 6.1 4.0 11.5 20.9 28.8 8.1 31.5

range 1.1–62.9 0.6–19.5 0–12 0–32.4 3.7–66.8 3.7–113 0–23.5 0-100.0

FET-1: pathological FET-Volume in ml at baseline (post surgery)

MRI-1: Gd-contrast-enhancement in ml at baseline (post surgery)

FET-2: pathological FET-Volume in ml at the time of relapse

MRI-1: Gd-contrast-enhancement in ml at the time of relapse
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Fig. 1 Residual tumor volumes in FET-PET and MRI after glioblastoma resection left frontal are shown in the upper row (a, b) and of the recurrent

tumor in the lower row (c, d). The tumor volume with increased FET uptake is surrounded by a dotted line in FET-PET (a, c) and by a green line

in contrast-enhanced MRI (b, d). Note the discrepancy between FET uptake and contrast enhancement both in the baseline scan (b) and at the

time of relapse (d). The definition of PTV2, which is based on MRI, is indicated by the red line (b, d). The blue line demonstrated a simulated PTV

based on a CTV consisting of FET-1 plus 7 mm margin

Table 2 FET-uptake at time of relapse in relation to PTV-1 and PTV-2

Pat. No FET Tumor volume at relapse PTV-1 (72 Gy) PTV-2 (60 Gy)

FET-2 (ml) Part of FET-2 in PTV-1 (ml) Fraction of FET-2 in PTV-1 (%) Fraction of FET-2 in PTV-2 (%)

1 3.7 1.2 11.5 100

2 10.9 1.1 15.9 100

3 11.3 3.8 55.9 100

4 12.2 5.1 38.9 100

5 13.9 4.9 36.6 100

6 35.1 13.7 91.3 100

7 6.2 1.6 23.9 100

8 22.1 9.5 37.7 100

9 5.6 0.6 12.8 100

10 56.0 2.8 41.2 100

11 46.7 29.4 46.7 100

12 66.8 29.0 49.2 100

13 12.8 4.4 48.4 100

Mean 23.3 8.2 39.2 100

Median 12.8 4.4 38.9 100

SD 20.9 10.0 21.4

Range 3.7–66.8 0.6–29.4 11.5–91.3

FET-2: pathological FET-Volume in ml at the time of relapse
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contrast-enhanced MRI (Table 3). Thus theoretically, a

CTV based on FET-1 without any margin showed a sig-

nificant better coverage of FET-2 than a corresponding

target volume based on contrast enhancement in MRI-1

(median 34 % (5–63) vs. 21 % (0–42); p < 0.01), FET-1 and

MRI-1 with a margin of 5 mm (94 % (42–100) vs. 74 %

(0–92); p < 0.01), FET-1 and MRI-1 with a margin of

7 mm (100 % (54–100) vs. 85 % (0–100); p < 0.01), FET-1

and MRI-1 with a margin of 10 mm (100 % (82–100) vs.

86 % (0–100); p < 0.01).

The resulting simulated PTVs on the basis of FET-

PET after surgery with different margins in comparison

with the actual PTV-2 from the study are shown in

Table 4.

An optimal compromise appears to be a CTV based

on FET-1 with a margin of 7 mm because there is a high

coverage of recurrent tumor volume in FET-PET (100 %

(54–100)) and a significantly smaller PTV compared to a

typical MRI-based PTV performed in our study (160

(112–297) ml vs. 231 (117–386) ml, p < 0.001).

Discussion
To date, the definition of the optimal target volume in

radiation treatment planning of glioblastomas is contro-

versial [30, 31]. According to current standards, target

volume concepts are based on either preoperative or

postoperative MRIs, which, however, lead to relative

large target volumes [5–9]. PET using radiolabeled

amino acids such as FET can offer a more precise delin-

eation of the metabolically active tumor, which is not

limited to the area of BBB disruption and is more spe-

cific than the information provided by conventional MRI

alone [14, 32, 33]. A number of centers have started to

integrate the BTV as depicted by amino acid PET into CT-

and MRI-based radiotherapy planning [12, 17–20, 24].

Considerable discrepancies between the PTVs arising from

MRI and PET have been demonstrated in several studies

[12, 17, 19, 24, 34].

In addition to the observed differences in the extent

of the tumor in MRI and PET in radiotherapy plan-

ning, the localization and the definition of the extent

of the recurrent tumor is another diagnostic problem.

Treatment-related BBB alterations with consecutive con-

trast enhancement on conventional MRI can mimic tumor

recurrence and are difficult to differentiate from progres-

sive tumor. It has been shown in several studies that FET

PET is more reliable to differentiate tumor tissue in recur-

rent gliomas and posttherapeutic changes in the tissue

than conventional MRI [11, 28, 35].

Some studies have examined the recurrence pattern of

glioblastoma taking into account amino acid PET in

various ways. One study included FET-PET for RT plan-

ning but the location of recurrences was evaluated by

contrast enhanced MRI only [22]. Another study analyzed

Table 3 Coverage of recurrent FET tumor volume by different simulated CTVs based on PET/MRI at baseline

CTV MRI-1 FET-1 MRI-1 FET-1 MRI-1 FET-1 MRI-1 FET-1

No margin +5 mm margin +7 mm margin +10 mm margin

1 0,27 0,33 0,8 0,95 0,87 1,00 0,93 1,00

2 0,08 0,098 0,49 0,61 0,52 0,76 0,7 1,00

3 0,21 0,34 0,61 0,95 0,67 1,00 0,83 1,00

4 0,33 0,42 0,74 0,94 0,85 1,00 0,86 1,00

5 0,25 0,35 0,92 0,96 0,99 1,00 1,00 1,00

6 0,05 0,39 0,19 0,85 0,23 0,92 0,33 0,972

7 0 0,25 0 0,831 0 0,91 0 0,98

8 0,2 0,32 0,76 0,93 1,00 1,00 1,00 1,00

9 0,08 0,11 0,79 0,84 0,88 0,91 0,9 0,95

10 0,16 0,05 0,55 0,42 0,62 0,54 0,84 0,82

11 0,42 0,63 0,51 0,96 0,578 0,97 0,77 1,00

12 0,3 0,44 0,79 1,00 0,90 1,00 0,96 1,00

13 0,22 0,34 0,91 1,00 1,00 1,00 1,00 1,00

mean 0,20 0,31 0,62 0,86 0,70 0,92 0,78 0,98

median 0,21 0,34 0,74 0,94 0,85 1 0,86 1

SD 0,12 0,16 0,27 0,17 0,31 0,13 0,39 0,05

range 0-0,42 0,05-0,63 0-0,92 0,42-1 0-1 0,54-1 0-1 0,82-1

CTV Clinical Target Volume

FET-1 pathological FET-Volume in ml at baseline (post surgery)

MRI-1: Gd-contrast-enhancement in ml at baseline (post surgery)

SD Standard Deviation
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the location of recurrences in contrast-enhanced MRI in

comparison to MET uptake in the baseline study without

using PET for treatment planning [23]. A recent study in-

vestigated the localization of tumor recurrence in FET-

PET after re-irradiation with bevacizumab in recurrent

malignant gliomas [24]. The matching observation of all

these studies was that the recurrences occurred mainly

within the PTV but it has to be considered that in no

study amino acid PET was available in both the baseline

study and at the time of relapse.

In this retrospective study we analyzed relapse patterns

of glioblastoma in FET-PET and MRI after IB-IMRT

with dose escalation based on FET-PET.

A first aspect in this study was the comparison of the

extent of contrast enhancement on MRI to that of FET

uptake in the baseline study and at the time of recurrence.

In agreement with previous studies the intersection be-

tween pathological FET uptake and contrast enhancement

in MRI was generally poor both at baseline and at the time

of recurrence. This observation confirms the view that

contrast enhancement in MRI does not reliably reflect the

extent of the metabolically active tumor volume and

should be therefore considered with caution [12, 17, 19,

24, 34]. Tumor volumes in FET-PET and contrast-

enhanced MRI were not significantly different at the time

of relapse and the overlap was 13 % in median only.

The comparison of the relapse volume in FET-PET in

relation to PTV2 demonstrated that 100 % of the tumor

recurrences were located in the routinely performed

large target volumes using MRI based treatment plan-

ning [5–9]. This is in agreement with the results of pre-

vious studies including PET data [22–24] and is also in

accordance with the literature based on conventional

imaging where all local relapses were detected within

the volume enclosed by the 95 % isodosis line of the pre-

scribed dose of 60 Gy [26, 36, 37]. This is not unex-

pected, since radiation treatment planning based on MRI

scans usually encompass the resection cavity and the

contrast enhancing area with a margin up to 3 cm [5],

resulting in large radiation target volumes.

Comparison of the relapse volume in FET-PET in rela-

tion to the boost target volume applied in our study,

however, revealed that more than two thirds of recurrent

tumor tissue in FET-PET was located outside the boost

volume. The limited overlap may be influenced by the

shifts of brain tissue due to shrinkage of the resection

cavity seen in our analysis (see Fig. 1) but the difference

is considerable and cannot be explained solely by these

factors. Therefore it can be assumed that a large propor-

tion of recurrences have grown outside the boost vol-

umes i.e. within the area of the prescribed dose of

60 Gy.

Table 4 Volumes of standard and simulated PTVs on the basis of FET-PET

Pat. No. PTV-2 MRI
standard (ml)

PTV FET-1
+5 mm margin (ml)

PTV FET-1
+7 mm margin (ml)

PTV FET-1
+10 mm margin (ml)

1 245 122 147 214

2 164 98 118 163

3 117 92 112 143

4 248 125 150 194

5 161 101 114 146

6 256 182 213 286

7 224 106 126 166

8 348 216 253 308

9 209 161 187 259

10 160 138 160 216

11 364 233 263 304

12 386 265 297 342

13 231 175 197 258

mean 240 155 180 230

median 231 138 160 216

SD 83 56 62 67

Range 117–386 92–265 112–297 143–342

(Volumes of conventional PTV2 and simulated PTVs based on FET uptake at baseline (FET-1) expanded by 5, 7 and 10 mm margin in ml. The PTV include an

additional margin of 5 mm around the CTV which is standardly used to compensate the set-up- and immobilisation uncertainties)

PTV Planning Target Volume

FET-1: pathological FET-Volume in ml at baseline (post surgery)

MRI-1:Gd-contrast-enhancement in ml at baseline (post surgery)

SD Standard Deviation
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Based on this assumption we simulated different CTVs

on the basis of FET-PET in order to analyze the cover-

age of the recurrent tumors in FET-PET. The CTVs sim-

ulated on the basis of FET-PET after surgery exhibited

generally better coverage of the recurrent FET tumor

volume than the corresponding CTVs simulated on the

basis of the contrast-enhanced MRI. Using a CTV based

on FET-1 with a margin of 7 mm achieved a high cover-

age of recurrent tumor volume in FET-PET of 100 %

(54–100). Accordingly, a significantly smaller PTV re-

sults compared to the conventional MR-based PTV used

in this study (160 (112–297) ml vs. 231 (117–386) ml,

p < 0.001). This analysis indicates that a PTV based on

FET-PET may achieve a coverage which is at least com-

parable to standard MRI-based PTVs but less toxic

considering the shown PTV reduction. This approach

may help to achieve similar therapeutic efficacy but

lower side effects. This may be of interest with regard

to an intensification of concomitant systemic treatment

schemes probably required to improve outcome. Fur-

thermore, sparing of larger parts of the brain increases

the systemic treatment options in the case of distant

recurrences.

Conclusion
Overlap of pathological FET uptake in glioblastoma and

contrast enhancement in MRI was generally poor both

at baseline and at the time of relapse. Relapse volumes

of the tumor recurrences in FET-PET were located to

100 % in PTV2 achieving 60 Gy, but more nearly two

thirds was located outside the boost volume PTV1. A

CTV based on FET with a safety margin of 7 mm covers

100 % of the relapse volume and consecutively reduces

the PTV significantly. This approach may achieve similar

therapeutic efficacy but lower side effects and offer op-

tions to intensify concomitant systemic treatment focus-

ing the problem of distant failures. Because of the small

sample size further studies are needed to confirm these

findings.
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