000811008 001__ 811008
000811008 005__ 20240313103105.0
000811008 020__ $$a978-3-319-40984-9
000811008 020__ $$a978-3-319-40985-6 (electronic)
000811008 0247_ $$2doi$$a10.1007/978-3-319-40985-6_1
000811008 0247_ $$2ISSN$$a0302-9743
000811008 0247_ $$2ISSN$$a1611-3349
000811008 0247_ $$2altmetric$$aaltmetric:8734398
000811008 037__ $$aFZJ-2016-03545
000811008 082__ $$a004
000811008 1001_ $$0P:(DE-HGF)0$$aHaemmerlé, Ollivier$$b0$$eEditor
000811008 245__ $$aExploring the Usefulness of Formal Concept Analysis for Robust Detection of Spatio-temporal Spike Patterns in Massively Parallel Spike Trains
000811008 260__ $$aCham$$bSpringer International Publishing$$c2016
000811008 29510 $$aGraph-Based Representation and Reasoning / Haemmerlé, Ollivier (Editor) ; Cham : Springer International Publishing, 2016, Chapter 1 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-319-40984-9=978-3-319-40985-6 ; doi:10.1007/978-3-319-40985-6
000811008 300__ $$a3 - 16
000811008 3367_ $$2ORCID$$aBOOK_CHAPTER
000811008 3367_ $$07$$2EndNote$$aBook Section
000811008 3367_ $$2DRIVER$$abookPart
000811008 3367_ $$2BibTeX$$aINBOOK
000811008 3367_ $$2DataCite$$aOutput Types/Book chapter
000811008 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1568969800_27158
000811008 4900_ $$aLecture Notes in Computer Science$$v9717
000811008 520__ $$aThe understanding of the mechanisms of information processing in the brain would yield practical impact on innovations such as brain-computer interfaces. Spatio-temporal patterns of spikes (or action potentials) produced by groups of neurons have been hypothesized to play an important role in cortical communication [1]. Due to modern advances in recording techniques at millisecond resolution, an empirical test of the spatio-temporal pattern hypothesis is now becoming possible in principle. However, existing methods for such a test are limited to a small number of parallel spike recordings. We propose a new method that is based on Formal Concept Analysis (FCA, [11]) to carry out this intensive search. We show that evaluating conceptual stability [18] is an effective way of separating background noise from interesting patterns, as assessed by precision and recall rates on ground truth data. Because of the scaling behavior of stability evaluation, our approach is only feasible on medium-sized data sets consisting of a few dozens of neurons recorded simultaneously for some seconds. We would therefore like to encourage investigations on how to improve this scaling, to facilitate research in this important area of computational neuroscience.
000811008 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000811008 588__ $$aDataset connected to CrossRef Book Series
000811008 7001_ $$0P:(DE-HGF)0$$aStapleton, Gem$$b1$$eEditor
000811008 7001_ $$0P:(DE-HGF)0$$aFaron Zucker, Catherine$$b2$$eEditor
000811008 7001_ $$0P:(DE-Juel1)161462$$aYegenoglu, Alper$$b3
000811008 7001_ $$0P:(DE-Juel1)164108$$aQuaglio, Pietro$$b4
000811008 7001_ $$0P:(DE-Juel1)145148$$aTorre, Emiliano$$b5
000811008 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b6$$eCorresponding author
000811008 7001_ $$0P:(DE-HGF)0$$aEndres, Dominik$$b7$$eCorresponding author
000811008 773__ $$a10.1007/978-3-319-40985-6_1
000811008 8564_ $$uhttps://juser.fz-juelich.de/record/811008/files/chp%253A10.1007%252F978-3-319-40985-6_1.pdf$$yRestricted
000811008 8564_ $$uhttps://juser.fz-juelich.de/record/811008/files/chp%253A10.1007%252F978-3-319-40985-6_1.gif?subformat=icon$$xicon$$yRestricted
000811008 8564_ $$uhttps://juser.fz-juelich.de/record/811008/files/chp%253A10.1007%252F978-3-319-40985-6_1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000811008 8564_ $$uhttps://juser.fz-juelich.de/record/811008/files/chp%253A10.1007%252F978-3-319-40985-6_1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000811008 8564_ $$uhttps://juser.fz-juelich.de/record/811008/files/chp%253A10.1007%252F978-3-319-40985-6_1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000811008 8564_ $$uhttps://juser.fz-juelich.de/record/811008/files/chp%253A10.1007%252F978-3-319-40985-6_1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000811008 909CO $$ooai:juser.fz-juelich.de:811008$$pVDB
000811008 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161462$$aForschungszentrum Jülich$$b3$$kFZJ
000811008 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164108$$aForschungszentrum Jülich$$b4$$kFZJ
000811008 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145148$$aForschungszentrum Jülich$$b5$$kFZJ
000811008 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b6$$kFZJ
000811008 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000811008 9141_ $$y2016
000811008 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811008 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811008 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000811008 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000811008 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000811008 980__ $$acontb
000811008 980__ $$aVDB
000811008 980__ $$aI:(DE-Juel1)INM-6-20090406
000811008 980__ $$aI:(DE-Juel1)IAS-6-20130828
000811008 980__ $$aUNRESTRICTED
000811008 981__ $$aI:(DE-Juel1)IAS-6-20130828
000811008 981__ $$aI:(DE-Juel1)IAS-6-20130828