001     811030
005     20210129223705.0
024 7 _ |a 10.1007/JHEP04(2016)093
|2 doi
024 7 _ |a 1029-8479
|2 ISSN
024 7 _ |a 1126-6708
|2 ISSN
024 7 _ |a 2128/11724
|2 Handle
024 7 _ |a WOS:000374340400004
|2 WOS
024 7 _ |a altmetric:4466294
|2 altmetric
037 _ _ |a FZJ-2016-03567
082 _ _ |a 530
100 1 _ |a Horsley, R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a QED effects in the pseudoscalar meson sector
260 _ _ |a Berlin
|c 2016
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467617821_2696
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this paper we present results on the pseudoscalar meson masses from a fully dynamical simulation of QCD+QED, concentrating particularly on violations of isospin symmetry. We calculate the π +-π 0 splitting and also look at other isospin violating mass differences. We have presented results for these isospin splittings in [1]. In this paper we give more details of the techniques employed, discussing in particular the question of how much of the symmetry violation is due to QCD, arising from the different masses of the u and d quarks, and how much is due to QED, arising from the different charges of the quarks. This decomposition is not unique, it depends on the renormalisation scheme and scale. We suggest a renormalisation scheme in which Dashen’s theorem for neutral mesons holds, so that the electromagnetic self-energies of the neutral mesons are zero, and discuss how the self-energies change when we transform to a scheme such as M S, in which Dashen’s theorem for neutral mesons is violated.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nakamura, Y.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Perlt, H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pleiter, D.
|0 P:(DE-Juel1)144441
|b 3
|u fzj
700 1 _ |a Rakow, P. E. L.
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Schierholz, G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schiller, A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Stokes, R.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Stüben, H.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Young, R. D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zanotti, J. M.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1007/JHEP04(2016)093
|g Vol. 2016, no. 4, p. 93
|0 PERI:(DE-600)2027350-2
|n 4
|p 93
|t Journal of high energy physics
|v 2016
|y 2016
|x 1029-8479
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/811030/files/art_10.1007_JHEP04%282016%29093.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/811030/files/art_10.1007_JHEP04%282016%29093.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/811030/files/art_10.1007_JHEP04%282016%29093.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/811030/files/art_10.1007_JHEP04%282016%29093.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/811030/files/art_10.1007_JHEP04%282016%29093.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/811030/files/art_10.1007_JHEP04%282016%29093.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:811030
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144441
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J HIGH ENERGY PHYS : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J HIGH ENERGY PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21