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Abstract: In this paper we present results on the pseudoscalar meson masses from a fully

dynamical simulation of QCD+QED, concentrating particularly on violations of isospin

symmetry. We calculate the π+–π0 splitting and also look at other isospin violating mass

differences. We have presented results for these isospin splittings in [1]. In this paper

we give more details of the techniques employed, discussing in particular the question of

how much of the symmetry violation is due to QCD, arising from the different masses of

the u and d quarks, and how much is due to QED, arising from the different charges of

the quarks. This decomposition is not unique, it depends on the renormalisation scheme

and scale. We suggest a renormalisation scheme in which Dashen’s theorem for neutral

mesons holds, so that the electromagnetic self-energies of the neutral mesons are zero, and

discuss how the self-energies change when we transform to a scheme such as MS, in which

Dashen’s theorem for neutral mesons is violated.
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1 Introduction

Lattice calculations of the hadronic spectrum are now reaching a precision where it is

essential to resolve the influence of isospin breaking effects. These have two sources, a

QCD effect arising from the fact that the u and d quarks have different masses, and

an electromagnetic effect due to the u and d having different electric charges. The two

effects are comparable in magnitude, so a reliable calculation of isospin breaking requires

simulating both the gluon and photon gauge fields.

Lattice studies of electromagnetic effects in the pions go back to [2]. In recent years

the interest in QCD+QED has grown, and the pace of work accelerated [3–9].

We are carrying out simulations in QCD+QED [1]. Both gauge theories are fully

dynamical, so that the electrical charges of sea-quark loops are included via the fermion

determinants. We use a non-compact action for the photon field. The calculations are

carried out with three clover-like quarks. Details of the lattice action will be given in

section 4, and can be found in [1, 10].

In the real world, with αEM = 1/137, electromagnetic effects on masses are at the 1%

level, or smaller. This would make them hard to measure on the lattice. Therefore we
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simulate with a QED coupling stronger than in real world, so that we can see effects easily,

and then scale back to physical αEM. The simulations are carried out with βQED = 0.8,

equivalent to e2 = 1.25, αEM = e2/(4π) ≈ 0.10 . We will see that this is a good choice,

electromagnetic signals are clearly visible, much larger than our statistical errors, but we

are also in a region where they still scale linearly in e2, and we do not need to consider

higher-order terms.

We generate configurations with dynamical u, d and s quarks, and then increase our

data range by carrying out partially quenched calculations, with valence u, d, s quarks

having different masses from the quarks used in the generation of the configurations. In

addition to the u, d, s quarks, we also introduce a fictitious n quark, an extra flavour with

electrical charge zero. The n quark is particularly useful for checking that we are in the

region where electromagnetic effects are still linearly proportional to e2.

In this work we present results on the pseudoscalar mesons. Our meson propagators

are calculated from connected graphs only. Because we have no fermion-line disconnected

graphs, the uū, dd̄, ss̄ and nn̄ states do not mix, so we can measure M2(uū),M2(dd̄) and

M2(ss̄). In the real world, these states do not exist, they mix strongly to form the π0, η

and η′. Disconnected graphs are responsible for the large mass of the η′, but will have very

little effect on the mass of the π0. In this work we do not consider the η and η′ further,

but we will need a mass for the π0, with wave-function proportional to (uū− dd̄)/
√

2. We

use the relation

M2
π0 ≈

1

2

[
M2(uū) +M2(dd̄)

]
(1.1)

which is a very good approximation, with corrections proportional to the small quantity

(md−mu)2 [11]. This issue does not arise for the flavour non-diagonal mesons, π+,K0,K+,

which have no disconnected contribution.

In the first part of this paper, sections 2 to 7, we discuss theoretical questions. First we

describe how our constant singlet mass procedure [11, 12] can be applied to QCD+QED.

We derive a mass formula for pseudoscalar mesons in this framework. This is all that is

needed to calculate physical mass splittings, in particular the π+–π0 splitting. It also gives

us the lattice masses for the u, d, s quarks at the physical point, needed to predict mass

splittings in the baryons. A particularly delicate number is the mass difference mu −md

(or mu/md mass ratio), which is difficult to extract reliably from a pure QCD simulation,

and is much better defined in QCD+QED simulations.

We also want to dissect the meson mass into a QCD part and a QED part, to find

the electromagnetic ε parameters, which express the electromagnetic contributions to the

meson masses [13]. We find that there are theoretical subtleties in this separation, leading

to scheme and scale dependence in the result.

The total energy-momentum tensor is invariant under renormalisation, and so the

total mass of any hadron is independent of renormalisation scheme and scale. However

the individual contributions from quarks, gluons and photons are not invariant, they all

run as the energy scale increases. This is familiar in pure QCD; as the energy scale of

Deep Inelastic Scattering rises, the momentum fraction carried by quarks decreases, while

the momentum fraction carried by gluons increases [14]. The physical picture behind this

– 2 –
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effect is well known [15]. As Q2 rises the proton is probed with improved spatial resolution.

A parton perceived as a single quark in a low-Q2 measurement is resolved into multiple

partons at higher Q2, with most of the new partons being gluons.

We should expect a similar effect in QCD+QED, with improved spatial resolution

revealing more photons, causing a running of energy from quarks to photons, in parallel

with the running from quarks to gluons seen in QCD alone.

In QCD+QED, each hadron will be surrounded by a photon cloud. As in pure QED,

the total energy in the cloud will be ultra-violet divergent. Crudely, we can think of two

components of the cloud. Firstly, there are short wave-length photons, with wave-lengths

small compared with a hadron radius. These can be associated with particular quarks. If

we look at the hadron with some finite resolution the photons with wavelengths shorter than

this resolution are incorporated into the quark masses as self energies. Secondly, there will

be longer wave-lengths photons, which can’t be associated with particular quarks. These

photons must be thought of as the photon cloud of the hadron as a whole, these are the

photons that we include when we talk of the electromagnetic contribution to the hadron

mass. We expect to see many more really long wave-length photons (large compared to

the hadron radius) around a charged hadron than around a neutral hadron.

Clearly, in this picture, the value we get for the electromagnetic contribution to the

hadron energy is going to depend on our resolution, i.e. on the scheme and scale that we

use for renormalising QED.

In the final part, section 8, we summarise our lattice results for the π+–π0 splitting

and for the scheme-dependent ε parameters, which parameterise the electromagnetic part

of the meson masses.

We have already published an investigation into the QCD isospin breaking arising from

md −mu alone in [17], and the first results of our QCD+QED program in [1], which we

discuss at greater length here.

2 Extrapolation strategy

In pure QCD we found that there are significant advantages in expanding about a sym-

metric point with mu = md = ms = m [11, 12]. In particular, this approach simplifies the

extrapolation to the physical point, and it decreases the errors due to partial quenching.

We want to follow a similar approach with QED added, even though the symmetry group is

smaller (the u quark is always different from the other two flavours because of its different

charge).

First we find a symmetric point, with all three quark masses equal, chosen so that the

average quark mass,

m ≡ 1

3
(mu +md +ms) , (2.1)

has its physical value. To do this, we have defined our symmetric point in terms of the

masses of neutral pseudoscalar mesons

M2(uū) = M2(dd̄) = M2(ss̄) = M2(nn̄) = X2
π . (2.2)
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Here Xπ is an average pseudoscalar mass, defined by

X2
π =

1

3

[
2(M?

K)2 + (M?
π)2
]

(2.3)

where ? denotes the real-world physical value of a mass. The n is a fictitious electrically

neutral quark flavour. We have not included disconnected diagrams, so the different neutral

mesons of (2.2) do not mix.

We also define the critical κcq for each flavour as the place where the corresponding

neutral meson is massless1

M2(qq̄) = 0⇔ mq = 0 . (2.4)

Chiral symmetry can be used to argue that neutral mesons are better than charged ones

for defining the massless point [16].

We then make a Taylor expansion about this point, using the distance from m as our

parameter to specify the bare quark masses

aδmq ≡ a(mq −m) =
1

2κ
− 1

2κsym
q

, (2.5)

aδµq ≡ a(µq −m) =
1

2κ
− 1

2κsym
q

, (2.6)

where mq denotes the simulation quark mass (or sea quark mass), while µq represents the

masses of partially quenched valence quarks. Note that keeping the average quark mass

constant, (2.1), implies the constraint

δmu + δmd + δms = 0 . (2.7)

In [11] we wrote down the allowed expansion terms for pure QCD, taking flavour

blindness into account. QCD+QED works very much like pure QCD. Since the charge

matrix Q is a traceless 3× 3 matrix,

Q =

+ 2
3 0 0

0 − 1
3 0

0 0 − 1
3

 , (2.8)

electric charge is an octet, so we can build up polynomials in both charge and mass splitting

in a way completely analogous to the pure QCD case. The main difference is that we can

only have even powers of the charge, so the leading QED terms are ∼ e2, while the leading

QCD terms are ∼ δm.

One very important point to note is that even when all three quarks have the same

mass, we do not have full SU(3) symmetry. The different electric charge of the u quark

means that it is always distinguishable from the d and s quarks.

1The critical κ defined in eq. (2.4) is the critical κ in the mu+md+ms = constant surface, i.e. if mu = 0,

we must have md +ms = 3m. The κc for the chiral point with all three quarks massless will be different.
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3 Meson mass formula

From these considerations we find the following expansion for the mass-squared of an ab̄

meson, incorporating both the QCD and electromagnetic terms

M2(ab̄) = M2 + α(δµa + δµb) + c(δmu + δmd + δms) (3.1)

+β0
1

6
(δm2

u + δm2
d + δm2

s) + β1(δµ2
a + δµ2

b) + β2(δµa − δµb)2

+βEM
0 (e2

u + e2
d + e2

s) + βEM
1 (e2

a + e2
b) + βEM

2 (ea − eb)2

+γEM
0 (e2

uδmu + e2
dδmd + e2

sδms) + γEM
1 (e2

aδµa + e2
bδµb)

+γEM
2 (ea − eb)2(δµa + δµb) + γEM

3 (e2
a − e2

b)(δµa − δµb)

+γEM
4 (e2

u + e2
d + e2

s)(δµa + δµb)

+γEM
5 (ea + eb)(euδmu + edδmd + esδms) .

As well as the terms needed in the constant m surface we have also included the term

c(δmu+δmd+δms), the leading term describing displacement from the constant m surface.

Including this term will be useful when we come to discuss renormalisation and scheme

dependence, it could also be used to make minor adjustments in tuning.

The QCD terms have been derived in [11]. In particular, we discussed the effect of

chiral logarithms in section V.C. of that paper. Briefly, since we are expanding about a

point some distance away from all chiral singularities the chiral logarithms do not spoil the

expansion, but they do determine the behaviour of the series for large powers of δmq, (see

for example equation (78) of [11]).

We will now discuss briefly the origins of the electromagnetic terms.

3.1 Leading order terms

In what follows we use the following notation:

e2 = 1/βQED , eq = Qqe (3.2)

where

Qu = +
2

3
, Qd = Qs = − 1

3
. (3.3)

The leading order EM terms were written down in [10],

M2
EM(ab̄) = βEM

0 (e2
u + e2

d + e2
s) + βEM

1 (e2
a + e2

b) + βEM
2 (ea − eb)2 . (3.4)

Upon examination of each of these terms in more detail, we observe that since all of our

simulations have the same choice of sea quark charges, then even if we vary the sea quark

masses, (e2
u + e2

d + e2
s) is a constant, and we can simply absorb this term into M2 of (3.1).

Hence, the βEM
0 term just stands for the fact that M2 measured in QCD+QED might be

different from M2 measured in pure QCD. As we have tuned our expansion point so that

the pseudoscalars have the same symmetric-point mass as in pure QCD, the βEM
0 for the

– 5 –
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pseudoscalar mesons will be zero, but we will still have to allow M2 for other particles to

be different in QCD+QED than in pure QCD.

Now consider (3.1) at the symmetric point, for the case of a flavour-diagonal meson,

aā. At the symmetric point, nearly all terms vanish because δmq and δµq are zero. In

addition, the electromagnetic terms simplify because eb = ea. All we are left with is

M2(aā) = M2 + βEM
0 (e2

u + e2
d + e2

s) + 2βEM
1 e2

a (3.5)

at the symmetric point. However, since we have defined our symmetric point by (2.2),

equation (3.5) must give the same answer whether ea = − 1
3e, 0 or +2

3e, so βEM
1 must be

zero (because it would split the masses of the different mesons, according to the charge

of their valence quarks). However, having βEM
1 = 0 for the pseudoscalar mesons does not

mean that this term will also vanish for other mesons, for example the vector mesons. If

we tune our masses so that the pseudoscalar uū, dd̄ and ss̄ all have the same mass, we

would still expect to find that the vector uū meson would have a different mass from the

vector dd̄ and ss̄, because there is no symmetry in QCD+QED which can relate the u to

the other two flavours.

Finally, we observe that the contribution from βEM
2 is zero for neutral mesons, ea = eb.

However, this is the leading term contributing to the π+–π0 mass splitting, so it is of

considerable physical interest.

3.2 Next order

Going beyond leading order, the following higher order terms of the form e2δmq, e
2δµq are

possible:

• Sea charge times sea mass, γEM
0

After imposing the constraints that m is kept constant and eu + ed + es = 0, there is

only one completely symmetric sea-sea polynomial left,

e2
uδmu + e2

dδmd + e2
sδms . (3.6)

• Valence charge times sea mass

At this order all polynomials of this type are killed by the m = const. constraint.

• Valence charge times valence mass, γEM
1 , γEM

2 , γEM
3

In this case there are three independent allowed terms. One convenient basis for the

valence-valence terms is

e2
aδµa + e2

bδµb , (ea − eb)2(δµa + δµb) , (e2
a − e2

b)(δµa − δµb) , (3.7)

though other choices are possible.

• Sea charge times valence mass, γEM
4

The only polynomial of this type is

(e2
u + e2

d + e2
s)(δµa + δµb) . (3.8)

Since (e2
u + e2

d + e2
s) is held constant, this term can simply be absorbed into the

parameter α of (3.1).

– 6 –
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Figure 1. Examples of the Feynman diagrams contributing to each of the electromagnetic coeffi-

cients in the meson mass formula (3.1). All the graphs have a single photon (wavy line), and are

all of O(e2) in the electromagnetic coupling. However, some terms require multiple gluons (curly

lines), and so have higher order in the strong coupling g2.

• Mixed charge times sea mass, γEM
5

At the symmetric point we can not have mixed charge terms (valence charge times

sea charge), because such terms would be proportional to (eu+ed+es) which is zero.

However, away from the symmetric point

(ea + eb)(euδmu + edδmd + esδms) (3.9)

is allowed.

We illustrate the different physical origins of these terms by drawing examples of the

Feynman diagrams contributing to each of the electromagnetic coefficients in (3.1), figure 1.

4 Lattice setup

We are using the action

S = SG + SA + SuF + SdF + SsF . (4.1)

Here SG is the tree-level Symanzik improved SU(3) gauge action, and SA is the noncompact

U(1) gauge action of the photon,

SA =
1

2
βQED

∑
x,µ<ν

[Aµ(x) +Aν(x+ µ̂)−Aµ(x+ ν̂)−Aν(x)]2 . (4.2)

– 7 –
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The fermion action for flavour q is

SqF =
∑
x

{
1

2

∑
µ

[
q(x)(γµ − 1)e−iQqAµ(x)Ũµ(x)q(x+ µ̂)

−q(x)(γµ + 1)eiQqAµ(x−µ̂)Ũ †µ(x− µ̂)q(x− µ̂)
]

+
1

2κq
q(x)q(x)− 1

4
cSW

∑
µ,ν

q(x)σµνFµν(x)q(x)

}
, (4.3)

where Ũµ is a singly iterated stout link. We use the clover coefficient cSW with the value

computed non-perturbatively in pure QCD, [18]. We do not include a clover term for the

electromagnetic field. We simulate this action using the Rational Hybrid Monte Carlo

(RHMC) algorithm [19].

One issue that arises in the simulation of QED is the treatment of constant electro-

magnetic background fields. In simulations where the electromagnetic field does not couple

to the quark determinant these are electromagnetic zero modes, and so need to be handled

with particular care. In this simulation the sea quarks are coupled to the electromagnetic

field, and so the action does depend on the background field. However we do still need to

give special treatment to these modes. We handle constant background fields by adding or

subtracting multiples of 6π/(eLµ) until the background field is in the range

− 3π < eBµLµ ≤ 3π . (4.4)

This is the mildest way to keep the background fields under control [20]. This procedure

leaves fermion determinants unchanged for particles with charges a multiple of e/3. It also

leaves Polyakov loops unchanged (again, for charges in units of e/3). We are investigating

the evolution of these background fields in our simulations, and considering what effect

they have on finite size effects. We plan to report on these studies in a future paper.

We have carried out simulations on three lattice volumes, 243 × 48, 323 × 64 and

483 × 96. The 243 × 48 calculations show clear signs of finite size effects. The differences

between 323 × 64 and 483 × 96 are quite small, leading us to believe that finite size effects

on our largest volume are under control. In this paper we present results from the two

largest volumes, which usually are in close agreement. In the few cases where there is a

difference, we would favour the results from the largest volume, 483 × 96.

5 Critical κ

After several tuning runs we have been carrying out our main simulations at the point

βQCD = 5.50 , βQED = 0.8 , (5.1)

κu = 0.124362 , κd = κs = 0.121713

which lies very close to the ideal symmetric point defined in (2.2) (but with a much stronger

QED coupling than the real world, αQED = 0.099472 · · · , instead of the true value 1/137).

– 8 –
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Figure 2. Sketch illustrating the transformation from bare masses (left panel) to Dashen scheme

masses (right panel). In the left panel all the flavour diagonal mesons have the same mass at the

symmetric point (δµq = 0), but have different critical points (M2
PS = 0). In the Dashen scheme

(right panel) we rescale the masses horizontally, so that all the critical points are the same. The

different mesons now all depend on δµDq in the same way.

At this point the δmq from the sea quark masses are all zero, but we can still learn abut

the meson masses by varying the partially quenched valence quark masses, δµq.

The flavour dependence of the meson masses is more complicated in QCD+QED than

in pure QCD. We illustrate some of these differences in the sketch figure 2, showing the way

that the flavour-diagonal mesons depend on the quark mass. As well as the physical charge

+2
3 and −1

3 quarks, we also have a fictional charge 0 quark. In QCD+QED we still have

the relationship M2(qq̄) ∝ mq for flavour-diagonal (neutral) mesons, but the gradients

of the uū, dd̄, nn̄ mesons differ. So, in contrast to pure QCD, equal meson mass at the

symmetric point no longer means equal bare quark mass. The bare mass at the symmetric

point depends on the quark charge. This situation is illustrated in the left panel of figure 2,

(though the differences between the flavours has been exaggerated for clarity).

We rescale (renormalise) the quark masses to remove this effect, making the renor-

malised quark masses at the symmetric point equal. The situation after renormalising

in this way is illustrated in the right panel of figure 2. All the flavour-diagonal mesons,

nn̄, dd̄, ss̄ and uū now line up, depending in the same way on the new mass µD, which we

call the “Dashen scheme” mass, for reasons which should become clear later.2 We will see

that using this quark mass also simplifies the behaviour of the mixed flavour mesons, and

helps us understand the splitting of a hadron mass into a QCD part and an electromag-

netic part.

One way to interpret the behaviour in figure 2 is to consider a u and d quark with the

same bare lattice mass. Since the magnitude of the charge of the u quark is twice as large

as that of the d quark, it will acquire a larger self-energy due to the surrounding photon

cloud and hence it will be physically more massive, which is why the mass of the uū meson

2Here, to introduce the idea, we just make a simple multiplicative renormalisation. In fact, the mass

renormalisation matrix is not diagonal, there are also terms which mix flavours. We will include these

additional terms in section 6.

– 9 –
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Figure 3. Determination of κc and κsym for the d quark. κc is defined from the point where the dd̄

meson mass extrapolates to zero, (2.4), while κsym is defined by the point where the fit line crosses

M2
PS = X2

π, (2.2).

rises more steeply than the dd̄ meson, when plotted against bare mass. By instead plotting

against the Dashen mass, we have effectively added the extra mass of the photon cloud to

the quark mass. Two quarks with the same Dashen mass are physically similar in mass,

and so they form mesons of the same mass, as seen in the right-hand panel of figure 2.

Applying these ideas to our simulations, in figure 3 we show how the symmetric κsym

and critical κc are determined, using the dd̄ meson as an example. κc is defined from the

point where the partially-quenched meson mass extrapolates to zero, (2.4), while κsym is

defined by the point where the fit line crosses M2
PS = X2

π, (2.2).

We repeat this procedure for the u and n quarks and plot the resulting 1/κc and 1/κsym

values as a function of the square of the quark charges, Q2
q , in figure 4. Here we clearly see

that in both cases 1/κ depends linearly on Q2
q .

Despite appearances, the two lines are not quite parallel. In figure 5 we plot the bare

mass at the symmetric point,

amsym
q =

1

2κsym
q
− 1

2κcq
. (5.2)

κcq for each flavour is defined as the point at which the flavour-diagonal qq̄ meson becomes

massless. We see that our data show the behaviour shown in the left-hand panel of figure 2,

with each meson reaching the axis at a different point.

The factors needed to bring the charged bare masses into agreement with the neutral

bare mass, as in the right-hand panel of figure 2, are

ZQED
md

= ZQED
ms = 1.023, ZQED

mu = 1.096 . (5.3)
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Figure 4. 1/κc (red squares) and 1/κsym (blue circles) plotted against quark charge squared, Q2
q.

Figure 5. The bare mass at the symmetric point, amsym
q , as a function of quark charge. We see

that the bare mass is not constant, there is about a 10% difference between the neutral n quark

and the u quark. The open red circles show the quark masses after renormalising to remove this

charge dependence.

As seen in figure 5 this Z factor depends linearly on the quark charge squared. Hence, we

can write

δµDq = (1 +Ke2
q)δµq = (1 +KQ2

qe
2)δµq , (5.4)
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Figure 6. Pseudoscalar M2
PS plotted against bare mass for the π+ (red), uū (blue) and dd̄ (black)

mesons. The lines simply connect the points. Error bars are small compared with the points. Data

are from a 323 × 64 lattice.

for some constant K. By construction, this simplifies the neutral mesons as they will all

lie on the same line, see figure 2.

In order to investigate the effect on charged mesons, we first consider the uū, dd̄ and

ud̄ (π+) meson masses plotted as a function of bare quark mass, figure 6. We see that in

this plot the two neutral mesons, uū and dd̄, lie on different lines. We also observe that the

π+ data do not lie on a smooth curve. This is not due to statistical errors (which are much

too small to see in this plot). It is because the π+ meson mass depends both on δmu+δmd,

as in pure QCD, but also has a significant dependence on δmu − δmd, which causes those

mesons containing quarks with very unequal masses to deviate from the trend.

When we now switch to using the Dashen-scheme quark masses in figure 7 we see

that the graph looks significantly different. The uū and dd̄ mesons now lie on the same

straight line (this is essentially by construction, since equal Dashen-scheme quark mass ⇔
equal neutral meson mass). More interesting is the fact that the “jiggles” in the π+ mass

are largely removed by plotting against Dashen-scheme mass, making it much easier to

estimate the EM shift in the π+ mass.

6 Dashen scheme quark mass formula

In order to derive an expression for the meson masses in the Dashen-scheme, we start

with (3.1) and proceed by absorbing the QED terms for the neutral pseudoscalar mesons

into the quark self-energy by making the definition

δµDq = δµq +

{
1

2
c(δmu + δmd + δms) +

1

2
γEM

0 (e2
uδmu + e2

dδmd + e2
sδms) (6.1)

+ γEM
1 e2

qδµq + γEM
4 (e2

u + e2
d + e2

s)δµq + γEM
5 eq(euδmu + edδmd + esδms)

}/
α .
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Figure 7. The same data as in figure 6, but this time plotted against Dashen-scheme quark mass.

At present we are neglecting γEM
0 and γEM

5 because we are working on a symmetric back-

ground, δmq = 0, and absorbing γEM
4 into the coefficient α because we only have data at

one value of βQED. This means that only the γEM
1 term is used in calculating δµDa , giving

a simple multiplicative transformation from bare mass to Dashen scheme mass. Most of

the other terms in (6.1) represent off-diagonal terms in the quark mass Z matrix. There

are many more mixing terms possible in QCD+QED than in pure QCD, but most of them

first occur in diagrams with a large number of gluon and quark loops, as can be seen in

figure 1, so they are probably rather small.

Substituting (6.1) into (3.1) we are left with the simpler formula

M2(ab̄) = M2 + α(δµDa + δµDb ) + β0
1

6
(δm2

u + δm2
d + δm2

s) (6.2)

+β1((δµDa )2 + (δµDb )2) + β2(δµDa − δµDb )2 + βEM
2 (ea − eb)2

+γEM
2 (ea − eb)2(δµDa + δµDb ) + γEM

3 (e2
a − e2

b)(δµ
D
a − δµDb ) .

In (6.2) all the EM terms vanish for neutral mesons (ea = eb), leaving

M2
neut(ab̄) = M2 + α(δµDa + δµDb ) + β0

1

6
(δm2

u + δm2
d + δm2

s) (6.3)

+β1

(
(δµDa )2 + (δµDb )2

)
+ β2

(
δµDa − δµDb

)2
,

which clearly has no references to any EM coefficient, or to any charges eq. Hence, by

construction, the mass of the neutral pseudoscalar mesons comes purely from the quark

masses, and has no electromagnetic contribution. The formula simplifies even further if we
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consider a flavour-diagonal meson

M2(aā) = M2 + 2αδµDa + β0
1

6
(δm2

u + δm2
d + δm2

s) + 2β1(δµDa )2 . (6.4)

This agrees with what we see in figures 2 and 7, with the different flavour-diagonal mesons

all lying on the same curve when plotted against the Dashen quark mass.

In the Dashen scheme the electromagnetic contribution to the meson mass is

M2
γ (ab̄) = βEM

2 (ea − eb)2 + γEM
2 (ea − eb)2(δµDa + δµDb ) (6.5)

+γEM
3 (e2

a − e2
b)(δµ

D
a − δµDb ) ,

while the QCD contribution is

M2
QCD(ab̄) = M2 + α(δµDa + δµDb ) + β0

1

6
(δm2

u + δm2
d + δm2

s) (6.6)

+β1((δµDa )2 + (δµDb )2) + β2(δµDa − δµDb )2 .

Dashen’s theorems [21] state that in the limit of an exact SU(3) chiral symmetry,

the neutral mesons have zero electromagnetic self energy; and that the charged mesons

electromagnetic self-energies are given by a single constant. Our formulation is such as

to maintain the vanishing electromagnetic self-energy of the neutral mesons away from

the chiral limit. The βEM
2 term of our expansion is the generalisation of Dashen’s result,

where, in the absence of any strong SU(3) breaking, the electromagnetic self-energy is

proportional to the charge-square of the meson. The terms involving γEM therefore encode

the deviations associated with leading-order SU(3) breaking of the strong interaction, as

anticipated by Dashen.

7 Scheme dependence

We can calculate electromagnetic contributions to the meson masses from (6.5) in our

scheme, but in order to compare our results with those obtained by other groups, we need

to be able to quote the QED contribution in other schemes, in particular MS.

To illustrate the issue of scheme dependence, consider the splitting between the K0

and K+ mesons. In the real world the K0–K+ splitting comes partly from QED effects,

and partly from the md,mu mass difference, which we consider to be the QCD part of the

splitting. The ordering of the physical states, with the K0 heavier than the K+ suggests

that the quark mass effect dominates, but we expect that there is still a QED contribution

of comparable magnitude.

Naively, one might think that this QED contribution may be easily determined by

performing a simulation with mu = md. In this case, there will be no splitting from QCD,

so the result will give the splitting due to QED alone. In pure QCD, setting mu = md is

unproblematic as equal bare mass implies equal renormalised mass, regardless of scale or

scheme. However in QED+QCD, mass ratios between quarks of different charges are not
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invariant. The anomalous dimension of the quark mass now depends on the quark charge;

at one-loop

γm = 6CFg
2 + 6Q2

fe
2 + · · · (7.1)

so the u mass runs faster than d mass. If mu = md in one scheme, this will not be true in

another. This also implies that there is no good way to compare masses at the physical e2

with pure QCD masses at e2 = 0.

7.1 Changing scheme

To calculate the electromagnetic part of the meson mass we take the difference between

the mass calculated in the full theory, QCD+QED, (g2 and e2 both non-zero) and subtract

the mass calculated in pure QCD, (e2 = 0):

M2
γ = M2(g2, e2

?,m
?
u,m

?
d,m

?
s)−M2(g2, 0,mQCD

u ,mQCD
d ,mQCD

s ) , (7.2)

where e? is the physical value of the electromagnetic coupling, corresponding to αEM =

1/137. In the full theory the physical quark masses are well defined: we can fix the three

physical quark masses by using three physical particle masses (the π0, K0 and K+ would

be a suitable choice). In the full theory we should use the physical quark masses, m?, but

we also have to specify which quark masses we are going to use in the pure QCD case,

(which is, after all, an unphysical theory). Different ways of choosing the mQCD will give

different values for the electromagnetic part of the meson mass.

One prescription for choosing the quark masses in the (unphysical) pure QCD case is

to use the neutral meson masses. We could tune mQCD by requiring

M2
qq̄(g

2, e2
?,m

?
u,m

?
d,m

?
s) = M2

qq̄(g
2, 0,mQCD

u ,mQCD
d ,mQCD

s ) . (7.3)

Since the QCD+QED mass matches the QCD mass, this scheme has zero EM contribution

to neutral pseudoscalars by definition. This is our Dashen scheme, discussed above. In this

scheme, M2
γ is zero for neutral pseudoscalar mesons, and is given by the simple formula (6.5)

for charged mesons.

A more conventional choice is to choose m? and mQCD the same in MS at some

particular scale. In this case, we are now presented with the task of determining the quark

masses in a certain scheme (e.g. the Dashen scheme) given fixed MS masses. Hence we need

to calculate the Dashen quark masses by renormalising from MS to the Dashen scheme:

mD(g2, e2
?) = Zm(g2, e2

?, µ
2)mMS(µ2) , (7.4)

mD(g2, 0, µ2) = Zm(g2, 0, µ2)mMS(µ2) .

However, since the renormalisation factor Zm depends on both g2 and e2, the Dashen

mass in pure QCD would not be the same as the Dashen mass in the physical QCD+QED

theory:

mD
QCD ≡ mD(g2, 0, µ2) =

Zm(g2, 0, µ2)

Zm(g2, e2
?, µ

2)
mD(g2, e2

?) ≡ Ym(g2, e2
?, µ

2)mD(g2, e2
?) . (7.5)

Hence the Dashen mass is rescaled by a renormalisation constant ratio which we denote Ym.
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Now, we know in principle what the QCD mass we should subtract is, it is the mass

we get by substituting e2 = 0, mD = mD
QCD into our fit formula. So now it is a mat-

ter of determining the ratio Ym in (7.5) To proceed, we note that we already know the

renormalisation factor from bare lattice mass to Dashen mass, equations (5.4) and (6.1):

Y latt→D
m = 1 +

γEM
1

α
e2Q2

q (7.6)

= 1 + αEMQ
2
q 2.20(9) .

We also need the renormalisation factor from bare lattice mass to MS, which can be

estimated from lattice perturbation theory [22]. Fortunately, all pure QCD diagrams with

only gluons and quarks cancel because we are looking at a ratio of Z factors, so the leading

contribution comes from the 1-loop photon diagram, giving

Y latt→MS
m = 1 +

e2Q2
q

16π2
(−6 ln aµ+ 12.95241)

= 1 + αEMQ
2
q 1.208 . (7.7)

The numerical value in the second line is obtained for µ = 2 GeV and the value of the

lattice spacing in our simulations, a−1 = 2.9 GeV (see table 2). However, the one-loop

result is not the full answer, there will be higher order diagrams, with one photon plus

any number of gluons, giving contributions ∼ e2g2, e2g4, . . . To account for these unknown

terms we add an error ∼ ±30% to the coefficient, giving

Y latt→MS
m = 1 + αEMQ

2
q 1.2(4) . (7.8)

Combining this with (7.6) gives us the conversion factor from the Dashen scheme to MS

at µ = 2 GeV for our configurations (a−1 = 2.9 GeV)

Y D→MS
m = 1− αEMQ

2
q 1.0(5) ≡ 1 + αEMQ

2
qΥ

D→MS . (7.9)

We are now ready to write the transformation formula from Dashen scheme Mγ to Mγ

in MS. In the Dashen scheme[
M2
γ

]D
= M2(g2, e2, [m?

u]D, [m?
d]
D, [m?

s]
D)−M2(g2, 0, [m?

u]D, [m?
d]
D, [m?

s]
D) (7.10)

with the same Dashen-scheme quark masses in both terms. In MS[
M2
γ

]MS
= M2(g2, e2, [m?

u]D, [m?
d]
D, [m?

s]
D)−M2(g2, 0, [m̃u]D, [m̃d]

D, [m̃s]
D) (7.11)

where [m̃q]
D is given by (7.5)

[m̃q]
D =

(
1 + αEMQ

2
qΥ

D→MS
)

[m?
q ]
D . (7.12)

Taking the difference between (7.11) and (7.10) gives[
M2
γ

]MS−
[
M2
γ

]D
= M2(g2, 0, [m?

u]D, [m?
d]
D, [m?

s]
D)−M2(g2, 0, [m̃u]D, [m̃d]

D, [m̃s]
D)

(7.13)
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flavour 323 × 64 483 × 96 simulation

n 0.1208142(14) 0.1208135(9)

d, s 0.1217026(5) 0.1217032(3) 0.121713

u 0.1243838(10) 0.1243824(6) 0.124362

Table 1. The κ values of the symmetric point, determined from fits to the pseudoscalar meson data.

which holds for the electromagnetic contribution to any hadron. If we are specifically

interested in pseudoscalar mesons, we can use the leading order mass formula M2(ab̄) =

α(ma +mb) to give

[
M2
γ (ab̄)

]MS
=
[
M2
γ (ab̄)

]D − αEMΥD→MSα
[
Q2
a[m

?
a]
D +Q2

b [m
?
b ]
D
]

=
[
M2
γ (ab̄)

]D − αEMΥD→MS 1

2

[
Q2
aM

2(aā) +Q2
bM

2(bb̄)
]
. (7.14)

This is a rather simple formula, the only difficulty is that at present we only have a rather

rough value for the constant Υ.

8 Lattice results

The first question to consider is how close our simulation is to the symmetric line, where

M(uū) = M(dd̄) = M(ss̄). We find that at the simulation point, M(uū) is about 6%

heavier than the other two mesons, so we are not quite at the desired point. In table 1 we

show the κsym
q values determined on our two large-volume ensembles. In our fits we make

a Taylor expansion about the symmetric point of table 1, not about our simulation point.

(The displacement is rather small, the difference is in the fifth significant figure.)

The next question is whether we have the value of m correctly matched to the physical

value. This is checked by comparing the averaged pseudoscalar mass squared, X2
π, (2.3),

with the corresponding baryon scale

X2
N =

1

3

[
(M?

N )2 + (M?
Σ)2 + (M?

Ξ)2
]
. (8.1)

We find XN/Xπ = 2.79(3), very close to the correct physical value, 2.81, showing that our

tuning has found the correct m value very successfully.

8.1 The splitting of the π+ and π0 masses

The first quantity we wish to consider is the mass difference between the π+ and π0

mesons. Since in this case we are calculating a physically observable mass difference there

is no scheme dependence in the result.

First we need to find the κ values corresponding to the physical quark masses. Since

we have three quark masses to determine we need three pieces of physical input, we choose
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323 × 64 483 × 96

aδm?
u −0.00834(8) −0.00791(4)

aδm?
d −0.00776(7) −0.00740(4)

aδm?
s 0.01610(15) 0.01531(8)

a−1/GeV 2.89(5) 2.91(3)

Table 2. Bare quark mass parameters at the physical point, and inverse lattice spacing, defined from

Xπ. These masses have been tuned to reproduce the real-world π0, K0 and K+ when αEM = 1/137.

323 × 64 483 × 96 Real World

Mπ+ 140.3(5) 139.6(2) 139.570

Mπ+ −Mπ0 5.3(5) 4.6(2) 4.594

Table 3. The predicted value of the π+ mass, and π+–π0 splitting, in MeV.

the masses of the π0 and the two kaons

Mπ0 = 134.977 MeV,

MK0 = 497.614 MeV, (8.2)

MK+ = 493.677 MeV

at αEM = 1/137. This determines the physical point given in table 2. We see very close

agreement between the lattice scale determined on the two lattice volumes.

Using these quark masses we now have a prediction for the one remaining meson mass,

the π+. Our values on the two lattice spacings are given in table 3.

8.2 The ε parameters

The π+–π0 mass splitting that we presented in the previous section is a physically mea-

surable quantity, so it is independent of renormalisation. However, if we now attempt to

divide our hadron masses into a QCD part and a QED part, as explained earlier, this is

a scheme-dependent concept. When we look with greater resolution we see more short

wavelength photons, which had previously been counted as part of the quark mass, and

therefore part of the QCD contribution to the mass.

The traditional way of expressing the electromagnetic contributions is through the ε

parameters, which measure M2
γ in units of

∆π ≡M2
π+ −M2

π0 , (8.3)

a natural choice because it is a quantity of a similar origin, and similar order of magnitude.
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The ε parameters are defined by [13]

M2
γ (π0) = M2

π0(g2, e2)−M2
π0(g2, 0) = επ0∆π ,

M2
γ (K0) = M2

K0(g2, e2)−M2
K0(g2, 0) = εK0∆π ,

M2
γ (π+) = M2

π+(g2, e2)−M2
π+(g2, 0) = [1 + επ0 − εm]∆π , (8.4)

M2
γ (K+) = M2

K+(g2, e2)−M2
K+(g2, 0) = εK+∆π = [1 + ε+ εK0 − εm]∆π .

εK+ is defined in this way so that the electromagnetic contribution to the following quantity

has a simple expression

[M2
K+ −M2

K0 −M2
π+ +M2

π0 ]γ = ε∆π . (8.5)

From now on we will neglect the small quantity εm, the QCD contribution to the π+–π0

splitting, which comes largely from annihilation diagrams. This is a reasonable assumption

here since we note that phenomenological estimates for the this QCD contribution are of

order 0.1 MeV (or 2%) [23], which is within the precision of our present calculation.

In the Dashen scheme the ε parameters are simply,

εDπ0 = 0, εDK0 = 0, εDπ+ = 1 , (8.6)

with the only non-trivial quantity, εD, given by

εD =
M2
γ (K+)

M2
γ (π+)

− 1 = εDK+ − 1 . (8.7)

On our two ensembles we find

εD = 0.38(10) 323 × 64 ,

εD = 0.49(5) 483 × 96 , (8.8)

which agree within errors. In what follows, we use the 483 × 96 value in our calculations.

Using (7.14) to transform these numbers into MS with the scale µ = 2 GeV, we find:

επ0 = −αEMΥD→MS 1

2

[
4

9
M2(uū) +

1

9
M2(dd̄)

]/
∆π = 0.03± 0.02 ,

επ+ = εDπ+ − αEMΥD→MS 1

2

[
4

9
M2(uū) +

1

9
M2(dd̄)

]/
∆π = 1.03± 0.02 ,

εK0 = −αEMΥD→MS 1

2

[
1

9
M2(dd̄) +

1

9
M2(ss̄)

]/
∆π = 0.2± 0.1 , (8.9)

εK+ = εDK+ − αEMΥD→MS 1

2

[
4

9
M2(uū) +

1

9
M2(ss̄)

]/
∆π = 1.7± 0.1 ,

ε = εD − αEMΥD→MS 1

2

[
4

9
M2(uū)− 1

9
M2(dd̄)

]/
∆π = 0.50± 0.06 .

In all cases we are resolving more photons in MS, and so converting some fraction of the

quark mass into electromagnetic energy. This has very little effect in the pions because

both quarks are very light, but a much larger effect in the kaons because the strange quark

is heavier, and the photon cloud has a mass proportional to the quark mass.
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9 Conclusions

We have investigated isospin breaking in the pseudoscalar meson sector from lattice cal-

culations of QCD+QED. This allows us to look simultaneously at both sources of isospin

breaking, the quark mass differences, and the electromagnetic interaction, which are of

comparable importance.

The physical mass differences between the different particles are directly observable,

and so must be independent of the renormalisation scheme and scale used. When we try to

go beyond this, to say what fraction of a hadron’s mass-squared comes from QCD, and from

QED, this no longer holds — changing our resolution changes the fraction. We understand

this effect, both formally, in terms of the dependence of the mass renormalisation constant

on the electromagnetic coupling, and physically, in terms of the quark mass gaining a

contribution from its associated photon cloud.

With this understanding, we calculate the electromagnetic contributions to hadron

masses in the Dashen scheme, which is easy to implement on the lattice, and then convert

these values into the more conventional MS scheme.

We are also investigating the isospin violating mass splittings in the baryon sector [1],

as well as the decomposition of these mass differences into QCD and QED parts, both in

the Dashen scheme, and in MS.
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