001     811105
005     20240708132918.0
024 7 _ |a 10.1116/1.3420396
|2 doi
024 7 _ |a 0734-211X
|2 ISSN
024 7 _ |a 1071-1023
|2 ISSN
024 7 _ |a 1520-8567
|2 ISSN
024 7 _ |a 2166-2746
|2 ISSN
024 7 _ |a 2166-2754
|2 ISSN
024 7 _ |a WOS:000281019500041
|2 WOS
037 _ _ |a FZJ-2016-03628
082 _ _ |a 530
100 1 _ |a Kemik, Nihan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Synthesis and calorimetric studies of oxide multilayer systems: Solid oxide fuel cell cathode and electrolyte materialsK-3
260 _ _ |a New York, NY
|c 2010
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467631823_2698
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The authors used differential scanning calorimetry and high temperature oxide melt calorimetry to investigate the interface energies in various multilayer systems. For yttria stabilized zirconia (YSZ)/Al2O3 multilayers, the presence of interfaces is shown to affect the temperature and the enthalpy of crystallization; and therefore these interfaces play an important role in phase stability. From the thermal analysis results, it can be concluded that in YSZ/Al2O3 multilayers, the Al2O3 crystallization temperature increases and the enthalpy becomes less exothermic compared to the values for single alumina films. It is also shown that crystalline perovskite films of La(Sr)MnO3 can be deposited on NaCl substrates and can be collected from the substrate after the deposition which makes them suitable for high temperature calorimetry.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ushakov, Sergey V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schichtel, Nicole
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Korte, Carsten
|0 P:(DE-Juel1)140525
|b 3
700 1 _ |a Takamura, Yayoi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Navrotsky, Alexandra
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1116/1.3420396
|g Vol. 28, no. 4, p. C5A1 -
|0 PERI:(DE-600)1475429-0
|n 4
|p C5A1 -
|t Journal of vacuum science & technology / B
|v 28
|y 2010
|x 1071-1023
909 C O |o oai:juser.fz-juelich.de:811105
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)140525
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J VAC SCI TECHNOL B : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)VDB811
|k IEF-3
|l Brennstoffzellen
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)VDB811
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21