000811207 001__ 811207
000811207 005__ 20210129223801.0
000811207 0247_ $$2doi$$a10.1021/acs.jpca.5b12393
000811207 0247_ $$2ISSN$$a1089-5639
000811207 0247_ $$2ISSN$$a1520-5215
000811207 0247_ $$2Handle$$a2128/11773
000811207 0247_ $$2WOS$$aWOS:000372042200032
000811207 0247_ $$2altmetric$$aaltmetric:6004499
000811207 0247_ $$2pmid$$apmid:26859789
000811207 037__ $$aFZJ-2016-03710
000811207 082__ $$a530
000811207 1001_ $$0P:(DE-HGF)0$$aDas, Anita$$b0
000811207 245__ $$aPolyradical Character of Triangular Non-Kekulé Structures, Zethrenes, p -Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study
000811207 260__ $$aWashington, DC$$bSoc.$$c2016
000811207 3367_ $$2DRIVER$$aarticle
000811207 3367_ $$2DataCite$$aOutput Types/Journal article
000811207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467808107_26543
000811207 3367_ $$2BibTeX$$aARTICLE
000811207 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811207 3367_ $$00$$2EndNote$$aJournal Article
000811207 520__ $$aIn this work, two different classes of polyaromatic hydrocarbon (PAH) systems have been investigated in order to characterize the amount of polyradical character and to localize the specific regions of chemical reactivity: (a) the non-Kekulé triangular structures phenalenyl, triangulene and a π-extended triangulene system with high-spin ground state and (b) PAHs based on zethrenes, p-quinodimethane-linked bisphenalenyl, and the Clar goblet containing varying polyradical character in their singlet ground state. The first class of structures already have open-shell character because of their high-spin ground state, which follows from the bonding pattern, whereas for the second class the open-shell character is generated either because of the competition between the closed-shell quinoid Kekulé and the open-shell singlet biradical resonance structures or the topology of the π-electron arrangement of the non-Kekulé form. High-level ab initio calculations based on multireference theory have been carried out to compute singlet–triplet splitting for the above-listed compounds and to provide insight into their chemical reactivity based on the polyradical character by means of unpaired densities. Unrestricted density functional theory and Hartree–Fock calculations have been performed for comparison also in order to obtain better insight into their applicability to these types of complicated radical systems.
000811207 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000811207 588__ $$aDataset connected to CrossRef
000811207 7001_ $$0P:(DE-Juel1)132204$$aMueller, Thomas$$b1
000811207 7001_ $$0P:(DE-HGF)0$$aPlasser, Felix$$b2
000811207 7001_ $$0P:(DE-HGF)0$$aLischka, Hans$$b3$$eCorresponding author
000811207 773__ $$0PERI:(DE-600)2006031-2$$a10.1021/acs.jpca.5b12393$$gVol. 120, no. 9, p. 1625 - 1636$$n9$$p1625 - 1636$$tThe @journal of physical chemistry <Washington, DC> / A$$v120$$x1520-5215$$y2016
000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.pdf$$yOpenAccess
000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.gif?subformat=icon$$xicon$$yOpenAccess
000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811207 909CO $$ooai:juser.fz-juelich.de:811207$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000811207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132204$$aForschungszentrum Jülich$$b1$$kFZJ
000811207 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000811207 9141_ $$y2016
000811207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811207 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000811207 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM A : 2014
000811207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811207 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811207 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811207 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811207 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811207 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811207 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000811207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811207 920__ $$lyes
000811207 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000811207 980__ $$ajournal
000811207 980__ $$aVDB
000811207 980__ $$aUNRESTRICTED
000811207 980__ $$aI:(DE-Juel1)JSC-20090406
000811207 9801_ $$aFullTexts