000811207 001__ 811207 000811207 005__ 20210129223801.0 000811207 0247_ $$2doi$$a10.1021/acs.jpca.5b12393 000811207 0247_ $$2ISSN$$a1089-5639 000811207 0247_ $$2ISSN$$a1520-5215 000811207 0247_ $$2Handle$$a2128/11773 000811207 0247_ $$2WOS$$aWOS:000372042200032 000811207 0247_ $$2altmetric$$aaltmetric:6004499 000811207 0247_ $$2pmid$$apmid:26859789 000811207 037__ $$aFZJ-2016-03710 000811207 082__ $$a530 000811207 1001_ $$0P:(DE-HGF)0$$aDas, Anita$$b0 000811207 245__ $$aPolyradical Character of Triangular Non-Kekulé Structures, Zethrenes, p -Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study 000811207 260__ $$aWashington, DC$$bSoc.$$c2016 000811207 3367_ $$2DRIVER$$aarticle 000811207 3367_ $$2DataCite$$aOutput Types/Journal article 000811207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1467808107_26543 000811207 3367_ $$2BibTeX$$aARTICLE 000811207 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000811207 3367_ $$00$$2EndNote$$aJournal Article 000811207 520__ $$aIn this work, two different classes of polyaromatic hydrocarbon (PAH) systems have been investigated in order to characterize the amount of polyradical character and to localize the specific regions of chemical reactivity: (a) the non-Kekulé triangular structures phenalenyl, triangulene and a π-extended triangulene system with high-spin ground state and (b) PAHs based on zethrenes, p-quinodimethane-linked bisphenalenyl, and the Clar goblet containing varying polyradical character in their singlet ground state. The first class of structures already have open-shell character because of their high-spin ground state, which follows from the bonding pattern, whereas for the second class the open-shell character is generated either because of the competition between the closed-shell quinoid Kekulé and the open-shell singlet biradical resonance structures or the topology of the π-electron arrangement of the non-Kekulé form. High-level ab initio calculations based on multireference theory have been carried out to compute singlet–triplet splitting for the above-listed compounds and to provide insight into their chemical reactivity based on the polyradical character by means of unpaired densities. Unrestricted density functional theory and Hartree–Fock calculations have been performed for comparison also in order to obtain better insight into their applicability to these types of complicated radical systems. 000811207 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000811207 588__ $$aDataset connected to CrossRef 000811207 7001_ $$0P:(DE-Juel1)132204$$aMueller, Thomas$$b1 000811207 7001_ $$0P:(DE-HGF)0$$aPlasser, Felix$$b2 000811207 7001_ $$0P:(DE-HGF)0$$aLischka, Hans$$b3$$eCorresponding author 000811207 773__ $$0PERI:(DE-600)2006031-2$$a10.1021/acs.jpca.5b12393$$gVol. 120, no. 9, p. 1625 - 1636$$n9$$p1625 - 1636$$tThe @journal of physical chemistry <Washington, DC> / A$$v120$$x1520-5215$$y2016 000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.pdf$$yOpenAccess 000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.gif?subformat=icon$$xicon$$yOpenAccess 000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000811207 8564_ $$uhttps://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000811207 909CO $$ooai:juser.fz-juelich.de:811207$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000811207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132204$$aForschungszentrum Jülich$$b1$$kFZJ 000811207 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000811207 9141_ $$y2016 000811207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000811207 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read 000811207 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM A : 2014 000811207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000811207 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000811207 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000811207 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000811207 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000811207 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000811207 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000811207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000811207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000811207 920__ $$lyes 000811207 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000811207 980__ $$ajournal 000811207 980__ $$aVDB 000811207 980__ $$aUNRESTRICTED 000811207 980__ $$aI:(DE-Juel1)JSC-20090406 000811207 9801_ $$aFullTexts