001     811207
005     20210129223801.0
024 7 _ |a 10.1021/acs.jpca.5b12393
|2 doi
024 7 _ |a 1089-5639
|2 ISSN
024 7 _ |a 1520-5215
|2 ISSN
024 7 _ |a 2128/11773
|2 Handle
024 7 _ |a WOS:000372042200032
|2 WOS
024 7 _ |a altmetric:6004499
|2 altmetric
024 7 _ |a pmid:26859789
|2 pmid
037 _ _ |a FZJ-2016-03710
082 _ _ |a 530
100 1 _ |a Das, Anita
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Polyradical Character of Triangular Non-Kekulé Structures, Zethrenes, p -Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1467808107_26543
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work, two different classes of polyaromatic hydrocarbon (PAH) systems have been investigated in order to characterize the amount of polyradical character and to localize the specific regions of chemical reactivity: (a) the non-Kekulé triangular structures phenalenyl, triangulene and a π-extended triangulene system with high-spin ground state and (b) PAHs based on zethrenes, p-quinodimethane-linked bisphenalenyl, and the Clar goblet containing varying polyradical character in their singlet ground state. The first class of structures already have open-shell character because of their high-spin ground state, which follows from the bonding pattern, whereas for the second class the open-shell character is generated either because of the competition between the closed-shell quinoid Kekulé and the open-shell singlet biradical resonance structures or the topology of the π-electron arrangement of the non-Kekulé form. High-level ab initio calculations based on multireference theory have been carried out to compute singlet–triplet splitting for the above-listed compounds and to provide insight into their chemical reactivity based on the polyradical character by means of unpaired densities. Unrestricted density functional theory and Hartree–Fock calculations have been performed for comparison also in order to obtain better insight into their applicability to these types of complicated radical systems.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mueller, Thomas
|0 P:(DE-Juel1)132204
|b 1
700 1 _ |a Plasser, Felix
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lischka, Hans
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1021/acs.jpca.5b12393
|g Vol. 120, no. 9, p. 1625 - 1636
|0 PERI:(DE-600)2006031-2
|n 9
|p 1625 - 1636
|t The @journal of physical chemistry / A
|v 120
|y 2016
|x 1520-5215
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/811207/files/acs.jpca.5b12393.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:811207
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132204
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Free to read
|0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM A : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21