000811255 001__ 811255
000811255 005__ 20230426083135.0
000811255 0247_ $$2doi$$a10.1103/PhysRevB.94.024403
000811255 0247_ $$2ISSN$$a0163-1829
000811255 0247_ $$2ISSN$$a0556-2805
000811255 0247_ $$2ISSN$$a1095-3795
000811255 0247_ $$2ISSN$$a1098-0121
000811255 0247_ $$2ISSN$$a1550-235X
000811255 0247_ $$2ISSN$$a2469-9969
000811255 0247_ $$2Handle$$a2128/11799
000811255 0247_ $$2WOS$$aWOS:000378909700004
000811255 0247_ $$2altmetric$$aaltmetric:6129702
000811255 037__ $$aFZJ-2016-03756
000811255 082__ $$a530
000811255 1001_ $$0P:(DE-Juel1)141736$$aSchweflinghaus, Benedikt$$b0
000811255 245__ $$aRole of Dzyaloshinskii-Moriya interaction for magnetism in transition-metal chains at Pt step edges
000811255 260__ $$aCollege Park, Md.$$bAPS$$c2016
000811255 3367_ $$2DRIVER$$aarticle
000811255 3367_ $$2DataCite$$aOutput Types/Journal article
000811255 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1489839517_32579
000811255 3367_ $$2BibTeX$$aARTICLE
000811255 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811255 3367_ $$00$$2EndNote$$aJournal Article
000811255 520__ $$aWe explore the emergence of chiral magnetism in one-dimensional monatomic Mn, Fe, and Co chains deposited at the Pt(664) step edge carrying out an ab initio study based on density functional theory (DFT). The results are analyzed employing several models: (i) a micromagnetic model, which takes into account the Dzyaloshinskii-Moriya interaction (DMI) besides the spin stiffness and the magnetic anisotropy energy, and (ii) the Fert-Levy model of the DMI for diluted magnetic impurities in metals. Due to the step-edge geometry, the direction of the Dzyaloshinskii vector (D vector) is not predetermined by symmetry and points in an off-symmetry direction. For the Mn chain we predict a long-period cycloidal spin-spiral ground state of unique rotational sense on top of an otherwise atomic-scale antiferromagnetic phase. The spins rotate in a plane that is tilted relative to the Pt surface by 62∘ towards the upper step of the surface. The Fe and Co chains show a ferromagnetic ground state since the DMI is too weak to overcome their respective magnetic anisotropy barriers. An analysis of domain walls within the latter two systems reveals a preference for a Bloch wall for the Fe chain and a Néel wall of unique rotational sense for the Co chain in a plane tilted by 29∘ towards the lower step. Although the atomic structure is the same for all three systems, not only the size but also the direction of their effective D vectors differ from system to system. The latter is in contradiction to the Fert-Levy model. Due to the considered step-edge structure, this work provides also insight into the effect of roughness on DMI at surfaces and interfaces of magnets. Beyond the discussion of the monatomic chains we provide general expressions relating ab initio results to realistic model parameters that occur in a spin-lattice or in a micromagnetic model. We prove that a planar homogeneous spiral of classical spins with a given wave vector rotating in a plane whose normal is parallel to the D vector is an exact stationary state solution of a spin-lattice model for a periodic solid that includes Heisenberg exchange and DMI. In the vicinity of a collinear magnetic state, assuming that the DMI is much smaller than the exchange interaction, the curvature and slope of the stationary energy curve of the spiral as a function of the wave vector provide directly the values of the spin stiffness and the spiralization required in micromagnetic models. The validity of the Fert-Levy model for the evaluation of micromagnetic DMI parameters and for the analysis of ab initio calculations is explored for chains. The results suggest that some care has to be taken when applying the model to infinite periodic one-dimensional systems.
000811255 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000811255 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000811255 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x2
000811255 542__ $$2Crossref$$i2016-07-01$$uhttp://link.aps.org/licenses/aps-default-license
000811255 588__ $$aDataset connected to CrossRef
000811255 7001_ $$0P:(DE-Juel1)131065$$aZimmermann, Bernd$$b1$$eCorresponding author
000811255 7001_ $$0P:(DE-HGF)0$$aHeide, M.$$b2
000811255 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b3
000811255 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b4
000811255 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.94.024403$$bAmerican Physical Society (APS)$$d2016-07-01$$n2$$p024403$$tPhysical Review B$$v94$$x2469-9950$$y2016
000811255 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.94.024403$$gVol. 94, no. 2, p. 024403$$n2$$p024403$$tPhysical review / B$$v94$$x2469-9950$$y2016
000811255 8564_ $$uhttps://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.pdf$$yOpenAccess
000811255 8564_ $$uhttps://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.gif?subformat=icon$$xicon$$yOpenAccess
000811255 8564_ $$uhttps://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811255 8564_ $$uhttps://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811255 8564_ $$uhttps://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811255 8564_ $$uhttps://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811255 909CO $$ooai:juser.fz-juelich.de:811255$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000811255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141736$$aForschungszentrum Jülich$$b0$$kFZJ
000811255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131065$$aForschungszentrum Jülich$$b1$$kFZJ
000811255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b3$$kFZJ
000811255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
000811255 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000811255 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000811255 9141_ $$y2016
000811255 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811255 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000811255 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811255 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811255 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811255 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811255 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811255 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811255 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2014
000811255 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811255 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000811255 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811255 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000811255 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000811255 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000811255 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000811255 980__ $$ajournal
000811255 980__ $$aVDB
000811255 980__ $$aI:(DE-Juel1)IAS-1-20090406
000811255 980__ $$aI:(DE-Juel1)PGI-1-20110106
000811255 980__ $$aI:(DE-82)080009_20140620
000811255 980__ $$aI:(DE-82)080012_20140620
000811255 980__ $$aUNRESTRICTED
000811255 9801_ $$aFullTexts
000811255 981__ $$aI:(DE-Juel1)PGI-1-20110106
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/416301a
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/15/34/305
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.R5133
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.2254
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(99)01218-2
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.140407
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.212410
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.100404
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.134428
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.104427
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2006.01.157
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.067207
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.104430
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adfm.201001325
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.125422
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/17/2/023014
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05802
000811255 999C5 $$1I. E. Dzyaloshinskii$$2Crossref$$oI. E. Dzyaloshinskii 1957$$y1957
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.120.91
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/10/1/013005
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.027201
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.115427
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2045
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1240573
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.195420
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.134402
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.197204
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1166/jnn.2011.3926
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.134403
000811255 999C5 $$1I. E. Dzyaloshinskii$$2Crossref$$oI. E. Dzyaloshinskii 1965$$y1965
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1070/PU1984v027n11ABEH004120
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/26/10/104202
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.1706
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.014416
000811255 999C5 $$1V. L. Moruzzi$$2Crossref$$oV. L. Moruzzi Calculated Electronic Properties of Metals 1978$$tCalculated Electronic Properties of Metals$$y1978
000811255 999C5 $$1A. R. Mackintosh$$2Crossref$$oA. R. Mackintosh Electrons at the Fermi Surface 1980$$tElectrons at the Fermi Surface$$y1980
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2009.06.070
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/3/44/004
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2006.01.098
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.44.1538
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.23.4667
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.054412
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.140403
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.077203
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.094424
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.184422
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.14.807
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3697(59)90231-8
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.116.888
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.229901
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.70.954
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.81.1015
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.1106
000811255 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1514
000811255 999C5 $$1G. Bihlmayer$$2Crossref$$oG. Bihlmayer Magnetism Goes Nano 2005$$tMagnetism Goes Nano$$y2005