001     811255
005     20230426083135.0
024 7 _ |a 10.1103/PhysRevB.94.024403
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/11799
|2 Handle
024 7 _ |a WOS:000378909700004
|2 WOS
024 7 _ |a altmetric:6129702
|2 altmetric
037 _ _ |a FZJ-2016-03756
082 _ _ |a 530
100 1 _ |a Schweflinghaus, Benedikt
|0 P:(DE-Juel1)141736
|b 0
245 _ _ |a Role of Dzyaloshinskii-Moriya interaction for magnetism in transition-metal chains at Pt step edges
260 _ _ |a College Park, Md.
|c 2016
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1489839517_32579
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We explore the emergence of chiral magnetism in one-dimensional monatomic Mn, Fe, and Co chains deposited at the Pt(664) step edge carrying out an ab initio study based on density functional theory (DFT). The results are analyzed employing several models: (i) a micromagnetic model, which takes into account the Dzyaloshinskii-Moriya interaction (DMI) besides the spin stiffness and the magnetic anisotropy energy, and (ii) the Fert-Levy model of the DMI for diluted magnetic impurities in metals. Due to the step-edge geometry, the direction of the Dzyaloshinskii vector (D vector) is not predetermined by symmetry and points in an off-symmetry direction. For the Mn chain we predict a long-period cycloidal spin-spiral ground state of unique rotational sense on top of an otherwise atomic-scale antiferromagnetic phase. The spins rotate in a plane that is tilted relative to the Pt surface by 62∘ towards the upper step of the surface. The Fe and Co chains show a ferromagnetic ground state since the DMI is too weak to overcome their respective magnetic anisotropy barriers. An analysis of domain walls within the latter two systems reveals a preference for a Bloch wall for the Fe chain and a Néel wall of unique rotational sense for the Co chain in a plane tilted by 29∘ towards the lower step. Although the atomic structure is the same for all three systems, not only the size but also the direction of their effective D vectors differ from system to system. The latter is in contradiction to the Fert-Levy model. Due to the considered step-edge structure, this work provides also insight into the effect of roughness on DMI at surfaces and interfaces of magnets. Beyond the discussion of the monatomic chains we provide general expressions relating ab initio results to realistic model parameters that occur in a spin-lattice or in a micromagnetic model. We prove that a planar homogeneous spiral of classical spins with a given wave vector rotating in a plane whose normal is parallel to the D vector is an exact stationary state solution of a spin-lattice model for a periodic solid that includes Heisenberg exchange and DMI. In the vicinity of a collinear magnetic state, assuming that the DMI is much smaller than the exchange interaction, the curvature and slope of the stationary energy curve of the spiral as a function of the wave vector provide directly the values of the spin stiffness and the spiralization required in micromagnetic models. The validity of the Fert-Levy model for the evaluation of micromagnetic DMI parameters and for the analysis of ab initio calculations is explored for chains. The results suggest that some care has to be taken when applying the model to infinite periodic one-dimensional systems.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a Magnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)
|0 G:(DE-Juel1)jiff13_20131101
|c jiff13_20131101
|f Magnetic Anisotropy of Metallic Layered Systems and Nanostructures
|x 2
542 _ _ |i 2016-07-01
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zimmermann, Bernd
|0 P:(DE-Juel1)131065
|b 1
|e Corresponding author
700 1 _ |a Heide, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bihlmayer, G.
|0 P:(DE-Juel1)130545
|b 3
700 1 _ |a Blügel, S.
|0 P:(DE-Juel1)130548
|b 4
773 1 8 |a 10.1103/physrevb.94.024403
|b American Physical Society (APS)
|d 2016-07-01
|n 2
|p 024403
|3 journal-article
|2 Crossref
|t Physical Review B
|v 94
|y 2016
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.94.024403
|g Vol. 94, no. 2, p. 024403
|0 PERI:(DE-600)2844160-6
|n 2
|p 024403
|t Physical review / B
|v 94
|y 2016
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811255/files/PhysRevB.94.024403.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:811255
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)141736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1038/416301a
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/15/34/305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.61.R5133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.61.2254
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(99)01218-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.140407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.212410
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.100404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.134428
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.104427
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2006.01.157
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.102.067207
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.104430
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adfm.201001325
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.125422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/17/2/023014
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature05802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 I. E. Dzyaloshinskii
|y 1957
|2 Crossref
|o I. E. Dzyaloshinskii 1957
999 C 5 |a 10.1103/PhysRev.120.91
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/10/1/013005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.027201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.115427
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2045
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1240573
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.195420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.134402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.197204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1166/jnn.2011.3926
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.134403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 I. E. Dzyaloshinskii
|y 1965
|2 Crossref
|o I. E. Dzyaloshinskii 1965
999 C 5 |a 10.1070/PU1984v027n11ABEH004120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/26/10/104202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.19.1706
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.014416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 V. L. Moruzzi
|y 1978
|2 Crossref
|t Calculated Electronic Properties of Metals
|o V. L. Moruzzi Calculated Electronic Properties of Metals 1978
999 C 5 |1 A. R. Mackintosh
|y 1980
|2 Crossref
|t Electrons at the Fermi Surface
|o A. R. Mackintosh Electrons at the Fermi Surface 1980
999 C 5 |a 10.1016/j.physb.2009.06.070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/3/44/004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2006.01.098
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.44.1538
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.23.4667
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.054412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.140403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.077203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.094424
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.184422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.14.807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0022-3697(59)90231-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.116.888
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.229901
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.70.954
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.81.1015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.86.1106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1514
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. Bihlmayer
|y 2005
|2 Crossref
|t Magnetism Goes Nano
|o G. Bihlmayer Magnetism Goes Nano 2005


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21