000811280 001__ 811280
000811280 005__ 20210129223822.0
000811280 0247_ $$2WOS$$aWOS:000385016800004
000811280 037__ $$aFZJ-2016-03781
000811280 082__ $$a004
000811280 1001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b0$$eCorresponding author$$ufzj
000811280 245__ $$aMultiscale simulation of pedestrians for efficient predictive modeling in large events
000811280 260__ $$aPhiladelphia, Pa.$$bOld City Publishing$$c2016
000811280 3367_ $$2DRIVER$$aarticle
000811280 3367_ $$2DataCite$$aOutput Types/Journal article
000811280 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1468238959_10642
000811280 3367_ $$2BibTeX$$aARTICLE
000811280 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811280 3367_ $$00$$2EndNote$$aJournal Article
000811280 520__ $$aThe Hermes project [1] demonstrated the usefulness of on site predictive simulations of probable evacuation scenarios for security personnel. However, the hardware needed was prohibitively expensive [2]. The present paper shows that a multiscale approach can perform the simulation in a fraction of time without loss of useful information. The main problem is the correct passing of agents from a coarse scale model to a fine scale model, here from a CA model to a force based model. This will be achieved by inserting agents into the force based model at positions and speeds optimized for smooth walking either by a priori information or using Voronoi cells. The resulting model is easily parallelised using OpenMP, achieving reasonable efficiency.We also show how a CA method can be modified to address the problem better than standard CA, too. However, this approach needs further development and calibration to be reliable.
000811280 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000811280 7001_ $$0P:(DE-Juel1)132269$$aSteffen, Bernhard$$b1$$ufzj
000811280 773__ $$0PERI:(DE-600)2272623-8$$n4$$p299-310$$tJournal of cellular automata$$v11$$x1557-5969$$y2016
000811280 909CO $$ooai:juser.fz-juelich.de:811280$$pVDB
000811280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b0$$kFZJ
000811280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132269$$aForschungszentrum Jülich$$b1$$kFZJ
000811280 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000811280 9141_ $$y2016
000811280 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811280 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000811280 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CELL AUTOM : 2014
000811280 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811280 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811280 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811280 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811280 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811280 920__ $$lyes
000811280 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000811280 980__ $$ajournal
000811280 980__ $$aVDB
000811280 980__ $$aUNRESTRICTED
000811280 980__ $$aI:(DE-Juel1)JSC-20090406