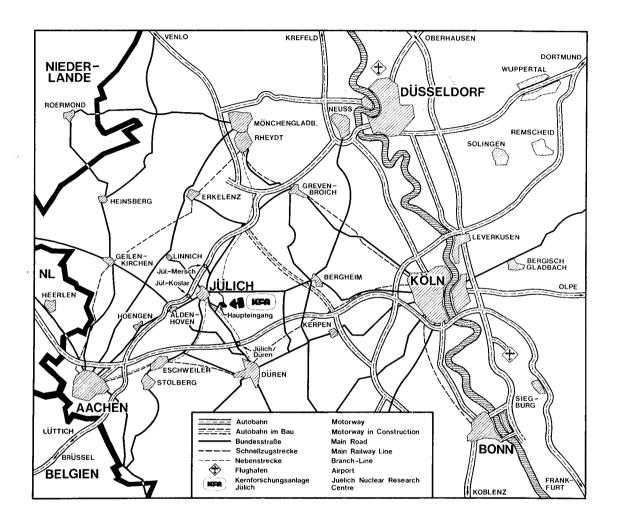


KERNFORSCHUNGSANLAGE JÜLICH GmbH


Institut für Reaktorentwicklung

Numerische Berechnung des Tritium-Verhaltens von Kugelhaufenreaktoren am Beispiel des AVR-Reaktors

von

H. J. Cordewiner

Jül - 1607 Juli 1979 ISSN 0366-0885

Als Manuskript gedruckt

Berichte der Kernforschungsanlage Jülich - Nr. 1607

Institut für Reaktorentwicklung Jül - 1607

Zu beziehen durch: ZENTRALBIBLIOTHEK der Kernforschungsanlage Jülich GmbH, Jülich, Bundesrepublik Deutschland

Numerische Berechnung des Tritium-Verhaltens von Kugelhaufenreaktoren am Beispiel des AVR-Reaktors

von

H. J. Cordewiner

D 82 (Diss. T. H. Aachen)

RGP. NY9911

Numerical Calculation of the Tritium-Behaviour of Pebble-Bed Reactors

Demonstrated on the AVR-Reactor

by

Hans Josef Cordewiner

ABSTRACT

For a predefined number of core regions the production and distribution of tritium, broken down according to the different tritium sources, is described using linear differential equations. The procedure is based on an ORNL programme written for high-temperature reactors with block-type fuel elements. The programme areas dealing with the bond of the tritium fraction passing from the gas phase into the graphite due to recoil were revised for the purposes of a pebble bed. More recent results concerning the adsorption of tritium in graphite have been incorporated in the computer algorithm. A special problem in connection with programme development arose from the complex time dependence of tritium sources in the different core regions due to the possible repeated circulation of spheres. This problem was solved by determining fictitious storage times for the various types of spheres on the basis of known neutron doses.

Calculations carried out on the AVR-reactor and compared with measured values showed a good agreement. Parameter studies with differing Li-contents of the spheres demonstrated a highly sensitive response of the system in this respect. Investigations relating to the inhibiting effect of hydrogen on tritium permeation revealed that the retention factors ascertained experimentally cannot be fully effective in practical reactor operation.

Numerische Berechnung des Tritium-Verhaltens von Kugelhaufenreaktoren am Beispiel des AVR-Reaktors

von

Hans Josef Cordewiner

KURZFASSUNG

Für eine vorzugebende Anzahl von Core-Regionen erfolgt die Beschreibung der Produktion und Verteilung aufgeschlüsselt nach den verschiedenen Tritium-lieferanten durch lineare Differentialgleichungen. Ausgangsbasis hierbei ist ein ORNL-Programm, das für Hochtemperaturreaktoren mit blockförmigen Brennelementen geschrieben wurde. Die Programmbereiche, die sich mit der Bindung des aus der Gasphase durch Recoil in den Graphit gelangenden Tritiumanteils befassen, wurden für die Belange der Kugelschüttung neu bearbeitet; neuere Ergebnisse zur Adsorption von Tritium an Graphit sind in den Rechenalgorithmus übernommen worden. Eine besondere Problematik bei der Programmentwicklung stellte die wegen des möglichen Mehrfachkugelumlaufes komplexe Zeitabhängigkeit der Tritiumlieferanten in den verschiedenen Regionen dar. Dieses Problem wurde durch die Bestimmung fiktiver Einlagerungszeitpunkte für die verschiedenen Kugeltypen auf der Basis bekannter Neutronendosen gelöst.

Am AVR-Reaktor durchgeführte Rechnungen, die mit gemessenen Werten verglichen wurden, ergaben eine gute Obereinstimmung. Parameterstudien mit verschiedenen Li-Gehalten der Kugeln zeigten, daß das System hier sehr sensitiv reagiert. Untersuchungen zur inhibierenden Wirkung des Wasserstoffs auf die Tritium-Permeation ergaben, daß die in Versuchen ermittelten Rückhaltefaktoren für den praktischen Reaktor nicht voll zur Geltung kommen können.

INHALTSVERZEICHNIS

		Seit
1	EINLEITUNG	1
2	VERHALTEN VON TRITIUM IN HOCHTEMPERATURREAKTOREN	3
3	BESCHREIBUNG DES RECHENPROGRAMMS ZUR BESTIMMUNG DES TRITIUM-HAUSHALTES VON HOCHTEMPERATURREAKTOREN MIT MEHRFACHKUGELDURCHLAUF	5
3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.3.2	Permeation Transport des Tritiums	7 7 7 10 10 12 14 14 16 16
4	OBERSICHT OBER DIE AM AVR DURCHGEFOHRTEN RECHNUNGEN ZUM BETRIEBSVERHALTEN DES REAKTORS	23
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3	Beschreibung des AVR-Reaktors Anfahrphasen des Reaktors Beschickungsrechnungen am AVR Realgeometrie und Modellgeometrie des Reaktorcores Ermittlung des Neutronenflusses Kugelumwälzung und Coreaufteilung	23 25 25 25 25 26 27
5	AUFBEREITUNG PHYSIKALISCHER DATEN DES AVR-VERSUCHSREAKTORS FÜR DIE PROGRAMMEINGABE	31
5.1 5.1.1 5.2 5.2.1 5.2.2	Neutronenfluß Modifizierung der Flußwerte Brennelement, Bor- und Graphitkugelverteilung Ermittlung der Kugelverteilung auf Innen- und Außencore Kugelzusammensetzung der Regionen	31 36 39 39 41
6	BESTIMMUNG DES ABBRANDZUSTANDES DER TRITIUM-LIFERANTEN	49
6.1 6.2 6.3	Dateneingabe Einlagerungszeitpunkt der verschiedenen Kugeltypen Quell-Atomzahl der Tritium-Lieferanten für den Kugelcorebereich	50 56 61

		Seite
7	DISKUSSION DER RECHNUNGEN	71
8	ZUSAMMENSTELLUNG DER VERWENDETEN DATEN DES AVR	89
9	ZUSAMMENFASSUNG	92
10	LITERATUR	94
11	ANHANG	A 1

1 EINLEITUNG

Hochtemperaturreaktoren mit kugelförmigen Brennelementen ermöglichen sowohl die wirtschaftliche Nutzung der Kernenergie zur Stromerzeugung als auch ihre Verwendung für wärmetechnische Prozesse, die hohe Temperaturen erfordern. Berücksichtigt man, daß 75 % der eingesetzten Primärenergieträger Erdöl und Erdgas sind und daß neuere internationale Studien in den 90er Jahren mit dem Maximum der Erdölförderung rechnen /1/, so begründet dies die volkswirtschaftliche Bedeutung der Substitution von Erdöl und Erdgas durch Energieträger auf der Basis der heimischen Braun- und Steinkohle.

Die Realisierung hoher Kühlgastemperaturen führt zu hohen Wirkungsgraden und somit zu geringer Abwärmebelastung der Umwelt. Hieraus ergibt sich eine hohe Standortflexibilität und die Möglichkeit, eine Helium-Turbine hoher Leistung für die Stromerzeugung direkt im Primärkreislauf zu betreiben.

Mit dem Betrieb von Kernreaktoren ist jedoch auch die Produktion radioaktiver Abfallstoffe verbunden. Von besonderer Bedeutung sind hierbei langlebige Radionuklide, die nicht an der Produktionsstätte zerfallen und somit entweder kontrolliert an die Umwelt abgegeben oder gelagert werden müssen. Dabei handelt es sich bei der Lagerung des radioaktiven Abfalls nicht ausschließlich um ein technisches Problem, sondern auch um einen nicht zu unterschätzenden psychologischen und soziologischen Komplex, der, verbunden mit dem außergewöhnlichen Langzeiteffekt, die Fragen der Entsorgung so schwierig gestaltet.

Das Wasserstoffisotop Tritium nimmt unter den Radionukliden eine besondere Stellung ein. Zwar wird Tritium, das sich chemisch wie Wasserstoff verhält und meist in oxidischer Form als HTO auftritt, bei Inkorporation zum überwiegenden Anteil mit einer biologischen Halbwertszeit von nur etwa 12 Tagen /2/ wieder ausgeschieden, jedoch wird ein Rest im menschlichen Gewebe eingebaut. Die biologische Halbwertszeit dieser Tritiumkomponente beträgt etwa 300 Tage /3/. Eine weitere unangenehme Eigenschaft stellt die sehr große Beweglichkeit der Wasserstoffisotope in metallischen Werkstoffen bei hohen Temperaturen dar. Sie ermöglicht den Tritium-Obertritt in die wärmeauskoppelnden Kreisläufe. Für die nukleare Prozeßwärmeanlage bedeutet dies letztlich eine zwar geringe, jedoch unerwünschte Kontamination des Produktgases. Bei

Anlagen zur Stromerzeugung gelangt das Tritium auf diesem Wege in das Schlämm-wasser.

Bisherige Rechnungen zum Tritium-Haushalt und Abschätzungen über die Belastung der Umwelt durch Tritium /2/, /4/ sind mit großen Unsicherheiten behaftet, da meist ein Gleichgewichtszustand zu einem bestimmten Zeitpunkt betrachtet wird, so daß keine Aussagen über die bis zu diesem Datum erfolgte Produktion, Speicherung und Freisetzung möglich sind. Neben der sich hieraus ergebenden Forderung, die Rechnungen über einen Zeitraum hinweg zu erstrekken, ergibt sich außerdem die Notwendigkeit, das System zur genauen Erfassung der ortsabhängigen Daten in verschiedene Bereiche aufzugliedern. Die Fülle der anfallenden Daten und die Struktur der durchzuführenden Rechnungen verlangen den Einsatz der Datenverarbeitungsanlage. Die folgende Aufstellung zeigt die wichtigsten Anwendungsbereiche derartiger Rechnungen:

Vorausrechnungen

- Berechnungen des Tritium-Inventars neu zu erstellender Anlagen
- Optimierung der Auslegung
- zu erwartende Tritium-Belastung beim Betrieb bestehender Anlagen
- Tritium-Freisetzung bei Störfällen

Rückrechnungen

- Nachrechnung von Experimenten und Interpretation der Ergebnisse
- Tritium-Freisetzung bei Störfällen

2 Verhalten von Tritium in Hochtemperaturreaktoren

Tritium entsteht in Kernreaktoren aus der Spaltung und durch Neutronenreaktionen leichter Elemente (6 Li, 7 Li, 10 B, 12 C, 9 Be, 3 He), die entweder gewollt als abbrennbare Gifte oder ungewollt als Verunreinigungen im Core vorkommen. Eine Problematik zur Bestimmung belastbarer Werte für die Tritium-Quellraten besteht darin, daß der Anteil der Verunreinigungen im Graphit meist an bzw. bereits unterhalb der Grenze des überhaupt Nachweisbaren liegt. So ist beispielsweise die Li-Konzentration im Matrix-Graphit der AVR-Brennelemente kleiner als 1 ppm.

Die Verteilung des Tritiums im Core und die Permeation in die Sekundärkreisläufe des Reaktors wird im wesentlichen durch folgende parallel ablaufende Prozesse bestimmt:

- Freisetzung gebundenen Tritiums in den Gaskreislauf, aber auch Bindung von Tritium im Core-Graphit durch Recoil und Sorption
- Senkung des Tritiumpartialdruckes im Kühlgas durch Gasreinigungsanlage und Permeation in die Sekundärkreisläufe

Da das HTR-Core neben Stahleinbauten hauptsächlich aus Graphit besteht, ist zu erwarten, daß das Verhalten des Tritiums wesentlich durch die Wechselwirkung mit dem Graphit bestimmt wird. Wegen der hohen Aufnahmefähigkeit für alle Wasserstoffisotope wirkt der Core-Graphit wie ein Puffer /5/. Neuere Labormessungen mit Tritium und Graphit zeigten darüber hinaus, daß der durch Kernreaktionen im Graphit entstandene Tritium-Anteil an der Einstellung des Sorptionsgleichgewichtes nur über langsam ablaufende Diffusionsvorgänge teilnimmt. Die Wechselwirkung des Graphits mit Tritium wird außerdem durch die Anwesenheit von Wasserstoff im Primärkreislauf beeinflußt. Leckage-Wasser vom Dampferzeuger und Restfeuchtigkeit durch chemische Umsetzung am heißen Graphit sowie Permeation von Wasserstoff aus den Sekundärkreisläufen führen zu einem erheblichen Wasserstoffüberschuß gegenüber Tritium im Kühlgas. Dies unterstreicht die Bedeutung der Austauschreaktionen und zeigt außerdem, daß auch die Tritium-Permeation durch den gleichzeitigen Wasserstofftransport in Gegenrichtung beeinflußt wird. Das Problem der Bestimmung der in der Praxis zu erwartenden Tritium-Obertrittsraten liegt außerdem darin, daß die permeationshemmende Wirkung der auf den Wärmetauscherwänden aufwachsenden Oxidschichten nur mit einem großen Toleranzbereich angegeben werden kann. So wurden bei austenitischen Stählen Rückhaltefaktoren von 100 /6/ bis 1500 /7/ gemessen. Dies ist im wesentlichen darauf zurückzuführen, daß Wachstum und Verhalten der Deckschichten von sehr vielen Parametern abhängig sind. Werkstoff, Gaszusammensetzung, Druck und Temperatur bestimmen die Art der Oxidschicht, das Wachstum als Funktion der Zeit, die Schichtdicke und die Stabilität bei Wechselbelastung.

Manche Vorgänge, die Tritium-Problematik betreffend, sind noch unerforscht, andere Experimente noch nicht abgeschlossen. Der Grund dafür, daß trotzdem bereits zum jetzigen Zeitpunkt Rechenprogramme erstellt werden, die den gesamten Tritium-Haushalt beschreiben, liegt nicht zuletzt darin begründet, daß sie neben der Kontrolle experimenteller Werte auf Vollständigkeit und Anwendbarkeit für den realen Reaktorbetrieb die Möglichkeit bieten, Sensitivitätsstudien durchzuführen, die die Auswirkung der Variation bestimmter Daten und Fehlerbreiten auf das Ergebnis der Rechnungen zeigen und die Fortpflanzung des Fehlers beschreiben. Somit kann diese Rückkopplung als Entscheidungshilfe bei der Durchführung neuer Experimente und der Beurteilung der Effektivität von Maßnahmen zur Senkung der Tritium-Freisetzung dienen.

Beschreibung des Rechenprogramms

zur Bestimmung des Tritium-Haushaltes von

Hochtemperaturreaktoren mit Mehrfachkugeldurchlauf

Viele der für die Ermittlung der Tritium-Produktion und -Verteilung notwendigen physikalischen Daten des Reaktors sind ortsabhängig. Aus diesem Grunde erfolgt eine räumliche Aufgliederung des Reaktorsystems. Der Forderung nach möglichst genauer Erfassung dieser Daten durch eine große Anzahl von Regionen steht die Notwendigkeit gegenüber, den Aufwand in vertretbaren Grenzen zu halten, ohne die Güte der Rechnungen unzulässig herabzusetzen. Damit auch zeitabhängige Vorgänge in geeigneter Weise berücksichtigt werden können, ist es erforderlich, die Quelle-Senke-Bilanz jeweils über einen vorzugebenden Zeitraum hinweg zu erstellen. Gleichgewichtsbetrachtungen, die für einen bestimmten Zeitpunkt formuliert sind, lassen keine Aussage über die bis zu diesem Datum bereits erfolgte Produktion und Verteilung des Tritiums zu. So ist es beispielsweise nicht möglich, Angaben über die Tritium-Konzentration im Graphit zu machen.

Basierend auf diesen grundsätzlichen Überlegungen wurde 1974 von ORNL ein auf den Blockreaktor zugeschnittenes Programm entwickelt, in dem die Entstehung des Tritiums und der Weg von den Quellen zu den verschiedenen Senken durch lineare Differentialgleichungen beschrieben wird /8/. Diejenigen Programmteile, die sich mit Rechnungen an ortsfesten Core-Einbauten befassen, wurden neben verschiedenen Verarbeitungs-Algorithmen und Routinen in einer meist modifizierten Form übernommen. Der Programmbereich hingegen, der die spezifischen Eigenschaften des Kugelhaufenreaktors behandelt, wurde neu erstellt.

Für die mathematische Beschreibung der Vorgänge von der Produktion bis hin zur Freisetzung müssen diese zunächst in einem Modell abgebildet werden. Abbildung 1 gibt einen Oberblick über die dem Rechenmodell zugrunde liegenden Mechanismen und zeigt die Massenströme über eine um das Kühlgas gedachte Systemgrenze hinweg. Die aufgeführten Quellen, Senken und Transportmechanismen werden im folgenden beschrieben.

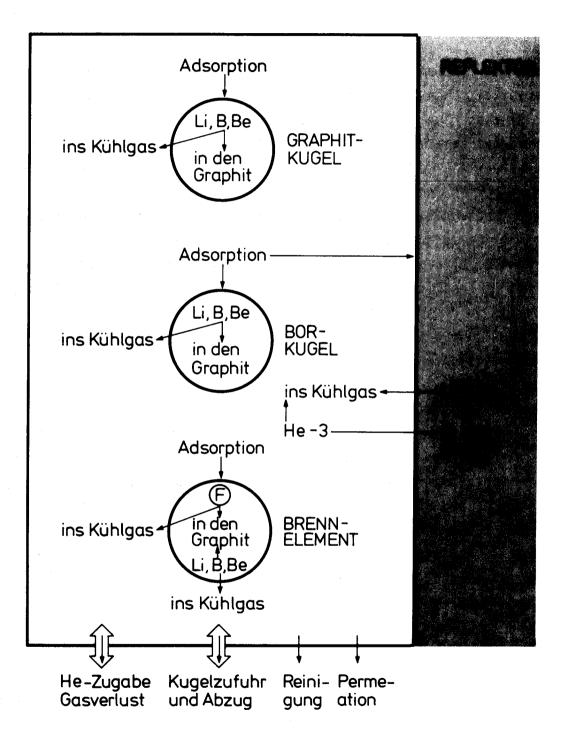


Abb.1: Mechanismen, die dem Rechenmodell zugrunde liegen

3.1 Quellen

3.1.1 Spaltung

Die Tritium-Produktion bei ternärer Spaltung ist abhängig von der Brennstoffzusammensetzung, dem Neutronenspektrum und der Spaltausbeute. Diese liegt im Bereich von $0.82 \cdot 10^{-4}$ für U-235 + n (3 MeV) bis $2.6 \cdot 10^{-4}$ bei U-238 + n(0 MeV) /9/. Unter Zugrundelegung eines bestimmten Energiespektrums und einer bekannten Brennstoffzusammensetzung kann somit die Produktionsrate aus der Spaltung als Funktion der Reaktorleistung beschrieben werden.

$$\frac{d(N_T)_r}{dt} = kP_r y - \lambda (N_T)_r$$

k Spaltungsrate pro Energieeinheit
 (N_T)_r Anzahl Tritium-Atome, die in der Region r produziert werden
 P_r Energieproduktion der Region
 t Dauer der Periode
 λ Tritium-Zerfallskonstante
 y Anzahl der Tritium-Atome, die bei einer Spaltung entstehen

Mit Region bezeichnet man in diesem Zusammenhang einen Rechenraum, der sich durch Aufgliederung des Reaktorsystems in verschiedene Bereiche ergibt. Die Kriterien, nach denen eine sinnvolle Aufgliederung vorzunehmen ist, werden später am Beispiel des AVR gezeigt.

3.1.2 Neutronenreaktionen

Wegen des erheblichen Graphiteinsatzes im Core als Reflektor, Moderator und Brennelementmatrix – im AVR ca. 200 t – kommt den Tritium-liefernden Elementen 6 Li, 7 Li, 10 B, 12 C und 9 Be eine erhebliche Bedeutung zu. Aber auch die gewollte Vergiftung des Reaktors mit Bor, das in der Anfahrphase die fehlende Vergiftung durch Spaltprodukte ersetzt, liefert einen Beitrag zur Tritium-Produktion. Entsprechend den jeweiligen Reaktionsketten ergeben sich die folgenden Gleichungen für die Tritiumproduktion:

Reaktion
$$^{12}C(n,\alpha)$$
 $^{9}Be(n,\alpha)$ $^{6}Li(n,\alpha)T$
$$\frac{dN_{12}}{dt} = -\pi \phi_f \phi_{12} N_{12}$$

$$\frac{dN_9}{dt} = \pi \phi_f \phi_{12} N_{12} - \pi \phi_f \phi_9 N_9$$

$$\frac{dN_6}{dt} = \pi \phi_f \phi_9 N_9 - \pi \phi_5 \phi_6 N_6$$

$$\frac{dN_T}{dt} = \pi \phi_5 \phi_6 N_6 - \lambda N_T$$

Reaktion
$${}^{10}B(n_{1}\alpha)^{7}Li(n_{1}n_{1}\alpha)Tund {}^{10}B(n_{1}2\alpha)T$$

$$\frac{dN_{10}}{dt} = -\Pi(\Phi_{S}O_{10,S} + \Phi_{f}O_{10,f})N_{10}$$

$$\frac{dN_{7}}{dt} = \Pi\Phi_{S}O_{10,S}N_{10} - \Pi\Phi_{f}O_{7}N_{7}$$

$$\frac{dN_{T}}{dt} = \Pi(\Phi_{f}O_{10,f}N_{10} + \Phi_{f}O_{7}N_{7}) - \lambda N_{T}$$

- N Anzahl der Atome in einer bestimmten Region
- λ Tritium-Zerfallskonstante
- π Anteil der vollen Reaktorleistung
- σ Wirkungsquerschnitt der Nuklide für schnelle bzw. langsame Neutronen
- ϕ Regional schneller bzw. langsamer Neutronenfluß bei voller Reaktor-leistung

Die bei der Berechnung verwendeten effektiven Wirkungsquerschnitte für Zweigruppen-Neutronenflüsse basieren auf ENDF/B-Daten unter Zugrundelegung der jeweiligen energieabhängigen Wirkungsquerschnitte in Verbindung mit dem Neutronenenergiespektrum eines homogenen Hochtemperaturreaktors. Die folgende Aufstellung gibt einen Überblick über die so erhaltenen Wirkungsquerschnitte für die verschiedenen Reaktionen /8/. Es zeigt sich, daß diese, nicht zuletzt infolge der gewählten mittleren Temperatur von 900 K, besonders im thermischen Bereich von den herkömmlich tabellierten Werten abweichen.

Reaktion		Energiegruppe (Schwelle 2,38 eV)	Effektiver Wirkungsquerschnitt (barn)
6 _{Li(n,α)} 7 _{Li(n,nα)} 10 _B (n,2α) 10 _B (n,α) 12 _C (n,α) 9 _{Be(n,α)} 3 _{He(n,p)}	T T 7 _{Li} 9 _{Be} 6 _{Li}	langsam schnell schnell langsam schnell schnell	408 0.0072 0.014 1630 0.00015 0.17 2280

Neben der Beschreibung der Tritium-Produktion durch Neutronenaktivierung unter Einbeziehung einer sich durch Abbrand stetig ändernden Quelle liefern die Reaktionsgleichungen auch quantitative Aussagen über den Abbrandzustand der Tritium-Lieferanten zu bestimmten Zeitpunkten. Für ortsfeste Core-Einbauten wird beispielsweise die $^6\mathrm{Li}$ -Atomzahl zum Ende der Rechenperiode aus der Atomzahl zu Beginn dieses Zeitabschnittes ermittelt. Hierzu ist es erforderlich, den Zuwachs durch Neutronenreaktionen der Elemente $^9\mathrm{Be}$ und $^{12}\mathrm{C}$ und die Minderung der $^6\mathrm{Li}$ -Atomzahl in dem betrachteten Zeitraum durch Abbrand in geeigneter Weise gegenüberzustellen. Weil das $^{12}\mathrm{C}$ -Atom praktisch unerschöpflich ist, wird hier auf eine Abbrandrechnung verzichtet.

Da das Helium-Kühlgas durch alle Regionen des Reaktors zirkuliert, besteht eine rege Austauschbewegung über die Systemgrenzen der verschiedenen Core-Regionen hinweg. Dem Schema der linearen Überlagerung gehorchend muß jedoch die Produktionsrate für jede Region separat bestimmt werden. Geht man aufgrund der hohen Umwälzgeschwindigkeit des Kühlgases von einer homogenen Mischung von ⁴He und ³He für alle Reaktorbereiche aus, so kann die folgende Gleichung formuliert werden:

$$\frac{dN_T}{dt} = V_r C_r X_3 O_S T \Phi_{Sr} - \lambda N_T$$

Hieraus folgt für den ³He-Abbrand:

$$\frac{dN_3}{dt} = MN_4 X_3^0 - MN_4 X_3 - \sum_{r=1}^{R} (V_r C_r X_3 O_5 T \phi_{sr})$$

M Zugeführte Frisch-Helium-Rate zur Deckung der Leckverluste N_4 Anzahl der 4 He-Atome im gesamten Primärkühlsystem N_3 Anzahl der 3 He-Atome im Primärkühlsystem N_3/N_4 -Verhältnis im Primärkühlsystem N_3/N_4 -Verhältnis im zugeführten Frisch-Helium Anteil der vollen Reaktorleistung σ_s Wirkungsquerschnitt des 3 He V_r Regionales Volumen des Raumes C_r Anzahl 4 He-Atome pro Einheitsvolumen in der betreffenden Region Der Region zugewiesene Neutronenfluß bei voller Reaktorleistung λ Tritium-Zerfallskonstante

Unter dem regionalen Volumen V_r versteht man in diesem Zusammenhang das vom Kühlgas ausgefüllte Volumen der Region. Es umfaßt also neben den durch Kugelschüttung zwangsläufig entstehenden Hohlräumen auch die Gaszuführungsschlitze, den Raum zwischen Schüttungsoberfläche und Top-Reflektor, eventuell vorhandene Kanäle und Schächte sowie das Porenvolumen des Graphits. Die Umrechnung dieses Helium-Volumens auf entsprechende Atomzahlen erfolgt mittels C_r als Funktion von Druck und Temperatur. Die Gleichungen zur Bestimmung des 3 He-Anteils im Kühlgas berücksichtigen nicht den Beitrag, den Tritium-Zerfall liefert. Denn geht man von einem normalen Durchsatz der Gasreinigungsanlage aus, so wird der größte Teil des Tritiums unmittelbar nach Entstehung abgeschieden. Dies führt in Verbindung mit den übrigen Senken zu einem niedrigen Tritium-Partialdruck im Kühlgas und entsprechend niedrigen Zerfallsraten. Dagegen würden die Gleichungen bei einer Berücksichtigung der Rückkopplung komplizierter, ohne die Qualität des Rechenmodells wesentlich zu verbessern.

3.2 Senken

3.2.1 Bindung in festen Stoffen

Ausheizversuche an bestrahlten, beschichteten Brennstoffpartikeln führten zu unterschiedlichen Ergebnissen. Zwar ergaben Messungen im IRE der KFA, die an Teilchen vom Typ WO 468 f durchgeführt wurden, bereits während fünfstündiger Ausheizzeit bei 900 °C einen Freisetzungsanteil von 10 bis 15 % /10/. Jedoch stellte sich heraus, daß diese Werte wahrscheinlich auf einen durch schlechtes Vakuum bedingten korrosiven Abtrag der Pyrokohlenstoff-

schicht zurückzuführen waren /11/. Spätere Messungen von Tritium-Profilen an bestrahlten und zusätzlich geglühten Brennstoffteilchen zeigten, daß die Tritium-Verteilung praktisch unverändert blieb und bestätigten somit diese Vermutung /12/. Der letztere Befund steht in Übereinstimmung mit den Ergebnissen von Walter und Lange /13/. Sie fanden, daß praktisch das gesamte Tritium zurückgehalten wird. Geht man davon aus, daß herstellungsbedingt oder später durch den Einsatz im Reaktor 1 % der Partikel defekt sind /14/, während die übrigen das Spaltgas vollkommen zurückhalten, so ergibt sich insgesamt eine Freisetzungsrate von 1 %. Mit diesem Wert werden die Rechnungen unabhängig von der Verweilzeit im Reaktor und der jeweiligen Core-Region durchgeführt.

Das durch Neutronenaktivierung im Graphit gebildete Tritium diffundiert zu einem gewissen Teil ins Kühlgas. Messungen an bestrahlten und beladenen Proben /5,/, /7/ haben gezeigt, daß die Aktivierungsenergie für die Freisetzung bei den beladenen Proben erheblich unter der für bestrahlte liegt und von den bisher bekannten Werten abweicht. Möglicherweise sind aufgrund der verschiedenartigen Einbringungen unterschiedliche Platzbesetzungen und Diffusionsmechanismen die Ursache. Rechnungen zum Diffusionsverhalten werden außerdem dadurch erschwert, daß einige der zur Lösung der Gleichungen notwendigen Randbedingungen nicht exakt definiert werden können. So geht z.B. die Tritium-Konzentration des Kühlgases über das Sorptionsgleichgewicht mit der Oberfläche in Form einer erschwerten Abdampfung in diese Rechnungen ein. Die Kühlgaskonzentration ist aber nicht zuletzt wiederum eine Funktion des durch Diffusion aus dem Graphit freigesetzten Tritium-Anteils. Die Verarbeitung dieser Rückkopplung kann nur iterativ erfolgen. Sie wird deshalb - zumal die aufgeführten Mechanismen noch nicht hinreichend geklärt und quantifizierbar sind - in der hier vorgestellten Programmversion durch die Eingabe entsprechender Zurückbehaltungsanteile für das durch Neutronenreaktionen im Graphit gebildete Tritium überbrückt. Diese Werte können regional aufgegliedert werden, müssen jedoch zeitlich konstant sein.

Die bei der 3 He(n,p)T-Reaktion freiwerdende Energie von 0.764 MeV verteilt sich gemäß Impuls- und Energiesatz auf die Reaktionsprodukte. Der auf das Triton entfallende Anteil beträgt 0.191 MeV; dies entspricht 25 % der Gesamtenergie. Hieraus errechnet sich eine Reichweite von 0.23 cm in Helium bei 10 bar und 600 $^{\circ}$ C /15/. Finden diese Reaktionen in graphitnahen Bereichen, engen Kanälen oder Poren statt, so kann das Triton in den Graphit hineingeschossen werden. Der durch Recoil auf diese Weise in den Graphit einge-

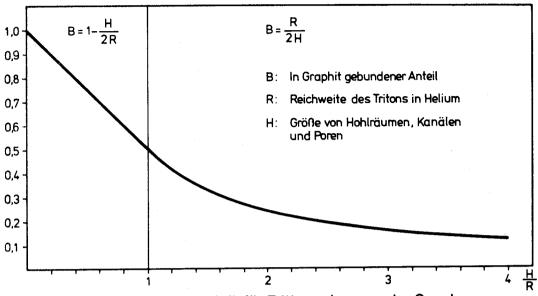


Abb. 2: Bindungsanteil für Tritium, das aus der Gasphase durch Recoil in den Graphit gelangt

brachte Anteil ist eine Funktion der Größe der mit Kühlgas gefüllten Hohl-räume H und der Reichwerte der Tritonen R. Abbildung 2 zeigt diesen Zusammenhang. Die Kurve gliedert sich in 2 Bereiche derart, daß die Abhängigkeit für $H/R \le 1$ durch eine Gerade beschrieben wird, während für H/R > 1 die Approximation durch eine Hyperbel erfolgt. Geht man davon aus, daß bei sehr kleinen Hohlräumen alle Tritonen im Graphit gebunden werden, daß der Bindungsanteil an der Intervallgrenze (H = R) 50 % beträgt und daß der Kurvenverlauf stetig sein muß, so ergeben sich daraus die Konstanten der entsprechenden Funktionsgleichungen.

Da die Poren generell klein sind gegenüber der Reichweite der Tritonen, wird dieser Bindungsanteil mit 1.0 bewertet. Die übrigen charakteristischen Abmessungen der mit Helium ausgefüllten Kanäle, Durchführungen, Kugelschüttungshohlräume etc. können gemeinsam mit den entsprechenden Volumina über die Programmeingabe definiert werden. Aus diesen Einzelanteilen wird der für die gesamte Region repräsentative Bindungsanteil als volumenbezogener Mittelwert bestimmt.

3.2.2 Adsorption

Untersuchungen zum Adsorptionsverhalten von Wasserstoffisotopen an Graphit haben gezeigt, daß sich innerhalb weniger Stunden ein Gleichgewichtszustand

einstellt. Bis zum Erreichen dieses Sättigungswertes ist die adsorbierte Menge proportional zum Logarithmus der Zeit (Elovich-Gleichung). Unter Zugrundelegung dieser Gesetzmäßigkeit ergaben Messungen an oxidierten Proben bei 900 $^{\rm O}$ C und $7\cdot10^{-2}$ Torr, die am HMI durchgeführt wurden /16/, daß nach etwa 4 Stunden 90 % des Gleichgewichtswertes erreicht waren. Bei Versuchen mit Tritium an unkorrodiertem Graphit im IRE der KFA /17/ wurde nach 4 Stunden eine adsorbierte Menge entsprechend ca. 70 % des Sättigungswertes gefunden.

Unter der Voraussetzung, daß der vom Programmanwender vorzugebende Zeitraum, über den sich die Tritium-Bilanz erstrecken soll, groß ist gegenüber der Zeitspanne, die für die Einstellung des Gleichgewichtes benötigt wird, kann die Adsorptionskinetik unberücksichtigt bleiben.

Bei den bereits erwähnten Untersuchungen im IRE der KFA /17/ konnte das Gleichgewichtsverhalten durch die Langmuir-Isotherme beschrieben werden:

$$a = a_m bp / (1+bp)$$

a Anzahl adsorbierter Tritium-Moleküle pro Gramm Graphit

a_m Sättigungsbelegung der Graphitoberfläche
(2·10¹⁸ T - Molek./g Graphit)

b Adsoprtionskoeffizient (7.53 mbar⁻¹)

Tritium-Partialdruck in mbar

Die angegebenen Zahlenwerte gelten für eine Graphittemperatur von 1000 $^{\rm O}$ C. Es ist jedoch zu erwarten – und von 600 bis 900 $^{\rm O}$ C durch Experimente bestätigt /16/ –, daß diese Werte in einem angemessenen Temperaturbereich konstant bleiben und lediglich die Adsorptionskinetik beeinflußt wird.

Berücksichtigt man, daß ein erheblicher Überschuß von Wasserstoff gegenüber Tritium im Kühlgas besteht – für AVR $p(H_2)/p(HT) \approx 10^5$ – und setzt gleiches Verhalten der Wasserstoffisotope und damit gleiche Adsoprtionswahrscheinlichkeiten der einzelnen Molekühle voraus, so kann die Rechnung, ausgehend vom Wasserstoffanteil im Kühlgas unter Vernachlässigung des Tritiums durchgeführt werden.

3.2.3 Gasreinigungsanlage, Leckage, radioaktiver Zerfall

Die Gasreinigungsanlage ist wegen der meist hohen Kühlgasdurchsätze in Verbindung mit großen Abscheideraten eine wesentliche Senke für Wasserstoffisotope. Aus Gasstrom und Wirkungsgrad der Anlage errechnet sich der Transportkoeffizient für die Entleerung des Rechenraumes, der durch eine um das Kühlgas gedachte Systemgrenze definiert ist. Der Wirkungsgrad kann über die Programmeingabe für jede Rechenperiode vorgegeben werden und ist somit quasizeitvariabel.

Für die Aufrechterhaltung eines stationären Druckzustandes im Primärsystem ist es erforderlich, die zwangsläufig vorhandenen Leckverluste durch die Zugabe von Frisch-Helium zu kompensieren. Hieraus ergibt sich für den jeweiligen Rechenraum neben der bereits beschriebenen Quelle durch den ³He-Anteil im zugeführten Helium eine Senke für Tritium aufgrund der vorhandenen Leckrate.

Tritium zerfällt unter Aussendung von β-Strahlung der Energie 18 keV zu ³He. Dieses wiederum kann in einem geeigneten Neutronenfluß zu Tritium rückverwandelt werden. Einer relativ langen Halbwertszeit von 12.3 Jahren steht der im thermischen Bereich sehr große effektive (n,p)-Wirkungsquerschnitt von 2280 barn gegenüber. Somit kann man davon ausgehen, daß ³He je nach Größe des örtlichen thermischen Flusses und der Verweilzeit im Core in einer angemessenen Zeit wieder zu Tritium reagiert. Die resultierende Zerfallsrate für eine Rechenperiode und die entsprechende Zerfallskonstante, die sich durch die Überlagerung beider Vorgänge ergeben, werden also regional unterschiedlich sein. Die Zerfallskonstante wird dabei zwischen dem tabellierten Wert 1.792·10⁻⁹/sec und Null liegen. Die hier vorgestellte Programmversion berücksichtigt zwar den Tritiumzerfall im Gleichungsansatz, führt die Rechnungen jedoch dann ohne Zerfall aus.

3.2.4 Permeation

Für Wasserstoff und Tritium kann gleiches chemisches und physikalisches Verhalten vorausgesetzt werden, sofern die betreffenden Mechanismen nicht direkt von der Atommassenzahl abhängig sind. Somit ist für Wasserstoffisotope auch von gleichem Löslichkeits-, Diffusions- und damit auch Permeationsverhalten auszugehen, wenn man den Isotopeneffekt bei der Diffusion vernachläs-

sigt. Da im Kühlgas ein erheblicher Oberschuß von Wasserstoff gegenüber Tritium besteht, ist eine Beeinflussung der Tritium-Permeation durch die Anwesenheit von Wasserstoff zu erwarten, und es wäre falsch, beide Vorgänge losgelöst voneinander zu betrachten. Durch die Formulierung des Massenwirkungsgesetzes in Verbindung mit der Sievertsschen Gleichung kann der funktionale Zusammenhang beschrieben werden. Es gilt:

$$\begin{array}{ll} H + T = HT & p(H) \cdot p(T) = K_{1} p(HT) \\ H + H = H_{2} & \left[p(H) \right]^{2} & = K_{2} p(H_{2}) \\ \\ C_{T} = L \sqrt{p(T_{2})} \\ C_{T} = L \frac{K_{1}}{\sqrt{K_{2}}} \frac{p(HT)}{\sqrt{p(H_{2})}} \\ C_{T} = K * \frac{p(HT)}{p(H_{2})} \sqrt{p(H_{2})} \end{array}$$

Für die Permeationsrate gilt:

$$\dot{V}_{N} = \frac{DL}{X} AC_{T}$$

$$\dot{V}_{N} = \frac{K}{X} AC_{T}$$

$$\dot{V}_{N} = \frac{K_{o}}{X} AK^{*} \frac{p(HT)}{p(H_{2})} \sqrt{p(H_{2})} EXP[-Q/RT]$$

Ϋ́ _N	Permeiertes Normvolumen Tritium pro Zeiteinheit
K _o	Permeationskonstante (temperaturunabhängig)
ĸ	Permeationskonstante (temperaturabhängig)
X	Dicke der Permeationswand
p	Partialdruck der entsprechenden Komponente
Q	Aktivierungsenergie
R	Gaskonstante
Τ .	Absolute Temperatur
D	Diffusionskoeffizient
L	Löslichkeit
K ₁ ; K ₂	Gleichgewichtskonstanten

Bei Überschuß von leichtem Wasserstoff ist die Gesamtpermeationsrate somit proportional zur Wurzel des Wasserstoffpartialdruckes. Der auf die Tritium-

Permeation entfallende Anteil entspricht dem Partialdruckverhältnis $p(HT)/p(H_2)$. Dieser Quotient ist sehr klein und beträgt für den AVR beispielsweise 10^{-5} . Bezieht man nun die Tritium-Permeationsrate auf die angebotene Menge, so erhält man die Übertrittswahrscheinlichkeit eines Tritons für eine bestimmte Zeiteinheit. Da dieser Wert aber identisch ist mit der entsprechenden Permeationswahrscheinlichkeit für Wasserstoff, kann die bestehende Rückkopplung Tritium-Partialdruck-Permeationsrate durch Rechnungen auf der Basis von Wasserstoff überbrückt werden.

Die hemmende Wirkung einer Oxidbelegung der Wärmetauschermaterialien auf die Tritium-Permeation in die Sekundärkreisläufe wurde experimentell untersucht und dabei Rückhaltefaktoren von 100 /6/ bis 1500 /7/ für austenitische und 20 /6/ für ferritische Stähle gefunden. Bei den Versuchen wurde das Wasserstoffisotop auf einer Probenseite angeboten und die Übertrittsrate für den unoxidierten und oxidierten Zustand bestimmt. Im realen Reaktorbetrieb jedoch kommt es - wie die Permeationsgleichung zeigt - aufgrund des hohen Wasserstoffüberschusses zu einer inhibierenden Wirkung auf die Tritium-Permeation. Dies führt dazu, daß bereits bei unoxidierten Wärmetauschermaterialien eine wesentlich kleinere Übertrittsrate als die experimentell gefundene zu erwarten ist. Bei einer Oxidbelegung jedoch nimmt die Bedeutung der Inhibierung wegen der gleichsfalls erschwerten Wasserstoffpermeation ab. Somit kann der tatsächliche Rückhaltefaktor wesentlich kleiner sein als der gemessene /18/.

3.3 Transport des Tritiums

3.3.1 Formulierung der Transportgleichungen

Die Verteilung des produzierten Tritiums erfolgt über die Gasräume von Primär- und Sekundärkreislauf. Betrachtet man den Tritiumtransport über eine um das Helium gedachte Systemgrenze hinweg, so ergibt sich für die Beladung des Raumes die aus dem Graphit freigesetzte Menge der Tritium-Produktion. Die Entleerung erfolgt über die Pfade: Adsorption, Primärkreislaufleckage, Gasreinigungsanlage und Permeation. Für den geschlossenen Dampfraum wiederum ist die Permeation der Beladungsterm, dem Leckage und Abschlämmung gegenüberstehen. Abbildung 3 zeigt die Formulierung der Transportgleichungen für eine variable und eine konstante Input-Rate, wie es beispielsweise das Spalttritium für den Primärkreislauf darstellt.

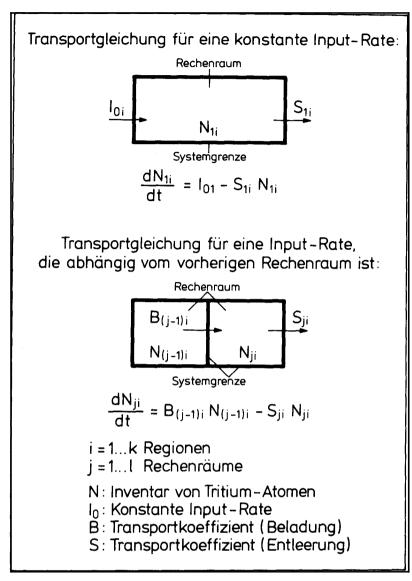


Abb. 3: Formulierung von Transportgleichungen für verschiedene Rechenräume

Innerhalb der Regionen erfolgt für jeden Tritium-Lieferanten neben der Produktionsrechnung eine Verteilungsrechnung, wodurch eine verursachergerechte Aufschlüsselung erzielt und bei geeigneter überlagerung ein umfassender überblick für die verschiedenen Regionen sowie für das gesamte Core vermittelt wird.

3.3.2 <u>Lösung des Gleichungssystems</u>

Verknüpft man Produktions- und Transportgleichungen miteinander, so ergibt sich für jeden Tritium-Lieferanten ein Satz gekoppelter linearer Differentialgleichungen erster Ordnung mit konstanten Koeffizienten. Sieht man von ³He ab, das - wie bereits erwähnt - zu Tritium aktiviert wird und dann rück-wirkend nach dem Zerfall das ³He-Angebot wieder erhöht, so beschreiben die Produktionsgleichungen einen Vorgang, der immer in derselben Richtung abläuft, wobei jede Gleichung nur mit der vorherigen verknüpft ist. Die Transportgleichungen haben ebenfalls diese Struktur, da Ströme nur von der Quelle zur Senke hin möglich sind und keine Verteilungsräume übersprungen werden können, so daß der Transportkoeffizient für die Beladung eines Raumes abhängig ist von dem entsprechenden Koeffizienten, der die Entleerung des vorherigen Rechenraumes beschreibt.

Für den Fall einer konstanten Tritium-Quelle ergibt sich folgender Gleichungssatz:

$$\frac{dN_{1i}}{dt} = I_{0i} - S_{1i} N_{1i}$$

$$\frac{dN_{2i}}{dt} = B_{1i} N_{1i} - S_{2i} N_{2i}$$

$$\frac{dN_{3i}}{dt} = B_{2i}N_{2i} - S_{3i}N_{3i}$$

N Inventar von Tritium-Lieferanten oder Tritium-Atomen

i Index für die Aufgliederung des Reaktors in Regionen

0, 1, 2 ... Index für Tritium-Lieferanten bzw. Verteilungsräume

I Produkt $(\pi \cdot \phi \cdot \sigma \cdot N)$ bei konstanter Quelle bzw. konstante Input-Rate eines Rechenraumes

B Produkt $(\pi \cdot \phi \cdot \sigma)$ für die Entstehung von Tritium oder entsprechender Lieferanten bzw. Transportkoeffizient für die Beladung des Raumes

S Produkt $(\pi \cdot \phi \cdot \sigma)$ für den Abbrand des betreffenden Tritium-Lieferanten bzw. Transportkoeffizient für die Entleerung des Verteilungsraumes.

Die Lösung dieses Differentialgleichungssatzes kann exakt angeschrieben werden, wenn man, beginnend mit der ersten Gleichung, die gefundene Lösung jeweils in die folgende einsetzt:

Lősung der Gleichung
$$\dot{N}_{1i} = I_{0i} - S_{1i} N_{1i}$$

mit
$$N_{1i}(t=0)=0$$

homogene

$$\frac{dN_{1i}}{N_{1i}} = -S_{1i} dt$$

Differentialgleichung

$$N_{1ih} = Ke^{-s_{1it}}$$

$$N_{1ip} = I_{0i}e^{-S_{1i}t} \int_{t_0}^{t} e^{S_{1i}x} dx$$
 partikuläre Lősung
= $\frac{I_{0i}}{S_{1i}}$

$$N_{1i} = N_{1ih} + N_{1ip}$$

$$N_{1i}(t=0)=0$$

Anfangsbedingung

$$N_{1i} = I_{01} \frac{1 - e^{-S_{1i}t}}{S_{1i}}$$

Lősung der Gleichung $N_{2i} = B_{1i}N_{1i} - S_{2i}N_{2i}$

mit
$$N_{1i} = I_{0i} \frac{1 - e^{-S_{1i}t}}{S_{1i}}$$
 und $N_{2i}(t=0) = 0$

$$\dot{N}_{2i} + S_{2i}N_{2i} = B_{1i}I_{01} \frac{1 - e^{-S_{1i}t}}{S_{1i}}$$

$$\dot{N}_{2i} + S_{2i} N_{2i} = 0$$

$$\frac{dN_{2i}}{N_{2i}} = -S_{2i}dt$$

$$N_{2ih} = K^* e^{-S_{2i}t}$$

$$N_{2ip} = e^{-S_{2i}t} \frac{B_{1i}I_{0i}}{S_{1i}} \int_{t_0}^{t} \frac{1 - e^{-S_{1i}x}}{e^{-S_{2i}x}} dx$$

$$= e^{-S_{2i}t} \frac{B_{1i}I_{0i}}{S_{1i}} \left[\frac{e^{S_{2i}t}}{S_{2i}} - \frac{e^{(S_{2i} - S_{1i})t}}{S_{2i} - S_{1i}} \right]$$

$$N_{2i} = N_{2in} + N_{2ip}$$

$$N_{2i}(t=0)=0$$

$$N_{2i} = I_{0i} B_{1i} \left[\frac{1 - e^{-S_{1i}t}}{S_{1i}} \cdot \frac{1}{S_{2i} - S_{1i}} + \frac{1 - e^{-S_{2i}t}}{S_{2i}} \cdot \frac{1}{S_{1i} - S_{2i}} \right]$$

Lősung der Gleichung $\dot{N}_{3i} = B_{2i} N_{2i} - S_{3i} N_{3i}$

mit
$$N_{2i} = I_{0i} B_{1i} \left[\frac{1 - e^{-S_{1i}t}}{S_{1i}} \cdot \frac{1}{S_{2i} - S_{1i}} + \frac{1 - e^{-S_{2i}t}}{S_{2i}} \cdot \frac{1}{S_{1i} - S_{2i}} \right]$$

und
$$N_{3i}(t=0)=0$$

$$\dot{N}_{3i} + S_{3i} N_{3i} = I_{0i} B_{1i} B_{2i} \left[\frac{1 - e^{-S_{1i}t}}{S_{1i}(S_{2i} - S_{1i})} + \frac{1 - e^{-S_{2i}t}}{S_{2i}(S_{1i} - S_{2i})} \right]$$

$$\dot{N}_{3i} + S_{3i} N_{3i} = 0$$

$$\frac{dN_{3i}}{N_{3i}} = -S_{3i}dt$$

$$N_{3ih} = K^{**}e^{-S_{3i}t}$$

$$N_{3ip} = e^{-S_{3i}t} I_{0i} B_{1i} B_{2i} \int_{t_0}^{t} \left[\frac{1 - e^{-S_{1i}x}}{e^{-S_{3i}x} S_{1i} (S_{2i} - S_{1i})} + \frac{1 - e^{-S_{2i}x}}{e^{-S_{3i}x} S_{2i} (S_{1i} - S_{2i})} \right] dx$$

$$= I_{0i} B_{1i} B_{2i} \left[\frac{\frac{1}{S_{3i}} - \frac{e^{-S_{1i}t}}{S_{3i} - S_{1i}}}{S_{1i}(S_{2i} - S_{1i})} + \frac{\frac{1}{S_{3i}} - \frac{e^{-S_{2i}t}}{S_{3i} - S_{2i}}}{S_{2i}(S_{1i} - S_{2i})} \right]$$

$$N_{3i} = N_{3ih} + N_{3ip}$$

$$N_{3i}(t=0)=0$$

$$N_{3i} = I_{0i} B_{1i} B_{2i} \left[\frac{1 - e^{-S_{1i}t}}{S_{1i}} \cdot \frac{1}{S_{2i} - S_{1i}} \cdot \frac{1}{S_{3i} - S_{1i}} + \frac{1}{S_{3i} -$$

$$+\frac{1-e^{-S_{2i}t}}{S_{2i}}\cdot\frac{1}{S_{1i}-S_{2i}}\cdot\frac{1}{S_{3i}-S_{2i}}+$$

$$+\frac{1-e^{-S_{3i}t}}{S_{3i}}\cdot\frac{1}{S_{1i}-S_{3i}}\cdot\frac{1}{S_{2i}-S_{3i}}$$

Aus der angeschriebenen Lösung läßt sich folgender Bildungsmechanismus ableiten:

$$N_{q_i} = I_0 B_{1i} \cdot \dots \cdot B_{(q-1)i} \sum_{k=1}^{q} \left[\frac{1 - e^{-S_{ki}t}}{S_{ki}} \cdot \prod_{\substack{l=1 \ l \neq k}}^{q} \frac{1}{S_{li} - S_{ki}} \right]$$

Da dieser Lösungsalgorithmus im Programm sehr häufig verwendet wird, definiert man die Funktion:

$$H(t,s,q) = \sum_{k=1}^{q} \left[\frac{1-e^{-S_{ki}t}}{S_{ki}} \cdot \prod_{\substack{l=1 \ l \neq k}}^{q} \frac{1}{S_{Li}-S_{ki}} \right]$$

- t Zeitdauer des Berechnungsintervalls
- S eindimensionales Feld, das die Werte S_{1i} bis S_{0i} enthält
- q Index für das Inventar, ausgedrückt durch die zuletzt angeschriebene Differentialgleichung; ist identisch mit der Anzahl der Gleichungen

Für den Fall, daß die Quellrate mit fortschreitender Zeit wegen des Abbrandes der Tritium-Lieferanten abnimmt, kann der folgende Gleichungsatz formuliert werden:

$$\frac{dN_{1i}}{dt} = -S_{1i}N_{1i}$$

$$\frac{dN_{2i}}{dt} = B_{1i}N_{1i} - S_{2i}N_{2i}$$

$$\frac{dN_{3i}}{dt} = B_{2i}N_{2i} - S_{3i}N_{3i}$$

Wendet man das gleiche Lösungsverfahren an, das eben für den Fall einer konstanten Tritium-Quelle gezeigt wurde, so ergibt sich bei Berücksichtigung der Anfangsbedingung $N(t=0)=N_0$ die folgende Lösung:

$$N_{qi} = N_0 B_{1i} \cdot \dots \cdot B_{(q-1)i} \sum_{k=1}^{q} \left[e^{-S_{ki} t} \prod_{\substack{l=1 \ l \neq k}}^{q} \frac{1}{S_{Li} - S_{ki}} \right]$$

N_O Inventar von Tritium-Atomen oder Tritium-Lieferanten zu Beginn der Zeitperiode

Hier definiert man die Funktion:

$$G(t,s,q) = \sum_{k=1}^{q} \left[e^{-9_{ki}t} \prod_{l=1}^{q} \frac{1}{S_{li} - S_{ki}} \right]$$

UBERSICHT
ÜBER DIE AM AVR DURCHGEFÜHRTEN RECHNUNGEN
ZUM BETRIEBSVERHALTEN DES REAKTORS

Während bei Hochtemperatur-Blockreaktoren der Brennstoff bis zum Neueinsatz ortsfest abgebrannt wird, bietet der Kugelhaufenreaktor die Möglichkeit der kontinuierlich regulierbaren Kugelzu- und abfuhr. Hieraus ergibt sich unter anderem der Vorteil, daß der Reaktor von Betriebsbeginn an ohne überschüssiges Spaltstoffinventar gefahren werden kann. Zur optimalen Ausnutzung dieses Vorteils sind betriebsbegleitende Rechnungen erforderlich, die es ermöglichen, das Fahrverhalten des Reaktors mit befriedigender Genauigkeit vorauszuberechnen und somit Angaben über die Dosierung der Kugelzugabe nach Art, Anzahl und Ort sowie die Kugelausschleusung und die Umwälzgeschwindigkeit machen zu können.

Von R. Wagemann wurden am Beispiel des AVR entsprechende Modelle entwikkelt und Betriebsrechnungen durchgeführt /19/. Da der AVR bis heute die wohl wichtigste Versuchsstrecke für Rechenmodelle von Kugelhaufenreaktoren darstellt, werden auch die hier vorgestellten Rechnungen zum Tritium-Haushalt anhand konkreter Werte und Daten des AVR durchgeführt, um immer wieder den Bezug zur Realität zu erhalten und die Übereinstimmung zu gemessenen Tritium-Aktivitäten im Kühlgas /20/, im Dampfkreislauf /21/ und in Graphitund Brennelementkugeln /22/ zu kontrollieren.

4.1 <u>Beschreibung des AVR-Reaktors</u>

Der AVR-Kugelhaufenreaktor ist heliumgekühlt und graphitmoderiert. Das Core besteht aus einer Kugelschüttung von Brennelementen, Absorberkugeln und Graphitkugeln.

Zur Steuerung des Betriebsablaufes können an der Schüttungsoberfläche auf 2 Radien Kugeln zugeführt werden. Durch eine Bodenöffnung gelangen die Kugeln in das Abzugsrohr und von dort in die Beschickungsanlage. Kugelbruch und Staub werden abgeschieden, die Kugelart identifiziert und der Abbrandzustand der Brennelemente bestimmt. Dadurch, daß die ungenügend abgebrannten Brennelemente dem Core wieder zugeführt werden, kommt eine Umwälzung und gute Durchmischung der mehr oder weniger abgebrannten Kugeln zustande.

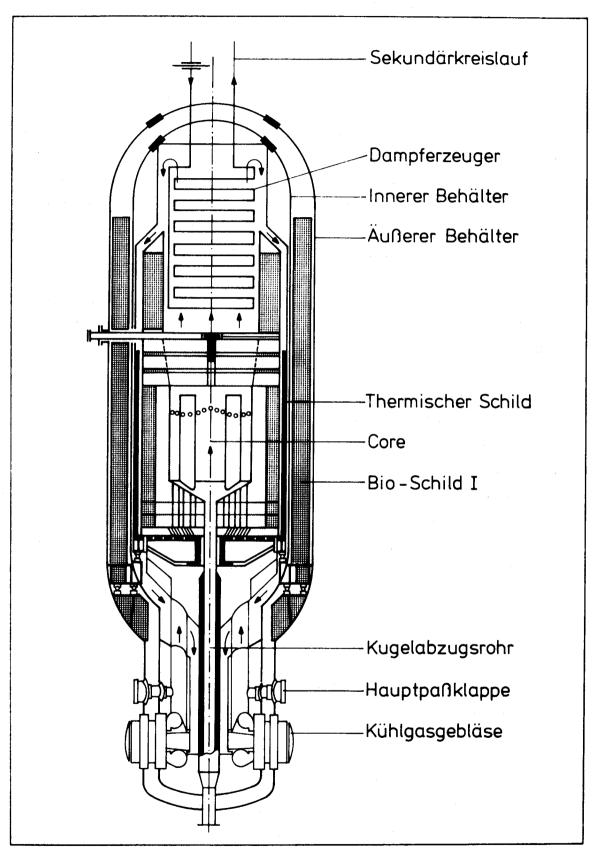


Abb. 4: Längsschnitt durch den Schutzbehälter des AVR-Reaktors

4.2 Anfahrphasen des Reaktors

Damit der Reaktor von Betriebsbeginn an mit Nennleistung gefahren werden kann, setzt sich das Erstcore aus Brennelementen, Graphitkugeln und Borkugeln zusammen (Borkugel-Phase). Ohne Zugabe von Borkugeln würden die Brennelementtemperaturen bei Nennleistung die Toleranzgrenze überschreiten. Der Einsatz dieser abbrennbaren Gifte in den Brennelementen selbst wäre ungünstig, weil dadurch ein Freiheitsgrad der Beschickung verschenkt würde, da dann der Ort durch die Anordnung der Brennelemente bestimmt wäre. Bis zum Erreichen der erforderlichen Vergiftung durch Spaltprodukte wird eine allmählich abklingende Zahl frischer Borkugeln ins Innencore gegeben, wogegen frische Brennelemente zur Abflachung des radialen Temperaturprofiles auf dem Außencore zugeführt werden.

Mit fortschreitender Zeit kommt der Kugelhaufenreaktor aus dem Bereich kritischer Spitzentemperaturen heraus, die anfängliche Phase der räumlichen Entkopplung von Spaltstoff und abbrennbarem Gift geht in die Graphitkugel-Phase über, wo jedem Brennelement sein Giftanteil in Form von Spaltprodukten zukommt. Es entfällt ein Freiheitsgrad der Beschickung, jedoch wird die Brennelementzugabe flexibler.

Die Gleichgewichtsphase ist dann erreicht, wenn der Reaktor stationär mit frischen Brennelementen beschickt wird und mit der Kugelausschleusung und Wiederzufuhr aus dem Core abgezogener Kugeln konstant in gleicher Weise verfahren wird. In diesem Gleichgewichtszustand darf die mittlere räumliche Nuklidkonzentration in einem Volumen, das groß ist gegenüber dem Kugelvolumen, mit der Zeit nur rein statistisch um einen konstanten Mittelwert schwanken.

4.3 Beschickungsrechnungen am AVR

4.3.1 Realgeometrie und Modellgeometrie des Reaktorcores

Um Rechenzeit und Speicherplatzbelegung bei den Betriebsrechnungen in vertretbaren Grenzen zu halten, ist es erforderlich, die Realgeometrie des AVR-Cores in eine Modellgeometrie zu überführen. Abbildung 5 /29/ zeigt die Realgeometrie des AVR-Core-Reflektorbereiches und Abbildung 6 /29/ die daraus

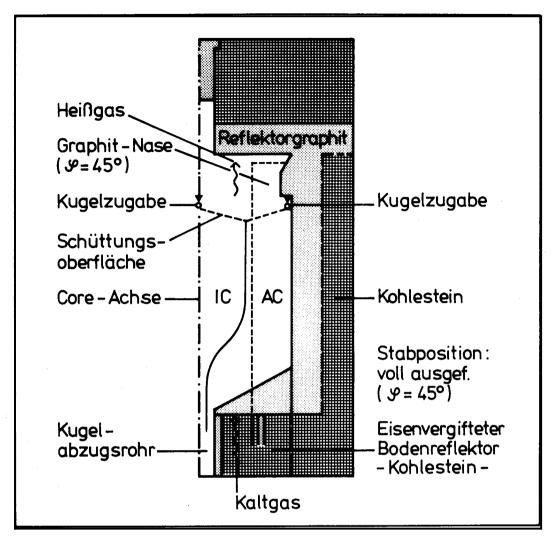


Abb. 5: Realgeometrie des AVR-Cores (Längsschnitt)

abgeleitete 2-dimensionale, rotationssymmetrische Struktur, die dadurch erreicht wurde, daß die Graphitnasen zur Absorberstabführung (Ebenen mit $\mathcal{Y} = \text{const.}$) in "Graphitringe" der Ebenen z = const. überführt wurden.

4.3.2 <u>Ermittlung des Neutronenflusses</u>

Die Berechnung des energie- und ortsabhängigen Neutronenflusses ist sehr kompliziert und in einem Rechengang nicht durchführbar, da hierzu die Kenntnis des Isotopenvektors in jedem Reaktorpunkt erforderlich ist, und das Brennstoff- und Moderatortemperaturfeld bekannt sein muß. Diese Temperaturfelder jedoch können nur über das Leistungsdichtefeld berechnet werden, das sich wieder aus der Spaltstoff-, Temperatur- und Flußverteilung im Reaktor ergibt. Dieser Zyklus wird nun iterativ durchlaufen, wobei man vom Auf-

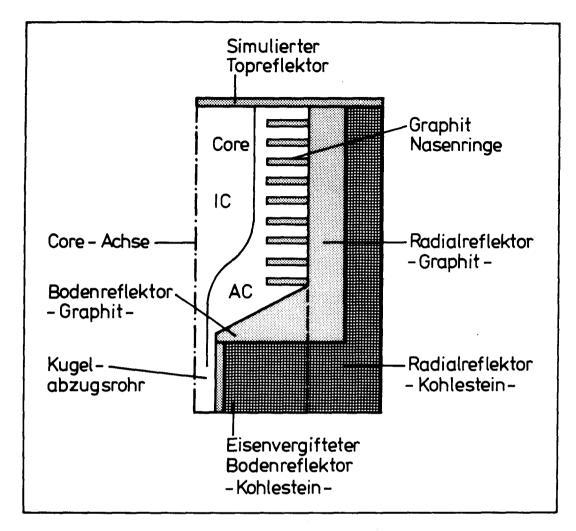


Abb. 6: Modellgeometrie des AVR-Cores (Längsschnitt)

bau des Erstcores ausgeht und den Verlauf des energieabhängigen Neutronenflusses sowie die Moderator- und Brennstofftemperaturen vorgibt bzw. abschätzt. So erhält man für maximal 15 Regionen das Neutronenenergiespektrum, aufgegliedert in 43 Energiebereiche von 0 bis 10 MeV.

An diese Spektralrechnung schließt sich eine Neutronendiffusionsrechnung zur Ermittlung des Neutronenflußfeldes im Reaktor an. Zur genaueren Erfassung der Ortsvariationen des Flußfeldes geht man auf ca. 4500 über den Axialquerschnitt des Cores verteilte Maschenpunkte über, muß dann aber wegen begrenzter Speicherkapazität der Rechenanlage von 43 Mikro-Energiegruppen auf 4 Makro-Energiegruppen übergehen.

4.3.3 Kugelumwälzung und Coreaufteilung

Für die rechnerische Erfassung des Reaktorbetriebes ist es notwendig, das

Kugelfließen anhand eines Modells möglichst genau zu beschreiben, weil dadurch die Qualität der gesamten Betriebsrechnungen und die daraus abgeleitete Beschickungsstrategie maßgeblich beeinflußt werden. Versuche haben gezeigt, daß das Kugelfließen weitgehend mit den Gesetzen, die für die laminare Strömung einer inkompressiblen Flüssigkeit gelten, zu beschreiben ist. Abbildung 7 /30/ zeigt in einem Längsschnitt durch ein rotationssymmetrisches Core Absinkprofile und Bahnkurven, die experimentell ermittelt wurden.

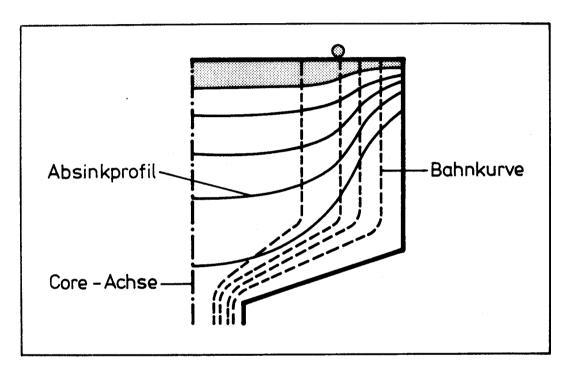


Abb. 7: Gemessene Bahnkurven und Absinkprofile

Zur Diskretisierung des Modells wird das Kugelhaufencore in 5 konzentrische Stromröhren aufgeteilt. Man setzt nun voraus, daß alle Kugeln, die bei der Zuführung in die gleiche Stromröhre gelangen, für den Durchlauf durch das Core die gleiche Zeit benötigen. Abbildung 8 /30/ zeigt die entsprechenden Durchlaufzeiten als Funktion der Radien bzw. als Mittel der betreffenden Stromröhre.

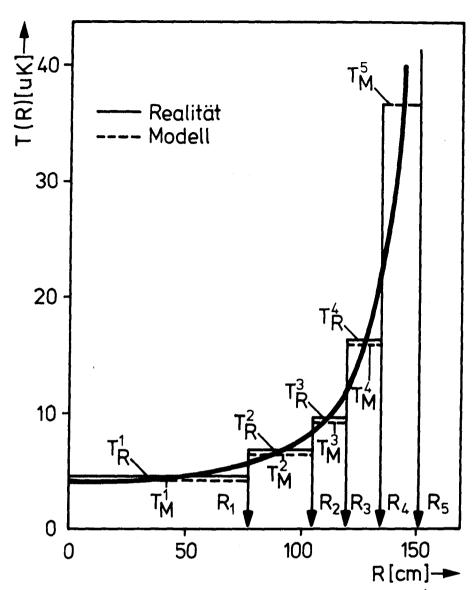


Abb.8: Kanaldurchlaufzeiten; Einheit [10⁴ uK]

Anmerkung: uK (umgewälzte Kugelzahl) ist ein modifizierter Zeitmaßstab und gibt die Zahl der bis zur Zeit t umgewälzten Kugeln ab.

$$uK = \int_{0}^{T} \mathbf{w}(t) dt$$

w(t): Umwälzgeschwindigkeit der Kugeln zur Zeit t in [umgewälzte Kugeln/Zeiteinheit]

In Anlehnung an uK wird ein Zeitabschnitt für die Umwälzung von 7200 Kugeln definiert, und man bezeichnet diesen als 1 WB (Wiederbeladung).

Jede dieser 5 Stromröhren wird nun derart in Zonen aufgeteilt, daß sich die Anzahl der Zonen in den jeweiligen Stromröhren wie die Durchlaufzeiten der Kugeln verhalten. In diesem diskreten Modell gibt es kein Fließen der Kugeln, vielmehr werden die Kugelpakete einer Zone in die nächst tiefergelegene Zone der gleichen Stromröhre umgeladen. So wird der in Wirklichkeit gekoppelte Vorgang des nuklearen Abbrennens und der gleichzeitigen vertikalen Kugelbewegung zeitlich entkoppelt. Während eines bestimmten Zeitintervalls werden die Kugeln ortsfest in einem konstanten Neutronenfluß abgebrannt. Abbildung 9 /30/ zeigt das für die Betriebsrechnungen des AVR verwandte "5-Kanal-Modell", das aus 5 Stromröhren (Kanälen) und insgesamt 107 Corezonen aufgebaut ist.

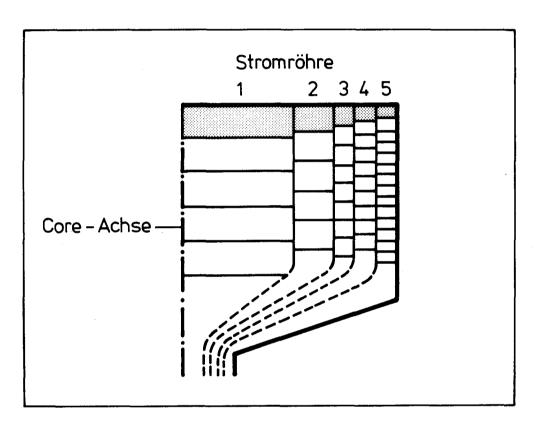


Abb. 9: Diskretes Kugelfließmodell

AUFBEREITUNG PHYSIKALISCHER DATEN DES AVR-VERSUCHSREAKTORS FÜR DIE PROGRAMMEINGABE

5.1 Neutronenfluß

Für die Berechnung der Tritium-Quellen und Senken im Corebereich ist eine Aufgliederung des Cores erforderlich. Damit nun möglichst viele Daten direkt aus den laufenden Betriebsrechnungen des AVR übernommen werden können ist es sinnvoll, die bei diesen Rechnungen verwandte Aufteilung des Cores in 8 Regionen ebenfalls vorzusehen. Entstanden sind diese Regionen durch die Zusammenfassung mehrerer Zonen mit ähnlichen $\phi(E)$ -Verläufen und – im Hinblick auf thermische Neutronen und deren Reaktionen – etwa gleichen Temperaturen. Abbildung 10 /30/ gibt einen Überblick über die Aufteilung des AVR-Cores.

Die folgende Tabelle zeigt die für die Erfassung des Kugelfließverhaltens notwendige Aufteilung des AVR-Cores in 107 Zonen und die Zusammenfassung zu 8 Regionen:

Regionen	zugehörige Zonen
1	14, 712
2	5, 6, 1315
3	1623, 2940, 5170, 106
4	2428, 4150, 71100, 107
5	101
6	102, 104
7	103
8	105

Für jede dieser Regionen ist das Neutronenenergiespektrum, aufgegliedert in 43 Mikro-Energiegruppen von 0 bis 10 MeV, durch die Spektralrechnung ermittelt worden. Die Tabellen 1A und 1B zeigen die entsprechenden Flüsse für die Wiederbeladung 193 (Jahresmitte 1977). Die Werte sind auf eine Summe von 100 normiert und so angeordnet, daß die zugehörigen Energie zeilenweise von links nach rechts ansteigen. Im Rahmen der Betriebsrechnungen wurden außerdem für die 107 Core- und Reflektorzonen Eingruppenflüsse be-

stimmt. In Tabelle 2 sind diese Flüsse aufgeführt, wobei die Numerierung der Zonen steigend von links nach rechts erfolgt.

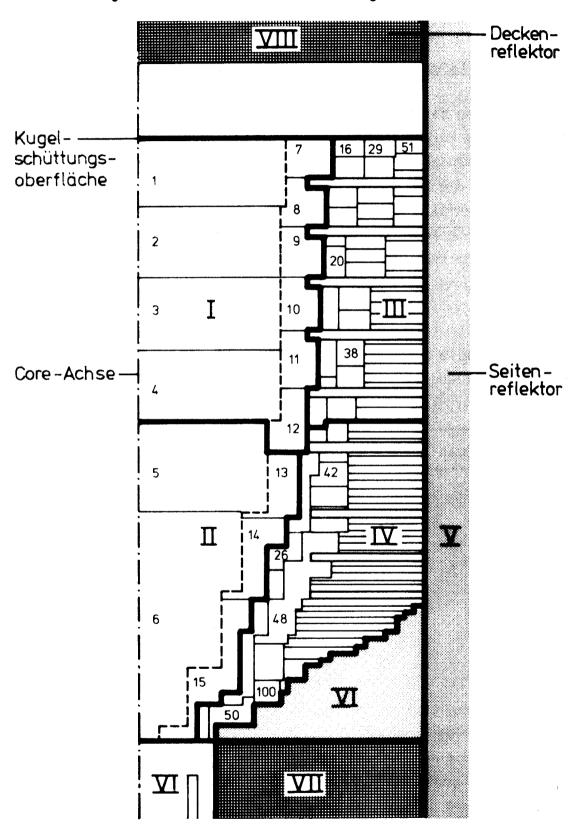


Abb. 10: Aufteilung des AVR-Cores in 107 Zonen und Zusammenfassung zu 8 Regionen

			E OO 3.48262E OO E OO 3.29167E OO E-01 4.68524E-01 E OO 2.21389E OO E OO 1.94628E OO		E 00 4.66491E 00 E 00 1.86726E 00 E-01 4.69403E-01 E 00 2.28034E 00 E 00 1.96215E 00			00 2.88336E 00 00 3.19163F 00 -01 4.94503E-01 00 2.3578E 00 00 2.55750E 00			α 4.26515Ε αα 1.62236Ε αο 4.68766Ε-01
			00 2.44945E 00 00 3.78459E 00 01 5.83672E-01 00 2.18451E 00 00 3.03545E 00		3.39818E 00 2.40372E 00 1 5.74536E-01 2.25093E 00 3.06491E 00			2.00546E 00 3.5559E 00 6.20019E-01 2.28535E 00 3.92757E 00			3.19072E 2.07420E 5.74805E-
193 /32/			1.497048 3.39342E 5.00720E- 2.10527E 3.69717E		2.16348E 00 2.14134E 00 4.74062E-01 2.16682E 00 3.74368E 00			1.21514E 00 3.11423E 00 5.36061E-01 2.20839E 00 4.64982E 00			2.03544E 00 2.09072E 00 4.73827E-01 2.15263E 00
Flüsse, WB		(00	1.34352E 00 4.25689E 00 3.15195E-01 1.34596E 00	(0)	2.00346E 00 3.36563E 00 2.80546E-01 1.38996E 00 4.11466E 00		(0	1.08203E		(6	1.88552E CO 2.94947E CO 2.78604E-01 1.39838E CO
43-Gruppen - 1		equal to 100)	1.14382F CO 5.22446E CO 7.78232E-01 1.97048E CO 4.61617E CO	equal to 100)	1.75946F 00 4.63632E 00 6.27671E-01 2.03660E 00 4.71758E 00		equal to 100	9.13257E-01 4.61676E 00 8.40297E-01 2.04766E 00 5.29186E 00		equal to 100)	1.65376E 00 4.12109E 00 6.22261E-01 2.03816E 00
Normierte 43		fluxes (Sum is	8.91312E-01 6.18870E 00 1.60770E 00 1.28947E 00 4.58944E 00 1.42401E-01	fluxes (Sum is	1.41249E		xes (Sum is	7.04680E-01 5.36330E 00 1.70957E 00 1.35155E 00 4.99159E 00 1.64094E-01		(Sum is	1.32228E 00 5.60417E 00 1.02023E 00 1.33012E 00
1A: NO.		group	5,80107E-01 5.14845E 00 1.08855E 00 1.31024E 00 4.59959E 00	group	9.45026E-01 5.75343E 00 6.0991E-01 1.33992E 00 4.75401E 00		al group fluxes	4.52757E-01 4.38377E 00 1.12782E 00 1.37031E 00 4.74602E 00 6.42754E-01		l group fluxes	8.76052E-01 5.27501E 00 5.66660E-01 1.33504E 00 4.70623E 00
Tabelle 1	Region I	The critical	2,06129E-01 4.44274E 00 2.39366E 00 1.26712E 00 3.03000E 00 1.05429E 00	 The critical	3.43064E-01 5.41352E 00 1.28475E 00 1.28631E 00 3.12474E 00	Region III	The critical	1.58014E-01 3.72659E 00 2.40604E 00 1.32594E 00 3.14433E 00 1.41925E 00	Region IV	The critical	3.11673E-01 5.01829E 00 1.14817E 00 1.28153E 00 3.12076F 00

7/

/32	
193	
MB	
e 43-Gruppen-Flüsse,	
Normierte	
1B:	
Tabelle	

The critical group fluxes (Sum is equal to 100)

Region V

2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	4E 00 3E-01 4E 00 3E-01	9E 00 7E-01 9E 00 0E-02	88 68 00 98-01 88-05
8.90932E 00 1.42954E 00 2.88023E-01 1.16723E 00 8.63883E-02	8.97304E	9.98209E	2.70468E CO 3.21416E CO 5.63259E-01 3.73951E CO 4.23049E-05
88 88 80 14 15 00	28 28 28 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	39977E 00 20084E 00 20977E-01 21587E 00 .86331E-01	7E 00 6E 00 6E-01 3E 00 2E-02
7.03298E 00 2.19394E 00 3.51641E-01 1.18497E 00 2.06205E-01	7.67572E 00 1.05699E 00 4.3696E-01 1.61410E 00 3.84959E-01	8.39977E 00 1.20084E 00 4.20977E-01 1.21587E 00 1.86331E-01	2.03477E 00 3.56896E 00 6.98536E-01 2.52733E 00 4.61632E-02
4.67575E 00 2.53663E 00 2.89257E-01 1.15927E 00 3.64055E-01	5.41599E 00 1.251175 00 3.56012E-01 1.54573E 00 6.36231E-01	5.82817E	1.24202E 00 3.12010E 00 5.95172E-01 1.65189E 00 2.08223E-01
4.67575E OC 2.53663E OC 2.89257E-01 1.15927E OC 3.64055E-01	5.4150 1.251 3.560 1.545 6.362	5.828 1.443 3.472 1.254 3.249	1.242 3.120 5.951 1.651 2.082
4.48922E OO 3.99348E OO 1.69960E-01 7.83500E-01 5.77612E-01	5.45520E 00 2.14189E 00 2.06283E-01 1.02989E 00 9.65687E-01	5.76785E 00 2.48616E 00 2.02538E-01 8.77930E-01 5.10439E-01	1.11488E 00 3.82898E 00 3.69173E-01 8.38888E-01 6.17814E-01
4.489 3.993 1.699 7.835	5.455 2.141 2.062 1.029 9.656	5.767 2.486 2.025 8.779 5.104	1.114 3.828 3.691 8.388 6.178
4.09501E CO 6.19413F CO 3.76080E-01 1.17759E CO	al to 100) 5.21526E 00 3.76249E 00 4.43910E-01 1.53065F 00 1.61388E 00	11 to 100) 5.38499E 00 4.36641F 00 4.41577E-01 1.34949F 00 8.83041E-01	al to 100) 9.51223E-01 4.59803E 00 8.73573E-01 1.52129E 00 2.16035E 00
4.095 6.194 3.760 1.177 1.010	qual to 10 5.21526E 3.76249E 4.43910E 1.53065F 1.61388E	equal to 100) 5.38499E © 4.36641F © 1 4.41577E-01 1 1.34949F © 8.83041E-01	equal to 100 9.51223E-01 4.59803E α 8.73573E-01 1.52129E α 1.52129E α
3.42370E 00 9.34377E 00 6.20795E-01 7.99825E-01 1.53524E 00 1.57913E-03	(Sum is equal 4.56603E 00 5.2 6.56178E 00 3.7 6.75312E-01 4.4 1.02851E 00 1.5 2.34668E 00 1.6 1.12113E-03	(Sum is e 4.55645E 00 7.57172E 00 6.84551E-01 9.26554E-01 1.32693E 00 1.54319E-03	-00001
3.423 9.343 6.207 7.998 1.535	400-0-	(es (Su 4.556 7.571 6.845 9.265 1.326	fluxes (Sum is 3-01 7.45108E-0 5 00 5.33706E 0 5 00 1.75959E 0 5 00 1.17174E 0 5 01 6.34519E 0 3-06 8.87046E-0
2.40010E 00 9.60196E 00 3.64007E-01 8.11003E-01 2.36297E 00 6.10832E-03	group fluxes 3.35030E 00 7.76809E 00 3.29986E-01 1.03217E 00 3.45687E 00 3.13971E-02	group fluxes 3.16553E	11.0 87.1 44.8 44.9 7.5 7.5 7.5
2.400 9.601 3.640 8.110 2.362 6.108	al group 3.35030F 7.76809E 3.29986E 1.03217F 3.45687F 3.13971E		
9.21701E-01 9.84172E 00 8.32455E-01 7.92301E-01 1.57578E 00	Region VI The critical 1.34512E 00 8.96692E 00 5.85212E-01 1.00300E-00 2.24047E 00 6.63732E-02	Region VII The critical 1.15118E CO 1.01186E 01 6.20146E-01 9.40244E-01 1.44997E CO 2.24596E-02	Region VIII The critical 1.76995E-01 3.73097E 00 2.43957E 00 1.52793E 00 7.54733E 00 1.24280E-05
9.21701E-07 9.84172E OX 8.32455E-07 7.92301E-07 1.57578E OX 2.36826E-07	Region The 1.345 8.966 8.965 5.852 1.003 2.240 6.637	Regi The 1.151 1.011 6.201 9.402 1.449	Regi The 1.769 3.730 2.439 1.527 7.547

```
Eingruppenflüsse (Zone) [1/cm<sup>2</sup>sec]
Stromröhre 1
                                           O.15398E 15 O.16173E 15
o.42423E 14
               0.90868E 14 0.92982E 15
                                                                       0.13002E 15
Stromröhre 2
O.31317E 14
               O.66278E 14
                             O.97521E 14
                                           O.12430E 14
                                                         O.14502E 15
                                                                       O.15755E 15
O.15725E 15
               O.14372E 15
                             0.96441E 14
Stromröhre 3
O.22797E 14
                                                         O.99769E 14
              0.36541E 14
                             O.60831E 14 O.77374E 14
                                                                       O.12400E 15
                                                         O.14271E 15
O.14205E 15
              O.15212E 15
                             O.15642E 15 O.15140E 15
                                                                       O.12368E 15
O.81967E 14
Stromröhre 4
                                                         O.80652E 14
0.20968E 14
              O.33846E 14
                            O.55024E 14 O.64678E 14
                                                                       O.31667E 14
                                         O.13517E 15
                                                         O.14016E 15
O.13841E 15
                                                                       O.14768E 15
O.13224E 15
0.10111E 15
              O.11627E 15
                             O.12327E 15
              O.15091E 15
                             O.14806E 15
                                          O.14211E 15
O.15112E 14
                                         O.64800E 14
                             O.91935E 14
O.12474E 15
              O.11056E 15
Stromröhre 5
O.17972E 14
              O.27428E 14
                                                                       O.76645E 14
                            O.40773E 14 O.53435E 14
                                                        O.44146E 14
0.82630E 14
              O.81698E 14
                            O.09796E 14
                                         O.10312E 14
                                                         0.10509E 15
                                                                       O.11061E 15
O.11593E 15
                                                                       O.12485E 15
              O.11759E 15
                            O.11906E 15
                                         O.12031E 15
                                                        O.12157E 15
O.12535E 15
              O.12683E 15
                            O.12822E 15
                                         O.12931E 15
                                                        O.1278OE 15
                                                                       O.12686E 15
O.12611E 15
              O.12528E 15
                            O.12436E 15 O.12333E 15
                                                        O.12218E 15
                                                                       0.12050E 15
O.11727E 15
              O.11505E 15
                            O.11461E 15 O.11307E 15
                                                        O.11118E 15
                                                                       O.10748E 15
O.10484E 15
                            O.10394E 15 O.10196E 15
                                                        O.98647E 14
                                                                       O.95218E 15
              0.10351E 15
                            O.94542E 14 O.91686E 14
                                                        O.91208E 14
                                                                      O.31148E 14
O.93965E 14
              O.95751E 14
O.88585E 14
              O.78432E 14
FEFL.-Flüsse:
Zone: 101
              O.28348E 14 1/(CM**2*S)
              O.47199E 14 1/(CM**2*S)
Zone: 102
Zone: 103
Zone: 104
              O.87362F 13 1/(CM**2*s)
              O.11665E 14 1/(CM**2*s)
Zone: 105
              O.10077E 14 1/(CM**2*s)
Zone: 106
              O.94974E 14 1/(CM**2*S)
Zone: 107
              O.11934E 15 1/(CM**2*s)
```

Tabelle 2: Eingruppenflüsse für insgesamt 107 Core- und Reflektorzonen des AVR-Versuchsreaktors, WB 193, /32/.

5.1.1 Modifizierung der Flußwerte

Da die im Rechenprogramm zum Tritium-Haushalt verwandten Wirkungsquerschnitte auf 2 Energiebereiche mit E \leq 2.38 eV und E > 2.38 eV bezogen sind, ist es erforderlich, die zur Verfügung stehenden Neutronenflußdaten, die in den Tabellen 1 A, 1 B und 2 aufgeführt sind, derart umzuwandeln, daß für jede Region ein mittlerer Zweigruppenfluß der oben genannten Energiebereiche entsteht. Für die Kugelcore-Bereiche wird hierzu zunächst aus den Eingruppenflüssen der verschiedenen Zonen (Tabelle 2), die zur jeweiligen Region gehören, der mittlere Eingruppenfluß für diese Region bestimmt:

$$\overline{\Phi}_{\text{Eingr.}} = \frac{1}{V_R} \sum_{i} \Phi_{\text{Eingr. i}} V_i$$

^φEingr. mittlerer Eingruppenfluß der Region (0 < E <∞)
V_R; V_i Volumen der Region bzw. Zone

^φEingr.i Eingruppenfluß der Zone i

Die in dieser Rechnung benötigten Zonenvolumina sind - wie bereits beschrieben - innerhalb jeder Stromröhre gleich:

Stromröhre	zugehörige Zonen	Zonenvolumen V _i [cm ³]
1	1 6	0.6843 E + 06
2	7 15	0.3107 E + 06
3	16 28	0.1132 E + 06
4	29 50	0.1296 E + 06
5	51 100	0.1309 E + 06

Für die Reflektorbereiche kann der entsprechende Eingruppenfluß direkt aus Tabelle 2 entnommen werden.

Der mittlere Zweigruppenfluß der Region ergibt sich nun dadurch, daß der mittlere Eingruppenfluß entsprechend den normierten Flußverteilungswerten aufgeteilt wird. Da die Energie 2.38 eV in den Bereich 1.9 eV < E < 3.05 eV fällt und damit in der 25. Gruppe liegt, wird der zugehörige normierte Flußwert entsprechend linear aufgeteilt:

$$\Phi_{\text{rel}_{S}} = \sum_{j=1}^{24} \Phi_{\text{rel}_{j}} + \Phi_{\text{rel}_{25}} = \frac{2.38 - 1.9}{3.05 - 1.9} \text{ fűr E} \le 2.38 \text{ eV}$$

$$\Phi_{\text{rel}_f} = \sum_{j=26}^{43} \Phi_{\text{rel}_j} + \Phi_{\text{rel}_{25}} = \frac{3.05 - 2.38}{3.05 - 1.9} \text{ für E > 2.38eV}$$

Tabelle 3 zeigt die so ermittelten Flußwerte für die Wiederbeladung 193. Hierbei ist zu beachten, daß das den Betriebsrechnungen zugrunde liegende Volumen im Reflektorbereich nicht mit dem tatsächlichen Volumen der Graphitund Kohlesteineinbauten übereinstimmt.

Für die Betriebsrechnungen sind Decken-, Boden- und Seitenreflektor nur in dem Maße von Bedeutung, wie sie Neutronen moderieren oder reflektieren. Losgelöst von der geometrischen Struktur kann somit basierend auf Rechnungen /19/ ein wirksamer Reflektorbereich abgegrenzt bzw. ein Reflektor simuliert werden. Zur Vermeidung von Rechnungen, die sich auf den Gasraum oberhalb der Kugelschüttung beziehen, wird beispielsweise ein aufliegender 7.5 cm dicker Deckenreflektor angepaßt, der den gleichen Reaktivitätsbeitrag liefert wie die Originalkonstruktion. Ab 1979 stehen für die Betriebsrechnungen Programme zur Verfügung, die direkt von der Realgeometrie ausgehen und somit zu einer noch höheren Rechengenauigkeit führen /33/.

Das den Reflektorregionen 5 ... 8 in Tabelle 3 zugewiesene Volumen entspricht somit nicht dem realen Wert. Für die Berechnungen der Tritiumquellen jedoch muß der gesamte Reflektorbereich ausgewertet werden, da die Quellstärke wesentlich durch den Abbrand der Tritium-Lieferanten bestimmt wird. Unter der Voraussetzung, daß der Neutronenfluß außerhalb des wirksamen Relfektorbereiches vernachlässigbar klein ist, ergibt sich der auf dem tatsächlichen Volumen der Region basierende Fluß zu:

$$\overline{\Phi}^* = \frac{\overline{\Phi} \cdot \vee_R}{\vee_R^*}$$

 $ar{\phi}$ mittlerer Neutronenfluß der Region bei Volumen V_R mittlerer Neutronenfluß der Region bei Volumen V_R^* wirksames Reflektorvolumen der Region V_R^* reales Reflektorvolumen der Region

Region	$\binom{V_R}{[cm^3]}$	∑ [¢] Eingr.i ^V i i [cm/sec]	$^{ar{\phi}}$ Eingr. $[1/ ext{cm}^2 ext{sec}]$	[¢] re1 _s	φre] _f	$\bar{\phi}_{\rm S}$	$\bar{\phi}_{f}$ [1/cm ² sec]
1	4.6014 E06	4.78699 E20	1.040335 E14	55.590056	44,410333	5,783228 E13	4,620162 E13
2	2,3007 E06	3.231947 E20	1,404747 E14	54,553354	45,447044	7.663475 E13	6.384251 E13
က	5.0788 E06	4.665176 E20	9.185587 E13	49.827664	50,172813	4.576963 E13	4.608667 E13
4	5.7890 E06	5.902444 E20	1.019597 E14	49,984128	50,015583	5,096367 E13	5,099574 E13
വ	2.0479 E07		2.8348 E13	84,705815	15,294979	2,401240 E13	4,335821 E12
9	2.4897 E06		4.7129 E13	78,084155	21,916335	3,680028 E13	1,032895 E13
7	3.6768 E06		8,7362 E12	84.935045	15,065543	7.420095 E12	1,316156 E12
8	5.3014 E05		1.0077 E13	50,517411	49.482902	5.090064 E12	4.986392 E12

V_R; V_i den Betrieb

^ΦEingr.

Eingruppenf

^Φrel

relativer F

relativer F

mittlerer N

mittlerer N

mittlerer Neutronenfluß der Region im Energiebereich E $\leq 2.38~\text{eV}_1 \overline{\phi}_S = \phi_{\text{rel}_S} \cdot \overline{\phi}_{\text{Eingr.}}$ mittlerer Neutronenfluß der Region im Energiebereich E > 2.38 eV, $\overline{\phi}_f = \phi_{\text{rel}_S} \cdot \overline{\phi}_{\text{Eingr.}}$ den Betriebsrechnungen zugrunde liegendes Volumen der Region bzw. der Zone mittlerer Eingruppenfluß der Region (0 < E < ∞); $\overline{\phi}$ Eingr. = $\frac{1}{V_R}$ $\frac{5}{1}$ ϕ Eingr.i Vi relativer Fluß, normiert auf 100 im Energiebereich E ≤ 2.38 eV relativer Fluß, normiert auf 100 im Energiebereich E > 2.38~eVEingruppenfluß der Zone i $(0 < E < \infty)$

Tabelle 3: Ermittlung des mittleren Zweigruppen-Neutronenflusses der Regionen, WB 193

Bezogen auf das reale Reflektorvolumen ergibt sich somit:

Region	φ̄s [1/cm²sec]	of [1/cm²sec]	V _R [cm³]	$\frac{\bar{\phi}}{s}$ [1/cm ² sec]	$\frac{1}{\sqrt{6}}$ f [1/cm ² sec]
5	2.401240 E13	4.335821 E12	7.074 E07	6.952 E12	1.255 E12
6	3.680028 E13	1.032895 E13	4.282 E06	2.140 E13	6.008 E12
7	7.420095 E12	1.316156 E12	6.636 E06	4.111 E12	7.292 E11
8	5.090640 E12	4.986392 E12	4.569 E07	8.466 E11	8.293 E11

5.2 Brennelement, Bor- und Graphitkugelverteilung

Der Reaktor durchläuft von Betriebsbeginn an verschiedene Phasen, in denen das Erstcore in das Gleichgewichtscore überführt wird. Dies geschieht auf der Basis einer genauen Beschickungsstrategie, die wiederum aus den Betriebsrechnungen abgeleitet wird. Kugeln können durch eine Bodenöffnung abgezogen, ausgeschieden oder gemeinsam mit frischen Elementen auf 2 verschiedenen Radien – entsprechend Innencore und Außencore – wieder zugeführt werden (siehe Abbildung 5).

5.2.1 <u>Ermittlung der Kugelverteilung auf Innen- und Außencore</u>

Die Corezusammensetzung zum jeweiligen Jahresende geht in der Regel direkt aus den Jahresberichten des AVR /23-31/ hervor. Für den Zeitraum vom Erstcore bis zur Wiederbeladung 22 (Jahresende 1969) müssen die entsprechenden Werte unter Zugrundelegung der folgenden Voraussetzungen ermittelt werden:

- Die Anteile der verschiedenen Brennelemente ergeben sich aus der graphischen Darstellung Abb. 11 /30/ durch Umwandlung der relativen Zahlen in Absolutwerte.
- Für die Aufteilung der Kugeln auf das Innen- bzw. Außencore wird der in Abbildung 12 /25/ dargestellte Verlauf der Variablen W modifiziert, die das Verhältnis der mittleren Brennelementdichten der beiden Corebereiche im Sinne einer Verdünnung mit Graphit- und Borkugeln angibt.

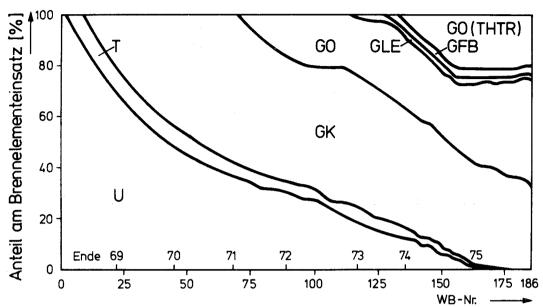


Abb.11: Prozentuale Anteile der Brennelementtypen im AVR-Core

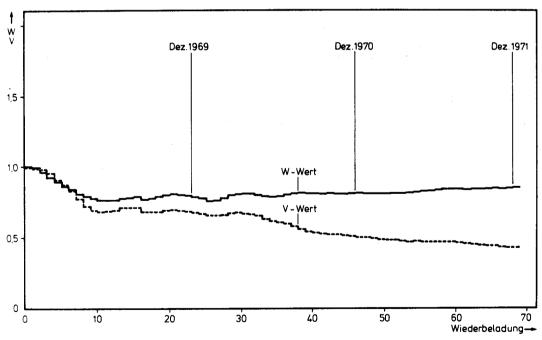


Abb.12: Verhältnisse der mittleren Spaltstoffdichten (V-Wert) und der mittleren Brennelementdichten (W-Wert) von Innencore zu Außencore

$$W = \frac{n_{IC}}{n_{AC}} \cdot \frac{V_{AC}}{V_{IC}}$$

$$W = \frac{n_{IC}}{n_{AC}} \cdot \frac{(R_{AC}^2 - R_{IC}^2)\Pi H}{R_{IC}^2 \Pi H}$$

$$W = \frac{n_{IC}}{n_{AC}} \cdot \frac{R_{AC}^2 - R_{IC}^2}{R_{IC}^2 \Pi G}$$

nIC	Brennelementanzahl Innencore
n _{AC}	Brennelementanzahl Außencore
VIC	Volumen des Innencores
VAC	Volumen des Außencores
R _{IC}	Begrenzungsradius des Innencores; $R_{IC} = 0.76$ m
R _{AC}	Außenradius des Cores; R _{AC} = 1.5 m
Н	Höhe des Cores

Hieraus sind die Brennelementanzahlen für Innencore und Außencore bestimmbar.

Tabelle 4 zeigt die entsprechende Corezusammensetzung für die Jahre 1968 bis 1977; in der folgenden Abbildung 13 sind diese Werte graphisch dargestellt.

5.2.2 Kugelzusammensetzung der Regionen

Im September 1972 wurde das Zugabeverhältnis für Kugeln von Innencore (Rohr in Coremitte) zu Außencore (Rohre am Umfang) von 1:1 auf 2.66:1 im zeitlichen Mittel geändert, wodurch der Wirkungs- bzw. Einflußbereich des Zugaberohres in Coremitte erweitert wurde. Für das Verhalten des Reaktors entspricht dies einer Vergrößerung des Innencores vom Radius r_{IC} = 0.76 m auf ca. 1.00 m. Das radiale Temperaturprofil wird durch diese Maßnahme abgeflacht und die Spitzentemperaturen um ca. 100 °C gesenkt. Hierdurch wird es möglich, die thermische Leistung des Reaktors anzuheben, ohne die zulässigen Brennelementtemperaturen zu überschreiten, und die mittlere Gasaustrittstemperatur kann von 850 °C auf 950 °C gesteigert werden.

		ERSTOORE	, D	AHRE	SEND	១					
		14.2.68	1969	1970	1971	1972	1973	1974	1975	1976	1977
		WB O	WB 22	WB 45	WB 68	WB 89	WB 117	WB 136	WB 163	WB 186	WB 198
Graphitkugeln	IC	14027	11189	9248	5572	1118	2803	853	1548	1892	9
	₽Ç	53177	41010	29411	18475	9296	2057	1275	864	171	1
Borkugeln	IC	1100	1890	2370	2500	2500	2500	2500	2500	2500	75
	₽Ç	•	ı	ŧ	i	ı	ı	i	1	ı	1
UCC-BE; ATJ-Graphit	S	6570	8618	8430	10530	10591	15030	11210	1040	1	ı
der Union Carbide Corp.	AC.	19020	18847	17403	14343	13335	1505	ı	1	ı	ı
T-BE; Tapeten Brenn-	IC	1	i	2000	3095	1956	1738	2255	303	1	1
elemente	₽Ç	ı	3981	1733	408	1069	2881	1009	ı	i	1
GK-BE; Gepreste BE	IC	ı	ı	ı	ı	4562	10430	13704	21317	18363	24113
Karbidischer Brennstoff	₽C	ı	8359	23650	38971	35156	33763	28326	14562	11114	0029
CO-BE; Gepreste BE	IC	ı	i	ı	1	970	3967	5952	9764	10788	11439
Oxidischer Brennstoff	J.	1	ţ	ı	ı	12961	15910	17706	17758	26109	30273
CO(THTR)-BE;	ıc	ı	ı	1	ı	ı	1	ı	ı	2507	1043
THTR-Brennelemente	₽Ç	ı	ı	i	ı	ı	ı	3610	18855	15690	17508
GLE-BE; low enriched	IC	t	ı	1	1	1	ı	1	1	334	807
Brennelemente	AC	ı	ı	ı	ı	ı	1310	2450	2325	1394	674
GFB-BE; Feed-Breed	ıc	ı	1	ı	ı	1	1	1	ı	98	113
Brennelemente	JC JC	ı	ı	1	ı	1	ı	3050	3050	2935	2783
			,	nnencore	Innencore-Radius O,76 m		Innencore	Innencore-Radius 1,0 m		WB: Wiederbeladung	beladung
	Tabelle 4		Zusammensetzung des AVR-Cores für die Jahre 1968 bis 1977	des AVR-(Sores für	die Jahr	e 1968 bi	S 1977		IC: Innencore	ore
									4	AC: Außencore	ore

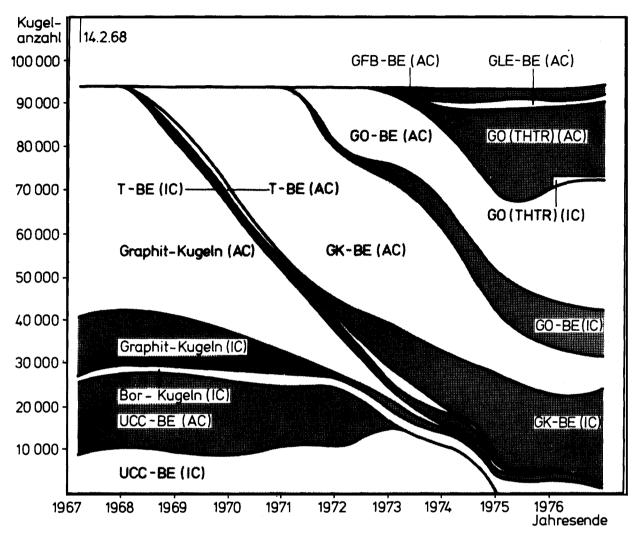


Abb. 13: Graphit -, Bor - und Brennelementverteilung des AVR - Reaktors

Da die Coreregionen zur Schaffung einer einheitlichen Basis über den gesamten Berechnungszeitraum hinweg unverändert bleiben müssen, ist es notwendig, die in Tabelle 4 aufgeführten Kugelzusammensetzungen bis zum Jahresende 1972 zu modifizieren. Hierzu wird zunächst die Kugelkonzentration des jeweiligen Kugeltyps (Kugeln pro Volumeneinheit) für das Außencore unter der Voraussetzung der homogenen Durchmischung bestimmt. Da sich das Volumen des Innencores von 3.99 m³ auf 6.90 m³ vergrößert, wird nun für das Innencore eine aus der Volumenvergrößerung und der zugehörigen Kugelkonzentration zu errechnende Kugelzahl addiert und für das Außencore entsprechend subtrahiert. Tabelle 5 zeigt die so errechneten Werte.

Die Aufteilung der Kugeln des Innen- und Außencores auf die Regionen 1 und

2 bzw. 3 und 4 erfolgt über das jeweilige Volumen der Region. Voraussetzung ist somit auch hier eine homogene Durchmischung. Die Tabellen 6 bis 9 zeigen die so erhaltenen Kugelzahlen für die Coreregionen 1 bis 4.

		ERSTCORE		,	A H R	ESEN	3 Q				
		14.2.68	1969	1970	1971	1972	1973	1974	1975	1976	1977
		WB O	WB 22	WB 45	WB 68	WB 89	WB 117	WB 136	WB 163	WB 186	WB 198
Graphitkweln	ρ	25257	19849	15459	9473	3161					
	¥C	41947	32350	23200	14574	7633					
Borkugeln)	1100	1890	2370	2500	2500					
	AC	ı	ı	ı	1	1					
UCC-BE; ATJ-Graphit	DI CI	10587	12598	12105	13559	13407					
der Union Carbide Corp.	AC	15003	14867	13728	11314	10519	WERT	E BL	EIBEN		
T-BE; Tapeten Brenn-	SI	ŀ	841	2366	3181	2182	1	;; ;; ;; ;;	E 0		
elemente	AC	ı	3140	1367	322	843	>	2 2 4 4	4		
GK-BE; Gepreßte BE	IC	ı	1765	4994	8230	11986	π Η	E	- - -	-	
Karbidischer Brennstoff	AC	ı	6594	18656	30741	27732	<u>1</u>	t 1	1 1	r	
OO-BE; Gepreste BE	IC	1	ł	ı	ı	3707					
Oxidischer Brennstoff	AC	•	-	I	1	10224					
CO (THTR) -BE;	IC	-	ı	1	ı	ı					
THTR-Brennelemente	₽Ç	ı	ı	1	1	` 1					
GLE-BE; low enriched	CI	ŀ			1						
Brennelemente	AC	-	1	ı	t	, '					•
GFB-BE; Feed-Breed	IC	ı	ı	t	ı	1					
Brennelemente	AC AC	ı	ı		ı	•			WE	WB: Wiederbeladung	eladung

Tabelle 5: Zusammensetzung des AVR-Cores für die Jahre 1968 bis 1977 bezogen auf einen Innencore-Radius von 1,0 m

	ERSTOORE			JAH	RESEN	ENDE				
	14.2.68	1969	1970	1971	1972	1973	1974	1975	1976	1977
	WB O	WB 22	WB 45	WB 68	WB 89	WB 117	WB 136	WB 163	WB 186	WB 198
Graphitkugeln	16838	13233	10306	6315	2107	1869	695	1032	1261	04
Borkugeln	733	1260	1580	1667	1667	1667	1667	1667	1667	50
UCC-BE; ATJ-Graphit der Union Carbide Corn.	7058	8399	8070	9039	8938	10020	7473	693		
T-BE; Tapeten Brenn- elemente	I	561	1577	2121	1455	1159	1503	202	1	
GK-BE, Gepreßte BE Karbidischer Brennsoff	1	1177	3329	5487	7991	6953	9136	14211	12242	16075
OD-BE, Gepreste BE Oxidischer Brennstoff	ı	1	1	1	2471	2645	3968	6059	7192	7626
CO(THTR)—BE; THTR—Brennelemente	1	1	ı	,	l	1	ı	1	1671	969
GLE-BE; low enriched Brennelemente	1	ı	ı	,	1	1		,	223	583
GFB-BE; Feed-Breed Brennelemente	1	1	1	ı		1	ı		57	75
Tabelle 6: Zusammensetzung der Core-	er Core-Bear	-Bertion I doe	11 01%							

Tabelle 6: Zusammensetzung der Core-Region I des AVR-Versuchsreaktors für die Jahre 1968 bis 1977

WB: Wiederbeladung

	ERSTOORE			JAHR	ESEN	DE				
	14.2.68	1969	1970	1971	1972	1973	1974	1975	1976	1977
	WB O	WB 22	WB 45	WB 68	WB 89	WB 117	WB 136	WB 163	WB 186	WB 198
Graphi tkugeln	8419	6616	5153	3158	1054	934	284	516	631	50
Borkugeln	367	630	790	833	833	833	833	833	833	25
UCC-BE; ATJ-Graphit der Union Carbide Corp.	3529	4199	4035	4520	4469	5010	3737	347	1	1
T-BE; Tapeten Brenn- elemente	1	280	789	1060	727	579	752	101	ı	1
GK-BE; Gepreste BE Karbidischer Brennstoff	ı	588	1665	2743	3995	3477	4568	7106	6121	8038
OD-BE; Gepresse BE Oxidischer Brennstoff	ı	ı		1	1236	1322	1984	3255	3596	3813
GO(THTR)-BE; THTR-Brennelemente	ļ	1	t	•	ı	l	ı	ı	836	348
GIE-BE; low enriched Brennelemente	I I	ı	1	. 1	ŧ	ı	ı	ı	111	269
GFB-BE; Feed-Breed Brennelemente	ı	ı	1	l	ı	•	1	1	29	38

WB: Wiederbeladung Tabelle 7: Zusammensetzung der Core-Region II des AVR-Versuchsreaktors für die Jahre 1968 bis 1977

	ERSTCORE			JAHRE	RESENDE	1 D E				
	14.2.68	1969	1970	1971	1972	1973	1974	1975	1976	1977
	WB O	WB 22	WB 45	WB 68	WB 89	WB 117	WB 136	WB 163	WB 186	WB 198
Graphitkugeln	19603	15118	10842	6811	3567	961	596	404	8	
Borkugeln	ı	ı	ı	1		,	ı	,	ı	
UCC-BE; ATJ-Graphit der Union Carbide Corp.	7011	6948	6415	5287	4916	703	ı	ı	,	1
T-BE; Tapeten Brenn- elemente	ı	1467	639	150	394	1346	472		ı	•
GK-BE; Gepresse BE Karbidischer Brennstoff	1	3082	8718	14366	12960	15778	13237	6805	5194	3131
GO-BE; Gepreßte BE Oxidischer Brennstoff	ı	ı	1	1	4778	7435	8274	8299	12201	14148
CO(THTR)-BE; THTR-Brennelemente		1	ı	I	ı	1	1687	8811	7332	8182
GLE-BE; low enriched Brennelemente	1	ı	1	l	ı	612	1145	1087	651	315
GFB; Feed-Breed Brennelemente	1	ı	ı		ı	1	1425	1425	1372	1301

Tabelle 8: Zusammensetzung der Core-Region III des AVR-Versuchsreaktors für die Jahre 1968 bis 1977

WB: Wiederbeladung

	14.2.68	1969	1970	1971	1972	1973	1974	1975	1976	1977
	WB O	WB 22	WB 45	WB 68	WB 89	WB 117	WB 136	WB 163	WB 186	WB 198
Graphitkugeln	22344	17232	12358	7763	4066	1096	629	460	16	1
Borkugeln	1	ı	ı	ı	1	\$			ı	1
UCC-BE; ATJ-Graphit der Union Carbide Corp.	7992	7919	7313	6027	5603	802	ı	1		
T-BE; Tapeten Brenn- elemente	ı	1673	728	172	449	1535	537		-	•
GK-BE; Gepreste BE Karbidischer Brennstoff	ı	3512	9938	16375	14772	17985	15089	7757	5920	3569
OO-BE; Gepreßte BE Oxidischer Brennstoff	1	1		1	5446	8475	9432	9459	13908	16125
∞(THTR)-BE; THTR-Brennelemente	ı	1	ı	1	1	ı	1923	10044	8358	9326
GLE-BE; low enriched Brennelemente	ı	I	1	1		869	1305	1238	743	359
GFB-BE; Feed-Breed Brennelemente	1	ı	. 1	ı	ı	1	1625	1625	1563	1482

JAHRESENDE

ERSTOORE

Tabelle 9: Zusammensetzung der Core-Region IV des AVR-Versuchsreaktors für die Jahre 1968 bis 1977

WB: Wiederbeladung

6 BESTIMMUNG DES ABBRANDZUSTANDES DER TRITIUM-LIEFERANTEN

Das beim AVR angewendete Beschickungsprinzip des Mehrfach-Kugeldurchlaufes ist typisch für Thorium-Hochtemperaturreaktoren (THTR). Gegenüber Kugelhaufenreaktoren mit Einfach-Kugeldurchlauf (OTTO-Beschickung) ergibt sich zwangsläufig ein aufwendigeres Berechnungsverfahren, da der Abbrandzustand der in das Core zurückgeführten Kugeln in geeigneter Weise berücksichtigt werden muß. Für Rechnungen zum Tritium-Haushalt besteht die hiermit in Zusammenhang stehende Problematik darin, möglichst genaue Aussagen über Art und Menge der verschiedenen Tritium-Lieferanten in den einzelnen Kugelcoreregionen zu erhalten. Da sich während des Einsatzes im Reaktor die Anzahl der entsprechenden Tritium-Quellatome durch Neutronenreaktionen ständig verändert, müssen Art und Menge dieser Elemente zu bestimmten Stützzeiten bestimmt werden. Statistische Verfahren können hierzu nicht herangezogen werden, da der Beschickungsprozeß zu keiner Zeit sich selbst überlassen bleibt. Vielmehr wird in einem Regelkreis die Kugelzusammensetzung durch Eingriffe von außen fortlaufend überwacht und verändert. Die Meßdaten des Reaktors liefern in Verbindung mit den Betriebsrechnungen Aussagen über den Ist-Zustand, der dann Ausgangsbasis für eine entsprechende Beschickungsstrategie ist. Im Rahmen dieser Betriebsrechnungen werden auch für die verschiedenen Kugeltypen mittlere Neutronendosen berechnet, die wichtige Informationen über den bis zu dem entsprechenden Zeitpunkt erfolgten Einsatz im Reaktor beinhalten. Die Dosis ist abhängig von der Verweilzeit im Core und dem entsprechenden zeitlichen Flußverlauf, wobei dieser wiederum unter anderem eine Funktion der Absinkbahn der Kugel ist, da ein räumliches Flußprofil durchwandert wird.

Sollten Dosiswerte nicht zur Verfügung stehen, so wie dies bei Vorausrechnungen der Fall sein wird, so ist es für die Anwendung des hier vorgestellten Rechenprogramms zunächst erforderlich, diese Daten ausgehend vom Kugeldurchlaufverfahren auf der Basis des Beschickungsplanes und des räumlichen Flußverlaufes zu ermitteln. Es ist jedoch vorgesehen, daß diese Arbeit bereits in der nächsten Ausbaustufe durch das Programm selbst übernommen wird.

Grundkonzept der Rechnungen zur Tritium-Problematik im Kugelcorebereich ist somit die Ermittlung der Tritium-Produktion ausgehend von der Anzahl

der verschiedenen Tritium-liefernden Atome in der Region zu bestimmten Stützzeiten. Hierbei ergibt sich die Anzahl der Tritium-Quellatome aus der Kugelzusammensetzung und den jeweiligen Neutronendosen der verschiedenen Kugeltypen.

6.1 <u>Dateneingabe</u>

Das Programm verlangt eine sequentielle Eingabe der Daten, die dann ausgehend von der Struktur und weiteren Verwendung in Variablen doppelter Genauigkeit oder entsprechenden Feldern, die Teile eines Common-Bereiches sein können, abgespeichert werden. Das Einlesen erfolgt in der Regel an der Stelle, wo die Abarbeitung des Programms die Bereitstellung der Daten verlangt. Im folgenden wurden der Obersicht halber entgegen der sich hieraus ergebenden Eingabefolge die in den Tabellen 10 bis 16 gezeigten Daten gemäß der aufgeführten Einteilung zusammengestellt:

- kugelbezogene Daten
- Corezusammensetzung
- zeitbezogene Daten
- Neutronendosis, Neutronenfluß

Die Wiederbeladungszahl stellt hierbei - wie bereits beschrieben - einen modifizierten Zeitmaßstab dar. Es gibt:

Wiederbeladungszahl	Datum
0	14.02.68
22	31.12.69
45	31.12.70
68	31.12.71
89	31.12.72
117	31.12.73
136	31.12.74
163	31.12.75
186	31.12.76
198	31.12.77

9	000000000000000000000000000000000000000	gel m] e [g]
2	0.408 0.000 0.050 0.050 0.050 0.050 0.050	Kugeltyp - Nr. Bezeichnung der Kugel Masse der Kugel [g] Anteil Lithium [ppm] Anteil Bor [ppm] Anteil Beryllium [ppm] Wiederbeladungszahl Boreinsatz Innencore [g
7	0.500 0.500 0.500 0.500 0.500 0.500	Spalte: 2 2 3 4 7 9
3	193.600 193.600 190.700 190.700 190.700 190.700 190.700	6 00.0 00.0 00.0 00.0 00.0 00.0
2	GRAPH11 BOR JCC-BE F-BE GK-BE GO-BE GO(THTR)-BE GLF-BE GFB-BE	3, 530 01 7, 390 00 4, 370 00 3, 350-01 2, 63C-02 6, 830-04 1, 890-04 9, 250-06 1, 340-06 0, 00
-	ここうよららでもの	22 45 68 89 117 136 163 198

Tabelle 10: Zusammenstellung kugelbezogener Daten des AVR

)	,	•	•	n	?
	16838	733	7058	۰	0	٥	6	c		င
	13253	1260	8399	561	1177	, c	• 0		• •	22
	10306	1580	8070	1577	3329	• •	c	.	, c	5
	6315	1667	96.36	2121	74.	• •	•	> <	> c	;
Perion 7	2167	1667	89.48	1455	28	2471		S C	5 C	9 9
	1869	1657	10020	1159	6953	26.5	· c	> c	o c	117
	569	1667	7473	1503	9136	396.8	, c	, c	.	1 36
	1032	1667	653	202	14211	6 26 9	ď	· c	• •	163
	1261	1 567	0	0	12242	7152	1671	223) <u>}</u>	9
	9	56	0	0	16075	7626	695	538	, £	198
		,	:							
	8419	367	3529	0	0	0	0	0	0	0
	0100	000	6674	087	286	э,	5 (0	0	22
	2150	75.6	4050	600	1665	o ʻ	o ′	0 (0	45
	1554	603	0754	1063	2006	3,7,7	o (0 (۰ ۰	89
Region II	750		6010	171	2442	0621	o (o (.	2 ,
	286	0 00 0 00 0 00 0 00	1717	15.5	2464	1322	o (9 0	0 (711
	516	£33	347	101	7106	3255	>	> c	> 0	691
	631	833	0	C	6121	3596	836	?=	> g	98.
	20	25	c	0	8038	3813	348	569	38	198
	19603	0	7011	0	0	o	0	•	0	0
	15118	a	6948	1467	3082	O	0	•	•	22
	24801	ه د ا	6415	633	8718	0	0	0	0	4.
	1180	>	1875	150	14366	n	0	•	•	89
Region H	3567	,) (;	4516	304	12960	4778	0	0	0	68
	196	.	60.	1346	15778	7435	0	612	0	117
	96.	، د	5	412	13237	8274	1687	1145	1425	136
	+ 0 0 0	، د	, ن	0 (6805	8299	8811	1087	1425	£ 9 7
	2	.	۰ د	0 (5194	12201	1332	651	1372	7 B6
	5	,	.	0	16 16	14148	8182	315	1301	86.1
	23346	c	7007	•	•	•	•		•	•
	17232	•	70107	1472	2612	، د	3 (5 (5 (9
	1235R	o c	73,3	866	2776		> c	> 0	-	77
	7763	, c.	7 204	173	14375	•	> <	> <	> <	
TT Carional	9904	ن د	5,000	644	14772	2,446	9 0	> <	> <	8 8
	1096	ာ	802	1535	17985	8475	, 0	869	• •	117
	619	J	ç	53.7	15089	9432	1923	1305	1625	136
	460	0	0	0	1757	9459	10044	1238	1625	163
	16	2	0	0	2920	1 3908	8358	743	1563	186
	э	0	0	ာ	3569	16125	5326	359	1482	198
			Spatte 19	: Kugethy	-Nr. 19 (S	chlüssel s	Spatte 19 : Kugeltyp - Nr. 19 (Schlüssel siehe Tabelle 10)	(01		
		٠,	Spalte 10	: Wiederbe	: Wiederbeladungszahl	Ŧ		•		
						:				

Tabelle 11: Zusammensetzung der Kugelcore-Regionen

Tabelle 12 : Auflistung der Stützzeiten

1	2	3	4	5
0 22 45 68 89 117 136 163	2 12 12 12 12 12 12 12 12	14 31 31 31 31 31 31 31	68 69 70 71 72 73 74 75 76	410.000 1096.000 1461.000 1826.000 2192.000 2557.000 2922.000 3287.000
198 Spalte: 1 2 3 4 5	Monat [*] Tag Jahr Zeitdiff	Datum	ı der Stütz	zzeit n angegebenen

Tabelle 13: Stillstandzeiten des Reaktors

1	2	Spalte:	
0 22 45 68 89 117 136 163 186 198	C. COO 166.CCC 61.000 79.COO 88.000 47.000 105.00C 48.000 32.COO	1 2	Wiederbeladungszahl Anzahl der Stillstands – tage des AVR jeweils zwischen 2 Stützzeiten

-	2	3	7	5	9	7	8	6	10
	00•0	00*0	00.0	00.0	3-33	00-00	00-0	90.0	,
5.330 21	5.330 21	5, 330 21	4.090 21	1.660 21	0000	0000	0000		ې د
	8 330 21	8,330 21	6.400 21	2, 600 21	00.0	00.00	00-0		77
	1.600 22	1.000 22	9.600 21	4.200 21	00.0	00.0	0000		40
390	1.390 22	1,390 22	1.190 22	6, 530 21	1. C70 21	00.0	00.0	0.0	0 0
		1.720 22	7.000 21	8.670 21	3,730 21	00.0	1. 600 20		,
1.91D 22		1.910 22	7.660 21	1.360 22	4.730 21	00.0	2, 130 21	3.700 20	777
2° 2CD 22		2,200 22	8.730 21	1.330 22	6.130 21	00 0	5, 380, 21	3,750 21	150
22 085.2	2.480 22	00.00	0.00	1.600 22	5.750 21	5.590 21		6.940 21	186
2, 76D 22	160	00°0	00.00	1, 780 22	5.670 21	7.230 21	1.030 22	8.770 21	198
	Spalte 19 : Spalte 10 :	Spalte 1…9 : Mittlere Neutro Spalte 10 : Wiederbeladur	nendosen (0 <e)="" 1…9="" <="" avr<br="" den="" des="" die="" für="" kugeltypen="" stützzeiten="" zu="" 👁="">ngszahl</e>	: < 👁) zu den	Stützzeiten für	die Kugeltype	n 1…9 des AV	œ	

Tabelle 14 : Auflistung der Neutronendosen der verschiedenen Kugeltypen als Funktion der Wiederbeladungszahl

Tabelle 15: Mittlere Flüsse im AVR - Core als Funktion der Wiederbeladungszahl

1	2		3	
0 22 45 68 89 117 136 463	9.6CD 8.20D 7.53D 7.03D 6.48D 6.21D 5.68D 5.59D	13 13 13 13 13 12 13	6.00D 6.00D 5.60D 5.51D 5.43D 5.28D 5.33D 5.26D 5.26D	13 13 13 13 13 13 13
Spalte:	5.4.1D	13	5•26D	13
1	Wiederbeladu	naszahl		
2	Mittlerer Fluß bezogen auf d	langsame		
3	Mittlerer Fluß bezogen auf d			-

Tabelle 16: Mittlere Neutronenflüsse der Regionen auf der Basis Wiederbeladung 193

1	2		3	
1	5. 78D		4,620	
2	7.66D			
3	4.58D		4.610	
4	5.1CD		5. 10D	
5	6.95D	_	1.250	= :
6	2. 14D			
7	4.11D			
8	8.46D	11	8 ₀ 29 D	11
Spalte:				
1	Nummer de	r Regi	on	
2	Mittlerer Flu bezogen au		gsamer Neut Region (E≤	
3	Mittlerer Flu bezogen au			

6.2 Einlagerungszeitpunkt der verschiedenen Kugeltypen

Der Ablauf der Rechnungen zur Ermittlung der Anzahl vorhandener Tritium-Quellatome in den einzelnen Kugelcoreregionen läßt sich wie folgt aufteilen:

- Bestimmung eines fiktiven Einlagerungsdatums, das sich auf die jeweilige Stützzeit bezieht und für alle Kugeln des betreffenden Typs gilt.
- Berechnung der Quellatomzahlen zu den Stützzeiten aus der Kugelzusammensetzung der Region, wobei der Abbrand der Kugeln bezüglich TritiumLieferanten ausgehend vom Einlagerungsdatum in geeigneter Weise berücksichtigt wird.

Da es nicht möglich ist, Messungen an Kugeln unmittelbar im Core durchzuführen, müssen quantitative Aussagen über die empfangene Neutronenstrahlung
der Kugeln auf theoretischer Basis gewonnen werden. Hierzu ist es wichtig,
die Vorgeschichte jeder Kugel zu kennen, da bedingt durch den MehrfachKugeldurchlauf die Möglichkeit besteht, daß das Core wiederholt auf verschiedenen Bahnkurven durchwandert wird, wodurch im Extremfall jede Kugel einen
anderen Abbrandzustand aufweisen kann. Folgende Reaktordaten stehen für
die rechnerische Erfassung des Abbrand-Umwälzprozesses zur Verfügung:

- Zusammensetzung des Erstcores
- Anzahl der von Betriebsbeginn an entnommenen Kugeln und Aufschlüsselung nach Kugeltyp und Abbrandzustand
- Anzahl der dem Core frisch zugeführten bzw. rückgeführten Kugeln als Funktion des Abbrandzustandes und der Zugaberadien
- Leistungszustand des Reaktors

Im Rahmen der Betriebsrechnungen wird aus diesen Daten für jeden Kugeltyp neben anderen Abbrandkennwerten die Neutronendosis für einen Eingruppenfluß als repräsentativer auf die Kugelanzahl des betreffenden Typs bezogener Mittelwert bestimmt. Zu jeder Stützzeit stehen somit für die verschiedenen Kugeltypen Dosiswerte zur Verfügung. Tabelle 14 zeigt die entsprechende Auflistung für den AVR.

Weil die Ermittlung der Anzahl vorhandener Tritium-Quellatome in den Kugelcoreregionen jeweils zu den Stützzeiten erfolgt und dadurch der Istzustand des Reaktors bezüglich Tritium-Lieferanten festgestellt und in die Rechnungen einbezogen wird, sind diese Zeitpunkte sehr wichtig. Die Genauigkeit hängt demnach in starkem Maße davon ab, wie dicht das Netz der Stützzeiten gelegt werden kann.

Abbildung 14 zeigt den Programmablauf zur Ermittlung des Einlagerungsdatums, der im folgenden erläutert wird. Der Einfachheit und Übersichtlichkeit wegen wurde bei allen Ablaufplänen auf Feldindizierungen, genauen Angaben zu DO-Schleifen, Umspeicherungen etc. verzichtet, sofern diese nicht unbedingt zum Verständnis erforderlich sind.

Geht man von einem Kugeltyp und einer Stützzeit aus, so wird zunächst unter Berücksichtigung der Reaktorstillstandszeiten (Tabelle 13) die Bestrahlungsdauer der Kugeln zwischen der vorangegangenen und der jeweils betrachteten Stützzeit ermittelt (Variable TAG). Hieraus ergibt sich in Verbindung mit dem auf das Gesamtcore bezogenen Eingruppenfluß die empfangene Neutronendosis des Kugeltyps für den betrachteten Zeitraum (Variable Dosis). Subtrahiert man diesen Wert von der betreffenden, in Tabelle 14 aufgelisteten Neutronendosis (Variable DOS1), die den Bestrahlungszustand der Kugeln des betrachteten Types zum Stützzeitpunkt widerspiegelt, so zeigt sich, ob das Einlagerungsdatum in den Zeitraum zwischen den beiden betrachteten Zeitpunkten fällt. Ergibt sich eine Differenz kleiner Null, so ist dies der Fall, und es können Bestrahlungsdauer (Variable TAG1), der relative Einlagerungstag (Variable RETA1) sowie das entsprechende Datum (Variablen IMON1, ITAG1, IJAHR1) bestimmt werden. Ist die Differenz größer Null, so wird das beschriebene Verfahren in einer Schleife so oft ausgehend von dem sich jeweils neu ergebenden Dosiswert (Variable DOS2) wiederholt, bis die Differenz schlieβlich kleiner Null wird und damit das Zeitintervall der Stützzeiten gefunden ist, in die das Einlagerungsdatum fällt. Tabelle 17 zeigt im oberen Teil eine Auflistung der errechneten relativen Einlagerungstage; im unteren Teil ist das zugehörige Datum aufgeführt.

Weil die Errechnung des Einlagerungsdatums auf einen Mittelwert bezüglich der Kugelanzahl aufbaut, muß in weiteren Rechnungen so verfahren werden, als ob zu diesem Zeitpunkt alle Kugeln des betreffenden Typs eingebracht worden seien. In Wirklichkeit jedoch können neben Kugeln aus dem Erstcore auch frische Elemente vorhanden sein, so daß die einzelnen Einlagerungsdaten stark streuen. Das errechnete Datum, repräsentativ für alle Kugeln eines Typs, stellt somit einen Fiktiv-Wert dar.

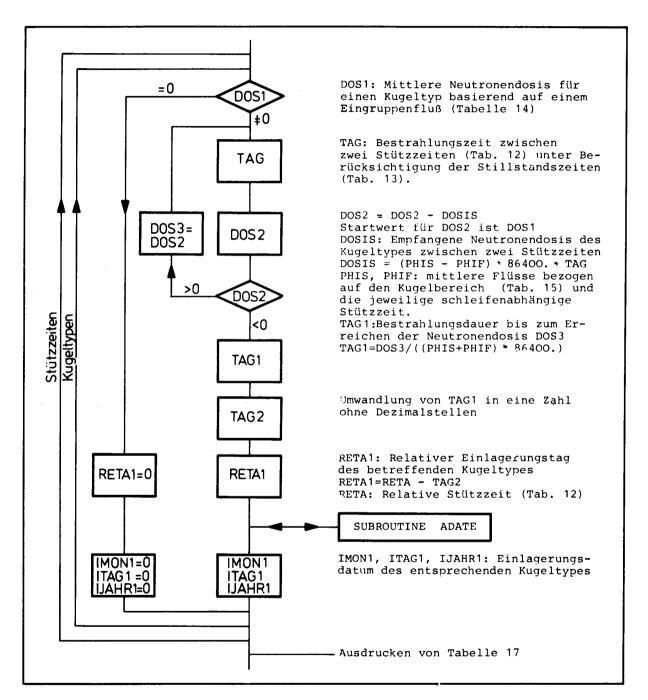


Abb. 14: Ablaufdiagramm für den Programmbereich, in dem der Einlagerungszeitpunkt ermittelt wird

			
5	22 45 68 68 117 1136 1186	22 68 68 110 100 110 110 110 110 110 110 110 11	
6	0.000 0.000 0.000 0.000 0.000 2865.000 2847.000 2841.000	0 0 0 0 0 0 0 0 0 0 0 0 111 24 74 110 11 74 10 11 74	ungsdatum
8	0.000 0.000 0.000 0.000 2542.000 2709.000 2683.000 2695.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	stag der Kugeltypen 1…9 des AVR, bezogen auf den 1.1.1967; bzw. Einlagerungsdatum Il
7	0.000 0.000 0.000 0.000 0.000 0.000 0.000 3027.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	auf den 1.1.1967
9	0.000 0.000 0.000 2093.000 2146.000 2504.000 3010.000	0 0 0 0 0 0 0 0 0 11 15 72 6 4 73 11 8 73 12 9 75 10 27 75	s AVR, bezogen
5	973.000 1243.000 1379,000 1435.000 1668.000 1699.000 1734.000	8 30 65 5 27 70 10 10 70 12 5 70 5 28 71 7 26 71 8 26 71 9 30 71 10 11 71 Monat	ltypen 19 des
7	793.000 891.000 892.000 941.000 1758.000 2022.000 2248.000	3 3 69 6 9 69 6 10 69 7 14 72 2 25 73 0 0 0 0	gstag der Kuge hl
3	701.000 747.000 863.000 793.000 790.000 844.000 0.000 0.000	12 1 68 1 16 69 5 12 69 3 3 69 2 28 69 4 23 69 6 28 69 0 0 0	Relativer Einlagerung: Wiederbeladungszah
2	701.000 747.000 863.000 793.000 844.000 849.000 875.000	12 1 68 1 16 69 5 12 69 5 28 69 6 28 69 6 28 69 6 28 69 6 28 69 7 28 69	1···9 :
-	761, 000 747, 000 865, 000 793, CCC 790, 000 844, 000 875, 000 815, 000	16. 168 11669 11669 3.369 2369 4.2369 4.2869 4.2869 4.2869	Spalte Spalte

Tabelle 17: Liste des relativen Einlagerungstages und des entsprechenden Datums als Funktion der Kugeltypen und der Wiederbeladungszahl

Leider stehen nur Dosiswerte für Brennelemente zur Verfügung. Aus diesem Grunde wurden für Bor- und Graphitkugeln (Kugeltyp 1 und 2) die Werte des UCC-Brennelementes (Kugeltyp 3) übernommen (Tabelle 14). Dies ist gewiß in erster Näherung für Graphitkugeln richtig, da diese in ähnlicher Weise wie die UCC-Brennelemente von Betriebsbeginn an im Reaktor waren, über alle Corebereiche verteilt sind und der Neueinsatz sich in beiden Fällen überwiegend auf Bruchkugeln beschränkt, was zu einem konstanten Einlagerungsdatum für die UCC-Brennelemente (Tabelle 17, Kugeltyp 3) führt. Für die Bor-Elemente (Kugeltyp 2) werden die in Tabelle 14 aufgeführten Neutronendosen allerdings zu niedrig sein, weil der Einsatz ausschließlich im Innencore bei hohen Flußwerten erfolgt. Dies hat jedoch keine Auswirkungen auf die Genauigkeit der hier vorgestellten Rechnungen, da die Anzahl der ¹⁰B-Atome direkt aus Massenangaben für Innencore und Außencore zu den jeweiligen Stützzeiten bestimmt wird (Tabelle 10).

Für die Beurteilung der Güte des Rechenverfahrens zur Ermittlung des fiktiven Einlagerungsdatums sei darauf hingewiesen, daß der Zeitraum, über den zurückgerechnet werden muß, in der Regel mit steigender Wiederbeladungszahl größer wird und bei WB 198 ca. 10 Jahre beträgt. Betrachtet man unter diesem Gesichtspunkt die berechneten Einlagerungsdaten beispielsweise der UCC-Brennelemente (Tabelle 17, Kugeltyp 3), so zeigt sich eine erstaunlich geringe Schwankungsbreite, die zudem meist noch auf die Bestrahlung sowie auf Kugelzugabe und Kugelentnahme zurückgeführt werden kann.

Eine Abnahme der Neutronendosis, wie dies zum Beispiel für das Tapeten-Brennelement von WB 89 nach WB 117 (Tabelle 14, Kugeltyp 4) zu beobachten ist, deutet darauf hin, daß in diesem Zeitraum eine große Anzahl frischer Kugeln dieses Typs zugegeben wurden. Tabelle 11 bestätigt die Vermutung. Zwar wurden Tapeten-Brennelemente dem Innencore (Regionen I und II) entnommen, jedoch ist die Anzahl der in die Regionen III und IV zugeführten Kugeln erheblich höher. Die auf die gesamte Kugelanzahl bezogene Neutronendosis nimmt ab, so daß auch die hieraus errechnete mittlere Verweilzeit der Kugeln im Core abnimmt. Man erkennt dies, wenn man das Einlagerungsdatum der Kugeln für die WB 89 bzw. 117 mit der zugehörigen in Tabelle 12 aufgelisteten relativen Stützzeit vergleicht. So ergibt sich für den hier betrachteten Kugeltyp 4 bei WB 89 eine Verweilzeit im Core von 1251 Tagen (2192 – 941) Tage) und bei WB 117 von 799 Tagen ((2557 – 1758) Tage); das Einlagerungsdatum der Kugeln rückt also weiter an die Stützzeit heran.

6.3 <u>Quell-Atomzahl</u> der Tritium-Lieferanten für den Kugelcorebereich

Auf der Basis des Einlagerungszeitpunktes in Abhängigkeit von Kugeltyp und Wiederbeladungszahl wird nun für jede Kugelcoreregion die Anzahl der verschiedenen Tritium-liefernden Atome bestimmt. Eine Ausnahme bilden hierbei die Borkugeln. Wegen der Bedeutung des Bors als Absorber wurde bereits im Rahmen der Betriebsrechnungen der Boreinsatz für das Innen- und Außencore ermittelt. Somit ergibt sich der ¹⁰B-Gehalt einer Kugelcoreregion aus einem Anteil, der aus der volumenbezogenen Aufteilung der Werte für Innen- bzw. Außencore resultiert, und einem Anteil, der aus der Bor-Verunreinigung der übrigen in der Region vorhandenen Kugeltypen unter Berücksichtigung des Abbrandes berechnet wird.

Abbildung 15 zeigt den Programmablauf zur Ermittlung der Quell-Atomzahlen der verschiedenen Tritium-Lieferanten für den Kugelcorebereich. Zunächst werden aus den mittleren auf das Gesamtcore bezogenen Zweigruppenflüssen (Tabelle 15) unter Zugrundelegung des gleichen Flußverlaufes wie bei WB 193 (Tabelle 16) mittlere Zweigruppenflüsse für die Regionen zu den verschiedenen Stützzeiten bestimmt (Variablen PHIS2, PHIF2). Die SUBROUTINE WIRK ermittelt hieraus auf der Basis der in Kapitel 3.1.2 gemachten Voraussetzungen für die verschiedenen Tritium-Lieferanten Reaktionsraten (Variable SA1), die in den Tabellen 18a und 18b aufgelistet sind. Unter Berücksichtigung der Volumenanteile (Variable REL) der Regionen I und II sowie III und IV an Innen- bzw. Außencore ergeben sich aus entsprechenden Massenangaben ¹⁰B-Atomzahlen der Kugelcoreregionen bezüglich der Borkugeln (Variablen ATSB10, ATFB10). Bereits an dieser Stelle des Programms ist es möglich. sämtliche ¹²C-Atomzahlen der verschiedenen Kugelcoreregionen zu errechnen, da dieses Element in einer praktisch unerschöpfbaren Menge im Reaktor vorkommt, so daß auf Abbrandrechnungen verzichtet werden kann. Für eine bestimmte Region und Stützzeit ergeben sich die ¹²C-Atomzahlen somit aus der Kugelzusammensetzung in Verbindung mit Massenangaben der verschiedenen Kugeltypen. Die Aufsummierung erfolgt in einer entsprechenden Schleife.

Der weitere Programmablauf wird am Beispiel des 6 Li erläutert, das damit – nicht zuletzt wegen der großen Bedeutung als Tritium-Lieferant – stell-vertretend für die übrigen Elemente steht. Aus diesem Grunde sind auch die angeschriebenen Programmauszüge auf 6 Li beschränkt und können in der

Regel nicht ohne weiteres auf die Allgemeinheit übertragen werden.

Zunächst erfolgt die Bestimmung der Atomzahlen der verschiedenen Tritium-Lieferanten für das Erstcore. Dabei wird berücksichtigt, daß bereits Werte für 10 B aus Borkugeln vorliegen. Für eine bestimmte Region gilt:

ATOLI6 =
$$\sum_{I}$$
 AKUANZ(I) * WAS(I) * FALI6 * PLI(I) * 1.D-06

ATOLI6 Anzahl ⁶Li-Atome der verschiedenen Kugelcoreregionen für das Erstcore

AKUANZ Kugelanzahl als Funktion der Region und des Typs (Erstcore)

WAS(I) Masse der einzelnen Kugel des jeweiligen Typs

FALI6 Umrechnungsfaktor Masse Li - ⁶Li-Atomzahl
PLI ppm-Anteil Li der verschiedenen Kugeltypen

I Index für die verschiedenen Kugeltypen

Für die Ermittlung der Tritium-Quellatomzahlen zu den übrigen Stützzeiten ist es erforderlich, ausgehend vom Einlagerungsdatum der Kugeln, den Abbrand bis zur jeweiligen Stützzeit in geeigneter Weise zu berücksichtigen. Wegen des geringen rechentechnischen Aufwandes wurden bei der Bestimmung der Bestrahlungszeiten für die verschiedenen Kugeltypen und Stützzeiten im Rahmen der Berechnung des Einlagerungszeitpunktes die Werte jeweils überschrieben, so daß diese für die Abbrandrechnungen neu bestimmt werden müssen. Da die einzelnen Bestrahlungszeiten im allgemeinen nicht relevant sind, erfolgt auch hier keine vollständige Abspeicherung; vielmehr besteht die Möglichkeit, durch Setzen einer entsprechenden Flagge diese Werte jeweils vor dem Überschreiben ausdrucken zu lassen (Tabelle 19, Spalte 5).

Zunächst wird die Stützzeit mit dem entsprechenden Einlagerungstag des Kugeltyps – also beide zur selben Wiederbeladungszahl gehörend – verglichen. Da das Einlagerungsdatum (Variable RETA1) jedoch im allgemeinen zu einem weit früheren Zeitpunkt liegt, wird in einer Schleife mit der nächst früheren Stützzeit (Variable RETA(I)) in gleicher Weise verfahren. Solange RETA(I) > RETA1, ist der Einlagerungstag noch nicht erreicht, und es wird unter Berücksichtigung der Reaktorstillstandszeit die Bestrahlungszeit (Variable TAGE) für dieses Zeitintervall errechnet und in einem Feld abgespeichert. Wird beim Durchlaufen der Schleife schließlich RETA(I) < RETA1, so ist das Zeitintervall der Stützzeiten gefunden, in dem der Einlagerungszeitpunkt

liegt. Die Bestrahlungszeit wird auch hier errechnet und als letzter Wert des Feldes abgespeichert. Da die Abbrandrechnung vom Einlagerungszeitpunkt ausgeht, ist es erforderlich, die Reihenfolge der Feldelemente umzukehren (Variable ATAGE).

Für jeden Kugeltyp wird nun zunächst die Anzahl der verschiedenen Tritium-Quellatome zum Einlagerungszeitpunkt errechnet. Hierbei verfährt man - wie bereits beschrieben - so, als ob alle Kugeln des betreffenden Typs zu diesem fiktiven Zeitpunkt eingebracht würden. Eine Aufsummierung von Atomzahlen gleicher Tritium-Lieferanten aus verschiedenen Kugeltypen innerhalb der Region, wie dies für das Erstcore möglich war, kann an dieser Stelle des Programms noch nicht erfolgen, weil in der Regel zu jedem Kugeltyp ein anderes Einlagerungsdatum gehört. Somit sind beide Rechenalgorithmen formal gleich, wenn man von der Summenbildung über die verschiedenen Kugeltypen bei der Berechnung der Atomzahlen für das Erstcore absieht. Für einen bestimmten Kugeltyp in einer Region gilt demnach zum Einlagerungszeitpunkt (unbestrahlter Zustand):

ALI6 = AKUANZ * WAS * FALI6 * PLI * 1.D-06

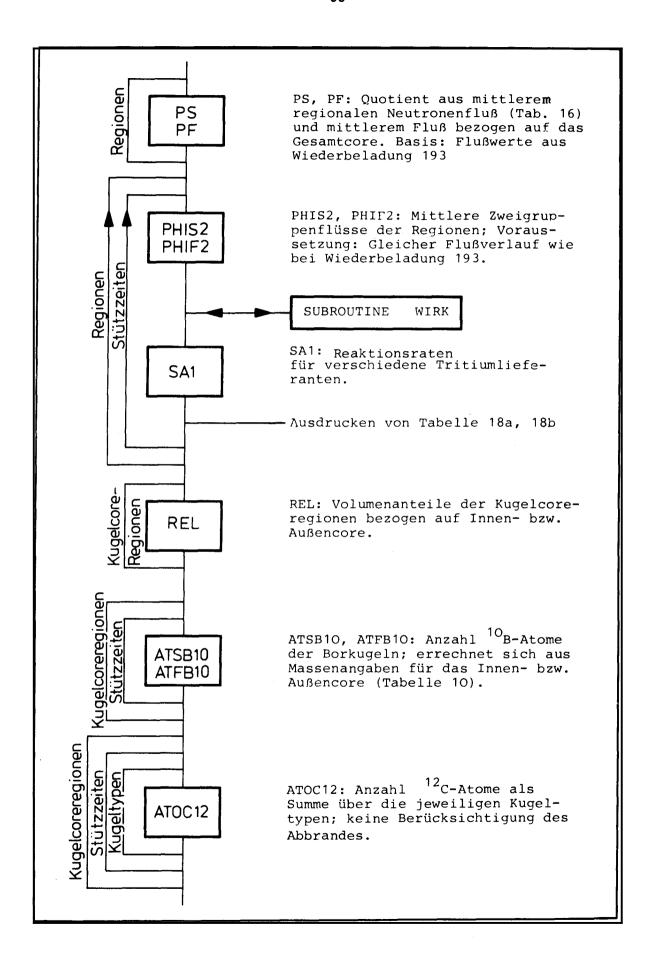
ALI6 Anzahl ⁶Li-Atome eines bestimmten Kugeltyps in einer Region zum Einlagerungszeitpunkt

AKUANZ Kugelanzahl als Funktion der Region, des Typs und der jeweiligen Stützzeit

WAS Masse der einzelnen Kugel des betreffenden Typs

FALI6 Umrechnungsfaktor Masse Li - ⁶Li-Atomzahl
PLI ppm-Anteil Li des betrachteten Kugeltyps

In einer Schleife wird nun der Abbrand bis hin zur Stützzeit berechnet, so daß die Anzahl der Schleifen der Anzahl der Feldelemente für die Bestrahlungszeit entspricht.


$$ALI6 = ALI6 * DEXP(-S(1)*T) + S(2) * ABE9 * G(T,S,2) + + S(2) * S(3) * AC12 * H(T,S,2)$$

ALI6 * DEXP (-S(1) * T) : Abbrand des 6 Li; 6 Li(n, $_\alpha$)T S(2) * ABE9 * G(T,S,2) : Anzahl 6 Li Atome aus der Reaktion 9 Be(n, $_\alpha$) 6 Li S(2) * S(3) * AC12 * H(T,S,2) : Anzahl 6 Li Atome aus der Reaktion 12 C(n, $_\alpha$) 9 Be(n, $_\alpha$) 6 Li

- ALI6 Anzahl 6 Li-Atome des bestimmten Kugeltyps in einer Region vor bzw. nach erfolgter Bestrahlung
- S(1) Reaktionsrate des Li in Abhängigkeit der Stützzeit und der Region (Tabelle 18 a)
- S(2) Reaktionsrate des Be, sonst wie S(1)
- S(3) Reaktionsrate des ^{12}C , sonst wie S(1)
- T Bestrahlungszeit ATAGE umgerechnet von Tagen in Sekunden
- ABE9 Anzahl ⁹Be-Atome des Kugeltyps in einer Region zum jeweiligen Zeitpunkt
- AC12 Anzahl ¹²C-Atome, sonst wie ABE9
- G(T,S,2) FUNCTION zur Lösung des Differentialgleichungssystems für den Fall, daß die Input-Rate nicht konstant ist; weitere Erläuterungen siehe Kapitel 3.3.2
- H(T,S,2) FUNCTION zur Lösung des Differentialgleichungssystems für den Fall, daß die Input-Rate konstant ist; weitere Erläuterungen siehe Kapitel 3.3.2

Tabelle 19 zeigt als Ausschnitt die so berechneten ⁶Li-, ⁷Li-, ⁹Be-, ¹⁰Be- Atomzahlen (Spalte 6 ... 9) für die in Region I (Spalte 4) vorkommenden Kugeltypen (Spalte 2). In den Spalten 10 ... 13 sind die entsprechenden ppm- Anteile aufgeführt. Somit kann ausgehend vom Einlagerungszeitpunkt des betreffenden Kugeltyps die Entwicklung der Atomzahlen der verschiedenen Tritium-Lieferanten bis hin zu der hier gültigen Stüzzeit 31.12.77 (entsprechend WB 198, Spalte 3) beobachtet werden. Spalte 1 gibt den Index der Rechenschleife an, wobei die Schleifennummer Null den unbestrahlten Zustand zum Einlagerungszeitpunkt kennzeichnet. Spalte 5 zeigt die für die betreffende Rechenschleife gültige Bestrahlungszeit der Kugeln zwischen zwei Stützzeiten. Weil der vollständige Output, zu dem der hier vorgestellte Ausschnitt gehört, sehr umfangreich ist und im allgemeinen nicht bei jedem Programmlauf benötigt wird, besteht die Möglichkeit, durch Setzen einer Flagge das Ausdrucken zu unterdrücken.

Entsprechend der Kugelzusammensetzung der verschiedenen Regionen erfolgt im nächsten Programmschritt die Aufsummierung der Atomzahlen der Tritium-Lieferanten (Tabelle 20), so daß nunmehr der Ist-Zustand des Kugelcorebereiches zu den vorgegebenen Stützzeiten bekannt ist. Hieraus aufbauend kann nun unter Einbeziehung weiterer regionaler Stützzeit – abhängiger Daten nach den bereits beschriebenen Algorithmen die Tritium-Produktion und -Verteilung aufgeschlüsselt nach Zeit, Region und Verursacher bestimmt werden.

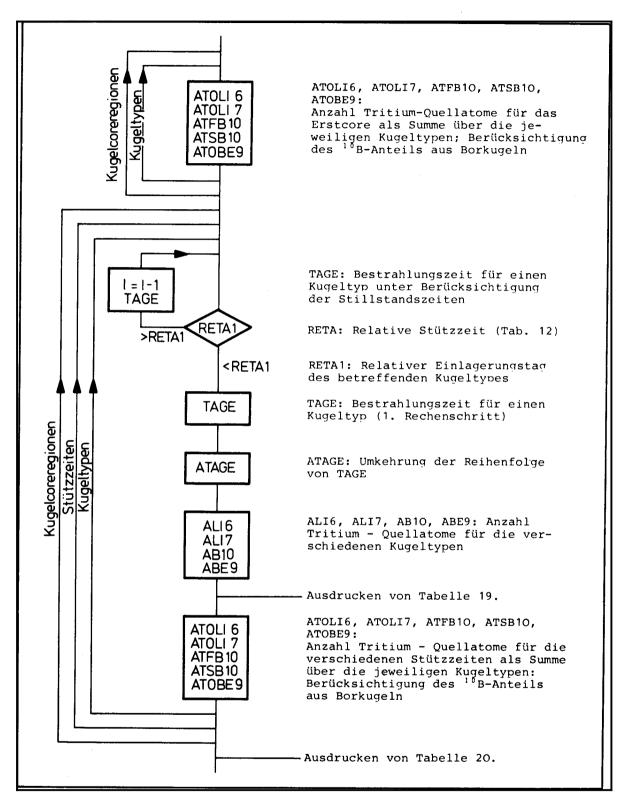


Abb. 15: Ablaufdiagramm für den Programmbereich, in dem die Quell-Atomzahlen der verschiedenen Tritiumlieferanten für den Kugelcorebereich bestimmt werden

	1	2	3	4	5	6	7
	0	4 • 1 40 - 03	3.58D-13	7.5CD-13	1.660-07	8.140-15	9.160-13
	22	4.146-08	3,980-13	7.500-13	1.666-37	8.140-15	9.160-13
	÷5	3.5-0-08	3. 720-13	7. COD-13	1.420-07	7.60D-15	8.55D-13
	68	3 -250-08	3,660-13	6.880-13	1.300-07	7. 470-15	8. 410-13
	89	3. 130-68	3.600-13	6.780-13	1.210-07	7.370-15	8-290-13
Region I	117	2.800-08	3.50D-13	6.6CD-13	1. 120-07	7.160-15	8.06D-13
•	136	2.680-08	3.540-13	6.66D-13	1.070-07	7.230-15	8. 140-13
	: 63	2.450-08	3.490-13	6.57D-13	9-800-08	7.130-15	8.030-13
	186	2:410-08	3.49D-13	6.57D-13	9.656-08	7.130-15	8.030-13
	198	2.330-08	3.490-13	6.570-13	9-34C-08	7.130-15	8.03D-13
	. 70	20111 00	36 4 70 4.0	00 370 13	763-12 00		0 60 35 13
	0	5.490-08	5-50D-13	1.C4D-12	2. 2 CD+ C 7	1. 12D-14	1.260-12
	22	5.490-08	5.500-13	1.0+0-12	2.20D-07	1.120-14	1.26D-12
	45	4.690-09	5.130-13	9.66D-13	1.880-07	1.05D-14	1.180-12
	68	4.310-68	5.05D-13	9.510-13	1.720-07	1.03D-14	1.160-12
	89	4.025-08	4.970-13	9.370-13	1.61E-07	1.020-14	1.140-12
Region II	117	3.710-08	4.84D-13	9.110-13	1.480-07	9. 89D-15	1.110-12
	136	3.550-68	4.880-13	9.2CD-13	1.420-07	9.980-15	1.120-12
	163	3.25C-08	4.82D-13	9.070-13	1.30D-07	9: 850-15	1.110-12
	186	3.200-08	4.820-13	9.070-13	1.280-07	9.850-15	1.110-12
	198	3.090-08	4.82D-13	5. C7D-13	1.24D-07	9. 85D-15	1.110-12
	170	3 4 0 70 - 0 6	11020 17	76 (15 15	10240 01	7070	11110 12
	o	3.280-08	3:970-13	7.480-13	1.310-07	8. 120-15	9.14D-13
	22	3.260-08	3.970-13	7.480-13	1.31C-07	8.12D-15	9-140-13
	45	2.800-08	3.710-13	6.58D-13	1. 12D-C7	7. 58D - 15	8.53D-13
	68	2.570-68	3.650-13	6.87D-13	1.030-07	7.460-15	8.390-13
	89	2.400-38	3.59D-13	6.770-13	9.62D-08	7.350-15	8.270-13
Region 🎹 -	117	2.225-08	3,500-13	6.580-13	8.860-08	7.150-15	8.040-13
_	136	2.120-08	3.530-13	6.64D-13	8.49D-08	7.210-15	8 - 12D-13
	163	1.940-08	3,480-13	6.560-13	7.77D-08	7- 120-15	8. 010-13
	186	1.910-08	3.48D-13	6.56D-13	7.650-08	7-120-15	8.01D-13
	198	1.850-08	3.480-15	6.560-13	7. 4CD-C3	7. 120-15	3.010-13
	1 70	14090-00	3.400 13	0.000			0.015
	o	3 660-08	4.390-13	8.270-13	1.46D-07	8.980-15	1.010-12
	22	3.669-08	+- 390-13	8.270-13	1.460-07	8.980-15	1.010-12
	45	3,120-08	4.100-13	7.720-13	1. 250-37	8. 390-15	9.440-13
	58	2.870-38	4. 040-13	7.600-13	1.150-07	8.250-15	9.280-13
	89	2.680-08	3.980-13	7.490-13	1. 070-07	8. 130-15	9.150-13
Region IV	117	2.470-08	3.87D-13	7.280-13	9.87C-U8	7.910-15	0.90D-13
•	136	2.36D-08	3.900-13	7.350-13	9.46D-C8	7.980-15	8.980-13
	163	2,160-08	3.85D-13	7.250-13	8.65D-08	7.880-15	8.860-13
	186	2.130-08	3.850-13	7.250-13	8.51D-08	7.880-15	8.860-13
	198	2.060-38	3.850-13	7.250-13	8.24D-08	7. 88D-15	8.860-13
		Spalte 1	: Wiederbeladı	ungszahl			
					i, ¹⁰ B(s), ¹⁰ B(l	12C 9D	
		Spatte 27	Keaktionsta	ten für Li, L hallar Nautmos	n; (I):Flunk), C, BE	tmnen

Tabelle 18a : Reaktionsraten der verschiedenen Tritiumlieferanten für die Regionen $I\cdots IV$

	1	2	3	4 -	5	6	7
	0	4.98D-C9	1.080-14	2.030-14	1.590-08	2.200-16	2.48D-14
	2.5	44980-69	1.08C-14	2.03D-14	1.590-08	2.200-16	2.480-14
	45	4.250-09	1.010-14	1.890-14	1.700-08	2.060-16	2.310-14
	68	3.910-09	9.89D-15	1.860-14			
					1.560-08	2, 020-16	2.280-14
legion $\mathbf X$	89	3.65D-09	9.750-15	1.840-14	1.46C-U8	1.990-16	2.24D-14
	117	3.360-09	9.48D-15	1.780-14	1.340-08	1. 940-16	2.180-14
	136	3.220-69	9.570-15	1.80D-14	1.290-08	1.960-16	2.200-14
	63	2.950-09	9.44D-15	1.780-14	1.18D-C8	1.930-16	2.170-14
	186	2.900-09	9,440-15	1.78D-14	1.160-08	1.930-16	2.170-14
	198	2.810-09	9.440-15	1.780-14	1.120-08	1.930-16	2.170-14
	0	1.53C-08	5.17D-14	9.73D-14	6.14D-C8	1. 360-15	1.190-13
	22	1.530-68	5.17D-14	9.730-14	6.140-08	1.060-15	1.190-13
	45	1.31D-08	+.82D-14	9. C90-14	5. 24D-08	9-860-16	1.110-13
	68	1,200-08	4.750-14	8.94D-14	4.810-08	9.71D-16	1.090-13
	89	1.120-08	4.68D-14	8. E1D-14	4.49D-08	9.570-16	1.080-13
egion XI	117	1:040-08	4.550-14	8.570-14	4. 14D-08	9, 300-16	1.050-13
	136	9- 920-00	4.59D-14	8.65D-14	3.97C-08	9.39D-16	1.060-13
	163	9.086-09	4.53D-14	8.530-14	3. 63D-C8	9. 27D-16	1.04D-13
	186	8.930-09	4.530-14	8.53C-14	3.570-08	9.27D-16	1.040-13
	:98	8 • 6 • D=C9	4.530-14	8.530-14	3. 46D-C8	9.270-16	1.040-13
	. 70	0.00.00	11330 17	0.730 14	36 400 00	7.270-10	1.040-13
	0	2.950-09	6.280-15	1.180-14	1.180-08	1. 280-16	1.450-14
	22	2.950-69	6.280-15	1.180-14	1.180-08	1.280-16	1.450-14
	45	2.526-09	5.860-15	1.10D-14	1.01D-C8	1. 20D-16	1.350-14
	68	2.310-09	5.770-15	1.090-14	9.240-09	1.180-16	1.330-14
egion VII	89	2.150-09	5 • 6 80 - 15	1.070-14	8.630-09	1.16D-16	1.310-14
egion: Att	117	1.990-69	5.530-15	1.040-14	7.950-09	1.130-16	1.270-14
	136	1.910-09	5.58D-15	1.C5D-14	7.620-09	1.140-16	1.280-14
	163	1.74C-09	5.510-15	1.040-14	6.970-39	1. 130-16	1.270-14
	186	1.720-09	5.510-15	1.04D-14	6.86C-09	1.130-16	1.27D-14
	198	1.666-39	5.510-15	1.040-14	6. £4D-39	1. 130-16	1.270-14
	0	6.060-10	7.140-15	1.34C-14	2.430-09	1.46D-16	1.64D-14
	22	6.060-10	7. 140-15	1.340-14	2.43D-09	1.46D-16	1.64D-14
	45	5.18C-10	6.67D-15	1.260-14	2.070-09	1.360-16	1.530-14
	68	4.760-13	6.560-15	1.24D-14	1.900-09	1.34D-16	1.510-14
	89	4.44D-10	6.46D-15	1.220-14	1.78D-C9	1. 320-16	1.49D-14
agion VIII	117	4.090-10	6.290-15	1.18D-14	1.640-09	1.320-16 1.29D-16	1.450-14
	.36	3.920-10	6.35D-15	1.190-14	1.57D-C9	1.300-16	1.46D-14
	163	3.590-10	6.26D-15	1.190-14	1.570-09	1.280-16	1.440-14
	186	3.530-10	6.26D-15	1.18D-14	1.410-09	1.280-16	1.440-14
	198	3.42C-10	6.26D-15	1.18D-14	1. 370-09	1.280-16	1.440-14
			: Wiederbelad	_			
		Spalte 2 7		en für ⁶ Li, ⁷ L hneller Neutror	i, ¹⁰ B(s), ¹⁰ B(l		

Tabelle 18 b : Reaktionsraten der verschiedenen Tritiumlieferanten für die Regionen $\underline{\mathbf{V}}\cdots\underline{\mathbf{VIII}}$

																	_																							_											•
13	00.0		751.0	7.7.0	0.53		0-807	0.960	1,125	1-234	000	0.132	3.272	0.405	0.535	689	000	1.125	1.234	0.00	0.037	0.166	0.313	0.582	0.742	0.842	0.000	0.030	0.185	0.281	9000	2.0	0.357	0.00	0.105	0.252	9.40	400	0.03	0.180	9.334	0.432									
12	0.40R				0.00		0000	0000	000	0000	000	0000	00000	0.000	000°0	000	000	0.00	00000	0.050	0.005	000.0	0000	9000	0000	00000	0.050	0.005	0000		0.00	0000	000	C. CSC	0.001	000	000.0	3000	6.005	0.000	0.000	0.000		Par Atomo	90.0	K					
=	0.463			0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.463	0.468	0.468	0.468	994	000	0.468	0.468	0.468	0.463	0.471	47.0	0.473	0.475	0.475	0.475	0.463	0.471	* · · ·	4 6	6.47	0.474	0.475	0.463	0.474	4.40	5.4.5	0.443	0.471	474.0	0.475	0.479		7	0 ' ' ' '	ì					
5	0-037	810-0		200	0.003	0.001	00.00	000	0000	000 0	0.037	0.018	010.0	0.005	2,003	100	000	0.000	0000	0.037	0, 027	410.0	9000	0, 302	100°0	0000°	0.037	0.028	*10°3	20.0	0, 320	010.0	900 0	0.037	0.020	0.011	600	7.03	3.028	0.014	2.007	\$00°C		Anzahl 61:-	Total Application						
6	00 00	6.820 19	1.410.20	2.090.20	2.770 20	3.530 23	4-180 20	4.570 20	5.820 20	6. 390 20	0°00	6.530 19	1.760 20	2.620 20	02 094 %	5. 220. 20	6.210 20	7.280 20	7.990 20	00.0	7, 680 21	3.400 22	8.910 22	1.190 23	1.520 23	1.730 23	00.0	2.920 21	77 057	22 621.2	9*420 23	2,310 21	3, 160 21	00.0	7. 200 20	1.730 21	2 460 21	00.00	5.180 19	1.720 20	3.200 20	4.130 20	Sportte		1062	2					
œ	3.450 19	3.460 18	2, 750 17	2.430 16	1.850 15	8.580 13	5.620 12	1. 600 11	60 069*?	1.370 08	00°0	0.00	0.00	0.0	36		0000	00.00	00.0	670 21	8-710 20	8.080.19	5.220 17	2.440 16	7,350 14	7-110 13	7.540 20		2. 900 19			21 066.9	1.230 17		8.570 19	6.380 17	5 95 16	7.810 18	4.37D 18	3.110 17	1.840 16	2.670 15							أمره		
_				3.460 20								3.890 20	3.890 20	3.890 20	3-840-20	3.890.23	3.890 20	3,890 20		1.230 23			1,250 23					25 Ubb 25				_	5.430 21		4.170 21	4.180 21								che Kugel					Bestrahlungsdauer zwischen 2 Stützzeiten [Tane]		
٥	2,490 19	1. 400 19	7.450 18	4.070 18	2.140 18	9.980 17	5.:00 17	2.176 17	8.640 16	4.820 16	3,120 19	1.750 19	4, 110 18	5, 080 18		6.380 17	2.71.017.5			9, 870 21			1,310 21					4. 110 21 2 050 21	1 200 21	4.273 23	2,680 20	1,340 20	8.62D 19	3, 300 20	2.090 20	1.080 20				2.060 19	1.010 19			aufindex einer Schleife (0 : frische Kugel			Ĕ		7 mischen 2		
ړ	0.0	285.	334.0	286.0	278.0	318.0	2 50.0	317.0	334.0	208.0		235.0	304	236.0	200	260.0	31.7. 2	334.0	238.0	o .	91.0	1. A. L.	260.0	317.0	334.0	20.8.0	0.0	0 445	20400	0	730.0	334. C	238.0	ပ ပ	227.0	31.6		0.0	72.0	317.0	334.0	2CB•0		einer Sch	ž	į.	Wiederbeladungszahl		nasdauer	- American	
3 4	1 +6	85	98	85	98	7 83	4.3	SH 1	1 86	98	58	1 86	I 16	1		38		1 66	1 86	48		0 7	 	33	1 86	95	- 6		7	1 -	1 95	7 66	99 1	58 1	~· ~:	95	, .	65	.1 85	1 66	85	98		aufindex	Kudeltvo - Nr		Viederbek	Region	estrable	1	
7	-	-	-	-			, 4 ,1	-		7	~	~ :	~	٠,			, .,	~	2	٠,			'n		5 1	· ·	9.	 • •			. ~	~	7	1 -20	~ ·				5	٠,		•	Spalte		~			œ.	100		
-	n	-	7	•	4	s	¢	~	J.	o	÷	-	2	n 4	, «	•	~	æ	σ,	۰.	۰ -	- ب	1	u.	J	~ .	.	→ ^	, -	o	-	۲.	m	77	- •	,	, -1	د .	-	Cų I	φ.	*	Š	. –	• • •	• •	.~•	7			

Tabelle 19 : Entwicklung der Atomzahlen der verschiedenen Tritiumlieferanten, ausgehend vom Einlagerungszeitpunkt (Ausschnitt); kann vom Programmanwender durch Setzen einer entsprechenden Flagge angefordert werden

	1	2	3	4	5	6	7
Region I	22 45 68 89 117 ; 36 163 ; 86	1.530 27 4.030 21 2.66C 21 2.00C 21 2.32C 21 1.36C 21 1.42D 21 1.28C 21 1.70C 21 1.59C 21	1.91D 23 2.030 23 2.02D 23 1.97D 23 1.93D 23 1.90D 23 1.90D 23 1.90D 23 1.90D 23 1.95D 23	1.43C 24 2.56D 23 1.75D 23 1.34D 22 1.14D 21 3.39D 19 1.25D 19 2.20D 18 5.64D 18	1.43D 24 2.96C 23 1.75D 23 1.34C 22 1.14D 21 3.39D 19 1.25D 19 2.20C 18 5.64C 18 5.11D 18	2.380 29 2.38C 29 2.39D 29 2.37D 29 2.36D 29 2.33D 29 2.33D 29 2.33D 29 2.33D 29 2.33D 29 2.32D 29 2.40D 29	0.00 6.35D 22 9.51D 22 1.14D 23 1.35D 23 1.72D 23 1.76D 23 1.79D 23 1.93D 23 2.08D 23
Region II	0 22 45 68 89 117 .36 163 186	7.64L 21 1.33D 21 8.29D 20 5.8CD 20 8.35D 20 4.C6F. 20 4.16D 20 3.47U 20 5.32D 20 4.92L 20	9.54D 22 1.010 23 1.01C 23 9.84D 22 9.65D 22 9.52D 22 9.47D 22 9.49D 22 9.50D 22 9.75D 22	7.15D 23 1.480 23 8.760 22 6.71D 21 5.59D 20 1.46D 19 4.36D 18 3.18D 17 5.560 17 4.87D 17	7.150 23 1.480 23 8.76D 22 6.71C 21 5.59D 20 1.46C 19 4.36D 18 3.18D 17 5.56D 17 4.87C 17	1.19D 29 1.19D 29 1.2D 29 1.18D 29 1.18D 29 1.16D 29 1.16D 29 1.16D 29 1.16D 29 1.2DD 29	3.00 4.38D 22 6.56D 22 7.85D 22 9.29D 22 1.19D 23 1.24D 23 1.33D 23 1.44D 23
Region III	0 22 45 68 89 117 136 163	1.650 22 6.18D 21 5.200 21 4.64F 21 4.77C 21 4.53D 21 4.51C 21 2.58D 21	2. C60 23 2.200 23 2.160 23 2.130 23 2.100 23 2.090 23 1.960 23 1.400 23	1.76D 22 2.400 20 1.21D 20 4.68D 19 2.24D 20 9.75D 19 1.64D 20 1.89D 19	1.76C 22 2.4CD 20 1.21D 20 4.68D 19 2.24D 20 9.79C 19 1.64D 20 1.89C 19	2.57 D 29 2.57D 29 2.56D 29 2.55D 29 2.55D 29 2.57D 29 2.57D 29 2.57D 29	0.00 6.460 22 8.760 22 9.790 22 1.160 23 1.150 23 1.140 23 9.610 22
Region IV	0 22 45 68 89 117 136 463 186	1.88C 22 6.34D 21 5.31D 21 4.66D 21 4.94C 21 4.56D 21 4.62D 21 2.56D 21 4.88D 21 4.87D 21	2.35C 23 2.500 23 2.46D 23 2.42D 23 2.38D 23 2.38D 23 2.23D 23 1.60D 23 2.38D 23 2.38D 23	2.C1D 22 1.88D 2C 1.C4D 2C 3.53D 19 2.3CD 20 9.67D 19 1.68D 20 1.42D 19 2.68D 19 2.27D 19	2. C1D 22 1.88C 20 1. C4D 20 3.53D 19 2.30D 20 9.67D 19 1.68C 20 1.42D 19 2.68D 19 2.27D 19	2. 93D 29 2. 93D 29 2. 92D 29 2. 91D 29 2. 91D 29 2. 93D 29 2. 93D 29 2. 93D 29 2. 93D 29 2. 93D 29	0.00 8.15D 22 1.11D 23 1.23D 23 1.46D 23 1.45D 23 1.44D 23 1.21D 23 1.64D 23 1.64D 23
		Spalte 2 7: /	Viederbeladung Anzahl Atome ¹ s): Fluß schn	⁵ Li, ⁷ Li, ¹⁰ B(s), ¹⁰ B(l), ¹² C n; (l): Fluß la	;, ⁹ Be Ingsamer Neuti	ronen

Tabelle 20 : Quell – Atomzahlen der verschiedenen Tritiumlieferanten für die Kugelcore – Regionen

7 DISKUSSION DER RECHNUNGEN

Der im Anhang vorgestellte Rechner-Output basiert auf den Daten des AVR-Reaktors, die in Kapitel 8 zusammengefaßt sind. Ein abwägender Vergleich der verschiedenen Produktionsraten zeigt, daß neben dem Spalt-Tritium vornehmlich die Neutronenreaktionen von 6 Li und 3 He dominant sind. Der Einfluß des 10 B ist relativ gering; dies kann darauf zurückgeführt werden, daß im Gegensatz zu anderen Reaktortypen beim Kugelhaufenreaktor aufgrund der Beschickungsart nur eine geringe Überschußreaktivität durch Absorber kompensiert werden muß.

In Tabelle 24 sind die im Anhang gezeigten Rechenergebnisse zusammengefaßt. Vergleicht man die sich ergebenden spezifischen Aktivitäten für Kühlgas und Frischdampf mit gemessenen Werten /20/, /21/, so kann insgesamt eine zufriedenstellende Obereinstimmung festgestellt werden. Allerdings ist zu beobachten, daß die errechneten Tritium-Konzentrationen in beiden Kreisläufen mit fortschreitender Betriebszeit als Folge abnehmender Produktionsraten ebenfalls abnehmen, während bei den gemessenen Werten ein Anstieg zu verzeichnen ist. Dies deutet darauf hin, daß der Freisetzungsmechanismus für Tritium aus Graphit durch das angewandte Modell noch nicht mit zufriedenstellender Genauigkeit beschrieben wird. So ist mit der Annahme einer 10 %igen Freisetzung des jeweils neu gebildeten Tritiums eine Akkumulation im Graphit verbunden. Wenn aber Tritium über Diffusion nach außen gelangen kann, wie dies aus Messungen /17/ hervorgeht, so ist nach dem 1. Fickschen Gesetz die abfließende Tritium-Menge umso höher, je größer die Konzentration ist. Außerdem haben die zitierten Versuche, die allerdings noch nicht abgeschlossen sind, ergeben, daß die Tritium-Freisetzung aus dem Graphit einen komplexen Vorgang darstellt. So zeigte sich, daß die Aktivierungsenergie des ⁶Li um den Faktor 7 über der von Proben liegt, die aus dem Gasraum mit Tritium beladen wurden. Eine mögliche Erklärung hierzu ist, daß bei der Tritium-Beladung vornehmlich Oberflächenplätze belegt werden. Das Sorptionsgleichgewicht des Tritiums aus dem Kühlgas mit der Graphitoberfläche (Austausch und Korrosion) wird durch die Anwesenheit von Wasserstoff, Sauerstoff und Wasserdampf merklich beeinflußt. So führen Wasserstoff und aufgrund der Wassergasreaktion auch Wasserdampf durch Verdrängungswirkung zu einem Anstieg des Tritium-Pegels im Gasraum; bei Anwesenheit von Sauerstoff werden Adsoprtions- und Desorptionsvorgänge beschleunigt. Sobald gesicherte experimentelle Ergebnisse vorliegen, sollten diese in die Rechnungen übernommen werden.

Es ist auch denkbar, daß sich im Laufe der zehnjährigen Betriebszeit die Oxidhaut ständig verändert hat. Gründe hierfür sind neben unterschiedlichen Bedingungen im Gasraum aufgrund von Abschaltungen, Störfällen und Experimenten eine mögliche Verringerung der Barrierewirkung der Oxidhaut, bedingt durch mangelnde Stabilität gegenüber thermischen Wechselbelastungen oder eine abnehmende Ausheilfähigkeit von Oxidhäuten aufgrund von Verarmungseffekten in der Legierungsmatrix. Demgegenüber werden in den Rechnungen die permeationsbestimmenden Faktoren als zeitlich konstant vorausgesetzt. In diesem Zusammenhang wäre eine Studie interessant, die auf der Basis der gemessenen Tritium-Konzentrationen im Primär- und Sekundärsystem unter Einbeziehung exakter zeitabhängiger Wasserstoffpegel im Kühlgas die Entwicklung des Rückhaltefaktors untersucht.

Bereits erste Rechnungen haben gezeigt, daß das System sehr sensitiv auf Schwankungen der Lithium-Konzentrationen im Graphit reagiert. Hieraus ergibt sich zwangsläufig die Notwendigkeit, diese Daten möglichst genau zu erfassen. Neben der Problematik, daß Graphitproben aus dem AVR-Erstcore meist nicht mehr zur Verfügung stehen und bei bereits bestrahlten Materialien der Ausgangswert rechnerisch ermittelt werden muß, besteht eine weitere Schwierigkeit darin, daß die Lithium-Verunreinigungen meist an bzw. bereits unterhalb der Grenze des überhaupt Nachweisbaren liegen, so daß die Meßwerte sehr stark streuen. Für A-3 Matrixgraphit der AVR-Brennelemente beispielsweise werden Lithium-Konzentrationen zwischen 0.033 ppm /34/ und 1 ppm /5/ in der Literatur angegeben.

Um den Einfluß dieser Unsicherheitsbandbreite auf das Ergebnis der Rechnungen zu untersuchen, wurde eine Parameterstudie durchgeführt. Die Tabellen 21 ... 27 zeigen die Zusammenfassung jeweils eines Programmlaufes. Nur die in den einzelnen Tabellen gesondert aufgeführten Eingabedaten wurden gegenüber den in Kapitel 8 aufgelisteten Werten geändert.

Die in den Tabellen 21 ... 32 angegebenen spezifischen Aktivitäten der Graphitkugeln beziehen sich auf das Tritium-Inventar der Kugelgesamtheit, wobei das Spalttritium unberücksichtigt bleibt. Da die Tritium-Inventare, aus-

	14.02.68	01.01.70	01.01.71	01.01.72	01.01.73	01.01.74	01.01.75	01.01.76	01.01.77
PRODUKTION									
KUGELCORE	510.6	754.4	970.7	1174.2	1405.7	1590.6	1813.9	2040.0	2186.6
REFLEKTOR	2035.5	3012.9	3707.9	4269.6	4815.9	5194.8	5605.4	5971.8	6182.6
GESAMT	2546.1	3767.3	4678.6	5443.8	6221.6	6785.4	7419.3	8011.8	8369.2
VERTEILUNG									
IN FESTEN STOFFEN	2273.7	3362.4	4176.2	4860.7	5557.0	6062.8	6632.1	7165.4	7487.6
ADSORBIERT	149.5	154.0	136.2	114.1	105.0	85.4	80.7	74.8	56.7
KÜHLGAS	0.265	0.273	0.241	0.202	0.186	0.151	0.143	0.132	0.101
LECKAGE PRIMÄRKR.	1.4	2.8	4.1	5.3	6.3	7.2	8.0	8.7	9.3
REINIGUNGSANLAGE	7.77	158.8	231.8	297.1	354.4	403.7	447.6	488.7	522.6
DAMPFKREISLAUF	0.064	990.0	0.058	0.049	0.045	0.036	0.034	0.032	0.024
ABSCHLÄMMUNG	43.5	88.9	129.8	166.4	198.5	226.1	250.7	273.8	292.8
SPEZIFISCHE WERTE KÜHLGAS [UCi/Ncm ³] 1	1.7.10-4	1.7.10-4	1.5.10-4	1.3.10-4	1 2.10-4	0 1.10-5	0 0 0 0 0 0	100	- {
. 1	2.6.10-3	2.6.10-3	2.3.10-3	2.0.10-3	1.8.10-3	1.4.10-3	1 4.10-3	1 3.10	0.3-10
GR. KUGELN µCi/g]	8.4	10.6	12.0	13.4	14.8	15.9	17.0	17.8	
REFLEKTOR[µCi/g]	10.5	15.6	19.1	22.0	24.8	26.8	28.9	30.8	31,8

Li-Konzentration für alle Kugeln: 0.033ppm ; Li-Konzentration Reflektor 0.28ppm Tabelle 21: Tritiuminventar des AVR-Reaktors [Ci]

:	14.02.68	01.01.70	01.01.71	01.01.72	01.01.73	01.01.74	01.01.75	01.01.76	31.12.76 31.12.77
PRODUKTION KUGELCORE	1284.2	1708.9	2047.6	2347.0	2687.6	2946.5	3253.6	3530.8	
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	8471.7	12339.1	15121.2	17382.2	19646.6	21230.8	22972.0	24524.9	25467.5
VERTEILUNG IN FESTEN STOFFEN	7606.8	11077.1	13574.7	15614.2	17639.5	19063.8	20629.6	22027.5	22876.0
ADSORBIERT	469.0	469.8	406.1	333.2	300.4	239.9	222.1	200.7	151.4
KÜHLGAS	0.831	0.832	0.720	0.590	0.532	0.425	0.394	0.356	0.268
LECKAGE PRIMÄRKR.	4.5	8.9	12.9	16.3	19.2	21.7	23.9	25.9	27.5
REINIGUNGSANLAGE	250.4	501.6	722.2	915.2	1081.1	1221.0	1343.4	1455.2	1546.1
DAMPFKREISLAUF	0.200	0.200	0.173	0.142	0.128	0.102	0.095	0.085	0.064
ABSCHLÄMMUNG	140.1	280.8	404.4	512.6	605.5	683.9	752.5	815.2	866.1
SPEZIFISCHE WERTE KÜHLGAS PCI/Ncm	5.2.10-4	5.2.10-4	4.5.10-4	3.7.10-4	3.3.10-4	2.7.10-4	2.5.10-4	2.2.10-4	1.7.10-4
DAMPF ["Ci/g]	8.0.10 ⁻³	8.0.10 ⁻³	6.9.10-3	5.7.10 ⁻³	5.1.10 ⁻³	4.1.10 ⁻³	3.8.10-3	3.4.10-3	2.6.10 ⁻³
GR. KUGELN [pCi/g]	45.4	56.3	63.6	70.0	76.2	80.9	85.9	89.1	92.9
REFLEKTOR [UCi/g]	37.4	55,3	68.0	78.3	88.2	95.1	102.6	109.2	113.0

Tabelle 22: Tritiuminventar des AVR-Reaktors [Ci] Li-Konzentration für alle Kugeln: 0.2ppm

	14.02.68	01.01.70	01.01.71	01.01.72	01.01.73	01.01.74	01.01.75	01.01.76	01.01.76 01.01.77
PRODUKTION							51.12.13	31.12.76	31.12.77
KUGELCORE	2210.8	2852.0	3337.4	3751.4	4222.5	4570.3	4977 9	5316 1	! !
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718 4	20004 1	5597.5
GESAMT	9398.3	13482.2	16411.0	18796.6	21181 5	22854 6		20334.1	8.87/17
VERTEILUNG						0.*.022	24696.3	26310.2	27326.3
IN FESTEN STOFFEN	8440.7	12105.9	14735.5	16878.2	19021.1	20525.3	22181.4	23634.3	24548.9
ADSORBIERT	511.8	502.0	430.0	351.0	316.6	252.8	234 2	000	
KÜHLGAS	0.907	0.890	0.762	0.622	0.561	844	2.5.62	6.602	160.3
LECKAGE PRIMERR						0.44.0	0.415	0.372	0.284
THE	0.5	4.8	14.0	17.7	20.8	23.4	25.7	27.8	29.5
REINIGONGSANLAGE	282.0	553.6	788.8	992.9	1168.1	1315.7	1445.0	1562 5	1658 2
DAMPFKREISLAUF	0.218	0.214	0.183	0.149	0.135	0 108		0.200	7.0001
ABSCHLÄMMUNG	157.8	309.9	441.7	556.1	654 3	737 0	001.0	0.089	0.068
SPEZIFISCHE WERTE						0.151	909.4	875.3	928.9
	5.7.10-4	5.6.10-4	4.8.10-4	3.9.10-4	3.5.10-4	2.8.10-4	2 6.10-4	10.00	4-6,
DAMPF[hCi/g] 8	8.7.10 ⁻³	8.6.10-3	7.3.10-3	6.0.10-3	1		4 0.10 -3	3 6 10 -3	1.8.10
GR. KUGELN[pCi/g]	89.7	110.9	125.4	1	149.7	1	200		01./.7
REFLEKTOR [LCi/q]	37.4	55 3	0 83	0			6.001	1/4.6	181.9
5	•))	0.00	78.3	88.2	95.1	102.6	109.2	113.0

Tabelle 23: Tritiuminventar des AVR-Reaktors $\begin{bmatrix} \mathsf{Cij} \end{bmatrix}$ Li-Konzentration für alle Kugeln O.4ppm

	14.02.68 31.12.69	01.01.70	01.01.71	01.01.72	01.01.73	01.01.74	01.01.75	01.01.76	01.01.77
PRODUKT I ON									
KUGELCORE	2674.1	3423.6	3982.3	4453.6	4990.2	5382.3	5840.1	6208.8	6526.7
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	9861.6	14053.8	17055.9	19498.8	21949.2	23666.6	25558.5	27202.9	28255.5
VERTEILUNG									
IN FESTEN STOFFEN	8857.6	12620.3	15315.9	17510.2	19711.9	21256.0	22957.3	24437.7	25385.3
ADSORBIERT	533.2	518.1	442.0	359.9	324.8	259.2	240.3	214.5	164.7
KÜHLGAS	0.945	0.918	0.783	0.638	0.576	0.459	0.426	0.380	0.292
LECKAGE PRIMARKR.	5.3	10.3	14.6	18.4	21.6	24.3	26.6	28.8	30.5
REINIGUNGSANLAGE	297.8	579.6	822.0	1031.8	1211.6	1363.1	1495.8	1616.2	1714.3
DAMPFKREISLAUF	0.227	0.221	0.188	0.153	0.138	0.110	0.102	0.091	0.070
ABSCHLÄMMUNG	166.6	324.5	460.3	577.9	678.6	763.5	837.9	905.3	960.3
SPEZIFISCHE WERTE KÜHLGAS ["Ci/Ncm³]	5.9 . 10 ⁻⁴	5.7 · 10 ⁻⁴	4.9 . 10-4	4.0 · 10-4	3.6 · 10 ⁻⁴	2.9 . 10 ⁻⁴	2.7 · 10 ⁻⁴	2.4 . 10 ⁻⁴	1.8 · 10 ⁻⁴
DAMPF [µCi/g]	$9.1 \cdot 10^{-3}$	$8.8 \cdot 10^{-3}$	7.5	$6.1 \cdot 10^{-3}$	$5.5 \cdot 10^{-3}$	4.4 · 10 ⁻³		$3.7 \cdot 10^{-3}$	2.8 · 10 ⁻³
GR. KUGELN [pci/g]	111.9	138.4	156.3	170.4	186.4	197.4	209.8	217.4	226.4
REFLEKTOR [uci/g]	37.4	55.3	68.0	78.3	88.2	95.1	102.6	109.2	113.0
Tabollo 24: Tritimi	Tritiminates dec AVC	Fig. 2014Jean Fri							

Tabelle 24: Tritiuminventar des AVR-Reaktors [Ci] Li-Konzentration für alle Kugeln: 0.5 ppm (entspricht dem Wert in Kapitel 8)

	14.02.68	01.01.70	31,12,71	01.01.72		01.01.74	01.01.75	01.01.76	01.01.77
PRODUKTION				21.21.16	31.12.73	31.12.74	31.12.73	31.12.76	31.12.77
KUGELCORE	3137.4	3995.1	4627.2	5155.9	5757.7	6194.3	6702.2	7101 5	7457
REFLEKTOR	7187.5	10630.2	13073 6		4		7	0.1017	7436.0
			9:000	13043.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	10324.9	14625.3	17700.8	20201.1	22716.7	24478.6	26420.6	28095.6	29184.8
VERTEILUNG									
IN FESTEN STOFFEN	9274.6	13134.6	15896.3	18142.1	20402.7	21986.7	23733.2	25241.1	26221 8
ADSORBIERT	554.6	534.1	454.0	368.8	332.9	265.7	246 3	210	0.12202
KÜHLGAS	0.983	0.947	0.805	0.654	005	127		1.617	7.691
					065.0	().4/	0.437	0.388	0.300
LECKAGE PRIMÄRKR.	5.6	10.8	15.2	19.1	22.3	25.1	27.5	29.7	31.5
REINIGUNGSANLAGE	313.5	9.509	855.3	1070.6	1255.1	1410.4	1546 6	1660 0	, 711,
DAMPFKREISLAUF	0.236	0.227	0.193	0.157	0.142	0 113		0.600	1770.3
ABSCHLÄMMUNG	175.4	339.0	479.0	500 6	20,502		601.0	0.093	0.072
SPEZIFISCHE WERTE					0.507	1.067	866.3	935.4	991.7
KUHLGAS [PCi/Ncm ³]	6.1.10-4	5.9.10-4	5.0.10-4	4.1.10-4	3.7.10-4	2.9.10-4	2,7.10-4	4-01-4	4-010
DAMPF [uci/a]	9 4.10-3	0 1.10-3	-3	7			2	- 1	01-6-1
		- 1	/./-10	6.3.10	5.7.10-3	4.5.10 ⁻³	4.2.10 ⁻³	3.7.10-3	$2.9.10^{-3}$
GR. KUGELN [µCi/g]	134.1	165.7	187.1	203.5	223.2	236.3	251.0	ĺ	270.9
REFLEKTOR HC1/9	37.4	55.3	68.0	78.3	88.2	95.1	102.6	109.2	113.0

Tabelle 25: Tritiuminventar des AVR-Reaktors [Ci] Li-Konzentration für alle Kugeln: 0.6ppm

	14.02.68	01.01.70	01.01.71	01.01.72	01.01.73		01.01.75	01.01.76	0
	31.12.69	31.12./0	31.12./1	31.12.72	31.12.73	31.12./4	31.12.75	31.12.76	31.12.77
PRODUKTION									
KUGELCORE	4064.0	5138.2	5916.9	6560.2	7292.7	7818.1	8426.5	8886.7	9314.8
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	11251.5	15768.4	18990.5	21605.4	24251.7	26102.4	28144.9	29880.8	31043.6
VERTEILUNG									
IN FESTEN STOFFEN	10108.5	14163.4	17057.1	19406.1	21784.3	23448.2	25285.1	26847.9	27894.6
ADSORBIERT	597.4	566.3	477.9	386.6	349.1	278.6	258.4	288.3	179.1
KÜHLGAS	1.059	1.004	0.847	0.685	0.619	0.494	0.458	0.405	0.316
LECKAGE PRIMÄRKR.	6.1	11.7	16.4	20.4	23.9	26.8	29.3	31.6	33.5
REINIGUNGSANLGE	345.1	657.6	921.8	1148.3	1342.1	1505.2	1648.2	1.7771	1882.4
DAMPFKREISLAUF	0.254	0.241	0.204	0.165	0.149	0.119	0.110	0.097	0.076
ABSCHLÄMMUNG	193.1	368.2	516.2	643.1	751.7	843.1	923.2	995.5	1054.5
SPEZIFISCHE WERTE									
$\text{KUHLGAS}_{[l^{1}C1/Ncm^{3}]}$ 6.6.10 ⁻⁴	6.6.10-4	6.3.10-4	5.3.10-4	4.3.10-4	3.9.10-4	3.1.10-4	2.9.10-4	2.5.10-4	2.0.10-4
DAMPF [aci/g]	1.0.10-2	9.6.10-3	8.2.10 ⁻³	6.6.10 ⁻³	6.0.10 ⁻³	4.8.10-3	4.4.10 ⁻³	3.9.10 ⁻³	3.0.10-3
GR. KUGELN $\left[\mu \cdot Ci/g\right]$	181.6	220.4	248.9	271.3	296.7	313.9	333.5	345.6	359.8
REFLEKTOR $[\mu \text{Ci/g}]$	37.4	55.3	0.89	78.3	88.2	95.1	102.2	109.2	113.0

Tabelle 26: Tritiuminventar des AVR-Reaktors $\begin{bmatrix} \text{Ci} \ \ \ \ \ \ \end{bmatrix}$ Li-Konzentration für alle Kugeln : 0.8ppm

	14.02.68	01.01.70	01.01.71	01.01.72	01.01.73	01.01.74	01.01.75	01.01.76	31.12.77
PRODUKTION									
KUGELCORE	4990.5	6281.2	7206.8	7964.6	8827.9	9442.0	10150.7	10672.1	11173.6
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	12178.0	16911.4	20280.4	23009.8	25786.9	27726.3	29869.1	31666.2	32902.4
VERTEILUNG									
IN FESTEN STOFFEN	10942.4	15192.2	18217.9	20670.1	23165.9	24909.7	26836.9	28454.7	29567.5
ADSORBIERT	640.2	598.5	501.8	404.4	365.3	291.5	270.5	237.4	187.1
KÜHLGAS	1.135	1.061	0.889	0.717	0.647	0.517	0.479	0.421	0.332
LECKAGE PRIMÄRKR.	6.7	12.6	17.6	21.8	25.4	28.5	31.1	33.5	35.5
REINIGUNGSANLAGE	376.6	709.6	988.4	1226.0	1429.0	1599.9	1749.8	1884.4	1994.6
DAMPFKREISLAUF	0.273	0.255	0.214	0.172	0.156	0.124	0.115	0.101	0.080
ABSCHLÄMMING	210.7	397.3	553.5	686.7	800.4	896.2	980.1	1055.6	1117.3
SPEZIFISCHE WERTE									
KUHLGAS[µCi/Nom ³] 7.	7.1.10-4	6.6.10-4	5.5.10-4	4.5.10-4	4.0.10-4	3.2.10-4	3.0.10-4	2.6.10-4	2.1.10-4
DAMPF[µCi/g] 1.	1.1.10 ⁻²	1.0.10 ⁻²	8.6.10-3	6.9.10 ⁻³	6.25.10 ⁻³	5.0.10 ⁻³	4.6.10-3	4.0.10-3	3.2.10-3
GR. KUGELN[µCi/g]	222.8	275.1	310.7	338.5	370.2	391.7	416.1	431.1	448.9
$\mathtt{REFLEKTOR} \Big[\mu \mathtt{Cl} / g \Big]$	37.4	55.3	68.0	78.3	88.2	95.1	102.6	109.2	113.0

Tabelle 27: Tritiuminventar des AVR-Reaktors [Ci] Li-Konzentration für alle Kugeln: 1.Oppm

gehend vom Erstcore, den gesamten Beschickungsprozeß einschließlich der Zufuhr frischer Elemente bis hin zur jeweiligen Stützzeit erfassen, müssen sich die hieraus errechneten spezifischen Werte auf Kugeln beziehen, die von Betriebsbeginn an (Erstcore) im Reaktor sind. Somit wird ein Vergleich mit gemessenen Aktivitäten von Moderatorkugeln möglich. Allerdings dürften die errechneten Werte etwas höher liegen als die gemessenen, da gegenüber den Brennelementen bei den Moderatorkugeln nur ein begrenzter Neueinsatz erfolgt. Weil aber in keinem Fall die errechneten spezifischen Aktivitäten kleiner als die gemessenen sein können, ergibt sich somit eine gesicherte obere Schranke.

Gemessene Tritiumprofile an Graphitkugeln und Brennelementen /22/ haben gezeigt, daß die Konzentrationsabnahme von der Oberfläche zum Kugelinnern und somit auch die mittlere Tritium-Konzentration für beide Kugeltypen kaum unterschiedlich sind. Dies unterstreicht, daß eine Mittelwertbildung auf der Basis aller Kugeln ohne wesentliche Genauigkeitseinbuße möglich ist. Für Graphitkugeln, die am 25.5.75 dem Core entnommen wurden, ergaben sich bei geeigneter Mittelung des Profiles Aktivitäten zwischen 180 und 200 $_{\mu}\text{Ci/g}$. Vergleicht man diese Werte mit den in Abbildung 17 dargestellten Parameter-kurven, so zeigt sich, daß unter der Voraussetzung einer Freisetzung von 10 % die Lithium-Konzentration der Kugeln 0.4 ... 0.5 ppm betragen dürfte. Die sich hierbei ergebenden spezifischen Aktivitäten für Kühlgas und Frischdampf zeigen ebenfalls eine akzeptable Obereinstimmung mit gemessenen Werten.

Legt man dagegen die in /34/ genannten Lithium-Konzentrationen von 0.033 ppm für Kugel- und 0.28 ppm für Reflektorgraphit zugrunde, so ergeben sich insgesamt zu geringe Aktivitätswerte. Die gesamte Tritiumproduktionsrate nach ca. 10-jähriger Betriebszeit des Reaktors würde dann nur 8369 Ci betragen, wodurch sowohl die spezifischen Aktivitäten für Primär- und Sekundärkreislauf als auch die Tritium-Konzentration in Reflektor- und Kugelgraphit zu niedrig sind. Die untere Kurve in Abb. 17 läßt außerdem erkennen, daß der größte Teil des Lithiums bereits Ende 1975 abgebrannt wäre und die mittlere Tritium-Konzentration der Graphitkugeln im Gegensatz zu den gemessenen Werten 20 $_{\rm L}$ Ci/g nicht überschreiten würde. Aus den genannten Erwägungen ergibt sich also mit hoher Wahrscheinlichkeit, daß die in /34/ aufgeführten Lithium-Konzentrationen zu niedrig sind.

In einer weiteren Parameterstudie wird die in Kapitel 3.2.4 beschriebene inhibierende Wirkung des Wasserstoffs auf die Tritium-Permeation numerisch

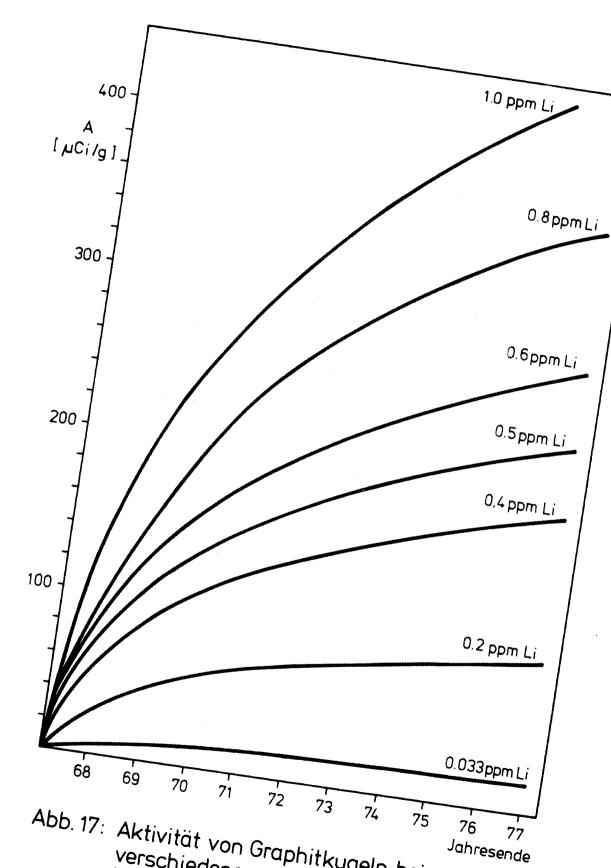


Abb. 17: Aktivität von Graphitkugeln bei verschiedenen Lithiumverunreinigungen (Einlagerungszeitpunkt: Erstcore)

untersucht. Die Rechnungen basieren dabei auf den in Kapitel 8 aufgeführten Eingabedaten. Lediglich der Rückhaltefaktor wurde zwischen 1 und 20 variiert. Dabei entspricht R = 1 dem unoxidierten und R = 20 der bereits in Tabelle 24 aufgeführten Rechnung für den oxidierten Zustand der Wärmetauscherwände. Die übrigen Parameterrechnungen sind in den Tabellen 28 ... 32 zusammengefaßt und zeigen jeweils einen Programmlauf. In Abbildung 16 ist die normierte Tritium-Obertrittsrate vom Primär- in den Sekundärkreislauf aufgetragen. Dabei wurde die Normierung so gewählt, daß die Übertrittsrate bei unoxidierten Wärmetauscherwänden jeweils 100 % beträgt. Berücksichtigt man, daß in allen hier aufgeführten Fällen bei gleichbleibendem Wasserstoffpartialdruck der Tritiumpegel im Kühlgas mit fortschreitender Zeit aufgrund sinkender Produktionsraten abnimmt, so wird der Tritiumanteil, gemessen an dem des Wasserstoffs, ebenfalls geringer; dies wiederum bedeutet eine Verstärkung des inhibierenden Einflusses. Entsprechend zeigt Abbildung 16, daß die normierte Obertrittsrate mit fortschreitender Zeit zwar ansteigt, jedoch wird hierdurch der effektive Rückhaltefaktor kleiner. So ergibt sich beispielsweise für einen in Versuchen ermittelten Rückhaltefaktor von 20 zum Jahresende 1969 ein effektiver Rückhaltefaktor von 5.6 (1/0,18), wobei dieser Wert zum Jahresende 1977 hin auf 2.7 abfällt. Im gleichen Zeitraum sinkt der Tritiumpegel im Kühlgas bei konstantem Wasserstoffanteil von 0.945 Ci auf 0.292 Ci.

Somit hat sich gezeigt, daß aufgrund des inhibierenden Einflusses der Anwesenheit von Wasserstoff auf die Tritium-Permeation die in Versuchen mit einer Komponente ermittelten Rückhaltefaktoren für den praktischen Reaktorbetrieb nicht voll zur Geltung kommen /18/. Hierbei ist der Tritium-Anteil gemessen an dem des Wasserstoffs maßgebend für die Größe des effektiven Wertes.

	14.01.68	01.01.70	01.01.71	01.01.72	01.01.73	01.01.74	01.01.75	01.01.76	01.01.77
PRODUKTION KUGELCORE	2674.1	3423.6	3982.3	4453.6	4990.2	5382.3	5840 1	000	2
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284 3	10710	0.0024	0260
GESAMT	9861.6	14053.8	17055.9	19498.8	21949 2	2 2220	01/6	•	21728.8
VERTEILUNG					• 11	0.000	23338.3	2/202.9	28255.5
IN FESTEN STOFFEN	8857.6	12620.3	15315.9	17510.2	19711.9	21256.0	22957 3	r rc77C	
ADSORBIERT	86.9	70.6	56.3	44.4	40.8	32.9	29 0	7.764437.7	ر ا ر
KÜHLGAS	0.154	0.125	0.100	0.079	0.072	0.058	: 6	7.07	8./1
LECKAGE PRIMÄRKR.		,	1					0.046	0.032
PETNICING AND ACT		7.0	2.5	2.8	3.2	3.5	3.8	4.0	4.2
THE THE COMPONING THE PARTY OF	75.1	111.7	138.0	159.3	180.0	194.9	210.7	224.5	233 7
DAMPFKREISLAUF	0.739	0.600	0.479	0.377	0.347	0.280	0 254		7.007
ABSCHLÄMMUNG	839.7	1248.6	1542.6	1781.6	2012.8	2179.0	2356.4	2510 3	0.151
SPEZIFISCHE WERTE KÜHLGAS[µCi/Ncm ³] 9	9.6.10 ⁻⁵	7.8.10 ⁻⁵	6.3.10 ⁻⁵	4.9.10 ⁻⁵ 4	5.10-5	2			2.102
DAMPF [\(\text{L} \) Ci/g] 3	3.0.10-2	2.4.10 ⁻²	1.9.10-2		.4.10-2		1.0.10 ⁻²	8 9.10	2.0.10 3
GR. KUGELN [pci/g]	111.9	138.4	156.3	170.4	186.4	197.4	209.8	:	01.0.0
REFLEKTOR $\left[ho ext{Ci/g} ight]$	37.4	55.3	68.0	78.3	88.2	95.1	102.6	109.2	113.0

Tabelle 28: Tritiuminventar des AVR-Reaktors [Ci] Rückhaltefaktor 1 (keine Oxidbelegung)

	31.12.69	31.12.70	31.12.71	31.12.72	31.12.73	31.12.74	31.12.75	31.12.76	31.12.77
PRODUKTION									·
KUGELCORE	2674.1	3423.6	3982.3	4453.6	4990.2	5382.3	5840.1	6208.8	6526.7
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	9861.6	14053.8	17055.9	19498.8	21949.2	23666.6	25558.5	27202.9	28255.5
VERTEILUNG	7 7 2 8 8	12630 3	15315 0	17510 0	10711 0	21256.0	22057 2	r rc44c	26286.3
National States of	0	50707	0.01001	7.01011		2.202.2	6.10622	1.10442	2.000.2
ADSORBIERT	107.2	85.2	9.89	53.2	49.6	39.0	36.2	31.9	21.2
KÜHLGAS	0.190	0.151	0.122	0.094	0.088	690.0	0.064	0.057	0.038
LECKAGE PRIMÉRKR.	1.6	2.4	3.0	3.5	3.9	4.2	4.6	4.9	5.1
REINIGUNGSANLAGE	89.8	135.0	167.4	193.8	219.1	237.5	256.8	273.7	285.3
DAMPFKREISLAUF	0.731	0.581	0.468	0.362	0.338	0.266	0.247	0.218	0.144
ABSCHLÄMMUNG	804.5	1210.2	1500.4	1737.8	1964.2	2129.6	2303.1	2454.5	2558.4
SPEZIFISCHE WERTE									
KUHLGAS [\(\rangle Ci/Ncm^3\)	1.2.10-4	9.4.10-5	7.6.10 ⁻⁵	5.9.10-5	5.5.10 ⁻⁵	4.3.10-5	4.0.10 ⁻⁵	3.6.10-5	2.4.10 ⁻⁵
DAMPF [µCi/g]	2.9.10 ⁻²	2.3.10-2	1.9.10 ⁻²	1.4.10-2	1.4.10-2	1.1.10-2	9.9.10-3	8.7.10 ⁻³	5.8.10-3
GR. KUGELN[µCi/g]	111.9	138.4	156.3	170.4	186.4	197.4	209.8	217.4	226.4
REFLEKTOR[µCi/g]	37.4	55.3	68.0	78.3	88.2	95.1	102.6	109.2	113.0

14.02.68 01.01.70 01.01.71 01.01.72 01.01.73 01.01.74 01.01.75 01.01.76 01.01.77

Tabelle 29: Tritiuminventar des AVR-Reaktors [Ci] Rückhaltefaktor 1.25

	14.02.68	01.01.70	01.01.71	01.01.72	01.01.73	01.01.74	31,12,75	01.01.76	01.01.77
PRODUKTION								0/.71.16	31.12.77
KUGELCORE	2674.1	3423.6	3982.3	4453.6	49 90.2	5382.3	5840.1	6208.8	6526.7
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	9861.6	14053.8	17055.9	19498.8	21949.2	23666.6	25558 5	0 0000	ı
VERTEILUNG							20000	6.20212	28255.5
IN FESTEN STOFFEN	8857.6	12620.3	15315.9	17510.2	19711.9	21256.0	22957.3	24437.7	25385 2
ADSORBIERT	140.5	108.6	88.2	67.1	63.7	48.6	46.6	41.1	27.1
KÜHLGAS	0.249	0.192	0.156	0.119	0.113	0.086	0.083	0.073	0.048
LECKAGE PRIMÄRR.	2.0	3.1	3.8	4.4	5.0	5.4	5.9	~ 4	9
REINIGUNGSANLAGE	111.9	171.7	214.0	249.0	281.6	306.1	331.0	353.0	0.0
DAMPFKREISLAUF	0.716	0.553	0.449	0.342	0.325	0.247	0.237	0.209	366.4
ABSCHLÄMMUNG	748.7	1149.5	1433.4	1667.7	1886.5	2050.2	2217 3	3364 6	2010
SPEZIFISCHE WERTE KÜHLGAS [LCi/Ncm ³]	1.6.10-4	1.2.10-4	9.8.10-5	7 4.10-5	1 1 10 5	5		_ I	2468.0
The state of the s	-2	(01:1:/	5.4.10	5.2.10	4.6.10	3.0.10
DAMPF [pC1/g]	2.9.10 -		1.8.10-2	1.4.10 ⁻²	1.3.10-2	9.9.10-3	9.5.10 ⁻³	8.4.10-3	5.5.10-3
GR. KUGELN [pCi/g]	111.9	138.4	156.3	170.4	186.4	197.4	209.8	217.4	226.4
REFLEKTOR [CI/9]	37.4	55.3	68.0	78.3	88.2	95.1	102.6	109.2	113.0

Tabelle 30: Tritiuminventar des AVR-Reaktors [Ci] Rückhaltefaktor 1.6

	14.02.68	01.01.70	01.01.71	01.01.72	01.01.73	01.01.74	01.01.75	01.01.76	0.101.77
PRODUKTION						•		-	-
KUGELCORE	2674.1	3423.6	3982.3	4453.6	4990.2	5382.3	5840.1	6208.8	6526.7
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	9861.6	14053.8	17055.9	19498.8	21949.2	23666.6	25558.5	27202.9	28255.5
VERTEILUNG									
IN FESTEN STOFFEN	8857.6	12620.3	15315.9	17510.2	19711.9	21256.0	22957.3	24437.7	25385.3
ADSORBIERT	199.0	151.4	122.3	92.3	88.5	66.1	65.2	57.5	38.4
KÜHLGAS	0.353	0.268	0.217	0.164	0.157	0.117	0.116	0.102	0.068
LECKAGE PRIMÄRKR.	2.6	4.2	5.2	6.1	7.0	7.6	8.2	8.8	9.2
REINIGUNGSANLAGE	146.5	233.4	294.6	345.3	391.3	426.9	461.8	493.1	515.7
DAMPFKREISLAUF	0. 677	0.515	0.416	0.314	0.301	0.225	0.222	0.195	0.130
ABSCHLÄMMUNG	654.8	1043.8	1317.2	1544.4	1750.0	1,909.7	2065.6	2205.6	2306.8
SPEZIFISCHE WERTE									
KUHLGAS["Ci/Ncm ³]	2.2.10-4	1.7.10-4	1.4.10-4	1.0.10-4	9.8.10-5	7.3.10-5	7.2.10-5	6.4.10-5	4.3.10-5
DAMPF $\left[_{\mathrm{H}}\mathrm{Ci}/\mathrm{g}\right]$	2.7.10 ⁻²	2.1.10-2	1.7.10 ⁻²	1.3.10 ⁻²	1.2.10-2	9.0.10 ⁻³	8.9.10 ⁻³	7.8.10 ⁻³	5.2.10 ⁻³
GR. KUGELN[µCi/g]	111.9	138.4	156.3	170.4	186.4	197.4	209.8	217.4	113.0
REFLEKTOR [LC1/g]	37.4	55.3	68.0	78.3	88.2	95.1	102.6	109.2	113.0

Tabelle 31: Tritiuminventar des AVR-Reaktors [Ci] Rückhaltefaktor 2.5

	14.02.68	01.01.70	31.12.71	01.01.72	31, 12, 73	01.01.74		01.01.76	01.01.77
PRODUKTION						10000	31.12.73	31.12.76	31.12.77
KUGELCORE	2674.1	3423.6	3982.3	4453.6	4990.2	5382.3	5840.1	6208.8	6526.7
REFLEKTOR	7187.5	10630.2	13073.6	15045.2	16959.0	18284.3	19718.4	20994.1	21728.8
GESAMT	9861.6	14053.8	17055.9	19498.8	21949.2	23666.6	25558.5	27202.9	28255 5
VERTEILUNG									• [
IN FESTEN STOFFEN	8857.6	12620.3	15315.9	17510.2	19711.9	21256.0	22957.3	7 24437 7	25385 3
ADSORBIERT	322.9	260.1	206.7	158.0	148.5	112.3	110.0	97.8	68.6
KÜHLGAS	0.572	0.461	0.366	0.280	0.263	0.199	0 195	0 173	0
LECKAGE PRIMÄRKR.	3.7	6.4	8.4	10.0	11.4	12.6	13.6	14.6	15.3
REINIGUNGSANLAGE	209.1	360.4	471.0	562.4	641.7	706.2	765.3	819.6	860.8
DAMPFKREISLAUF	0.549	0.442	0.351	0.269	0.252	0.191	0.187	0.166	0.116
ABSCHLÄMMUNG	467.2	805.7	1053.2	1257.7	1435.1	1579.3	1711.7	1832.9	1925.2
6-3.1	4	1	7-	7	•				
NCM	3.6.10	2.9.10	2.2.10	1.8.10	1.6.10 4 1,	1.2.10 4	1.2.10 ⁻⁴	1.1.10-4 7	7.6.10-5
DAMPF [Ci/g]	2.2.10 ⁻²	1.8.10-2	1.4.10 ⁻²	1.1.10-2	1.0.10 ⁻² 7.	7.6.10 ⁻³ 7	7.5.10-3	6.6.10-3 4	.6.10-3
GR. KUGELN[µCi/g]	111.9	138.4	156.3	170.4	186.4	197.4	209.8	217.4	226.4
REFLEKTOR [PCi/g]	37.4	55.3	68.0	78.3	88.2	95.1	102.6	109.2	113.0

Tabelle 32: Tritiuminventar des AVR-Reaktors [Ci] Rückhaltefaktor 5.0

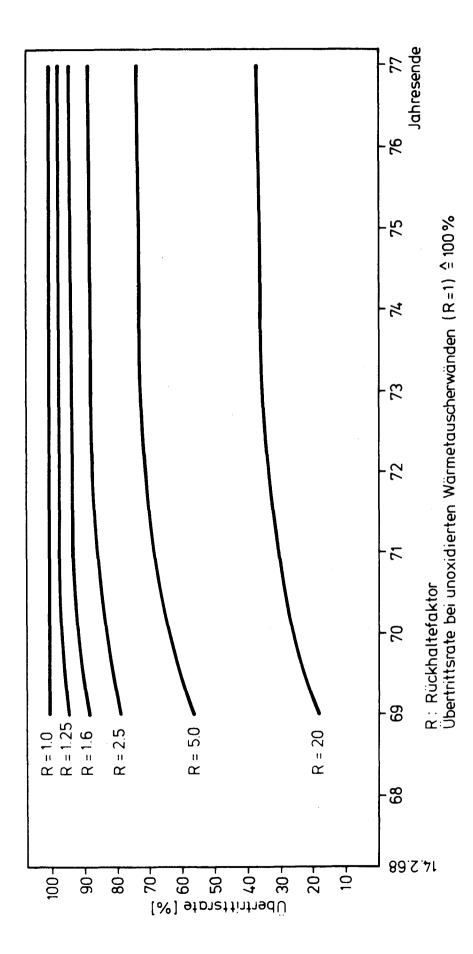


Abb. 16: Tritium – Übertrittsrate in den Sekundärkreislauf des AVR bei verschiedenen Rückhaltefaktoren

8 ZUSAMMENSTELLUNG DER VERWENDETEN DATEN DES AVR

Allgemeine Daten

Thermische Leistung	45,2	MW
He-Inhalt Primärkreislauf	1600	Nm^{3}
Druck im Primärkreislauf	10	bar
Mittlere He-Temperatur	600	oc
He-Verlustrate	1.25	Nm ³ /h
³ He-Anteil im Frisch-Helium	1.37.1	0 ⁻⁷
He-Durchsatz Reinigungsanlage	55	Nm ³ /h
Wasserstoffanteil im Kühlgas	15	vpm
Wassermasse Sekundärkreislauf	25000	kg
Wassereinspeisung Sekundärkreislauf	2000	kg/h

Kugelbezogene Daten

Masse, sowie Li-, B- und Be-Anteile

der verschiedenen Kugeltypen: Tabelle 10

Zeitbezogene Daten

Vorgegebene Stützzeiten: Tabelle 12 Stillstandszeiten des Reaktors: Tabelle 13

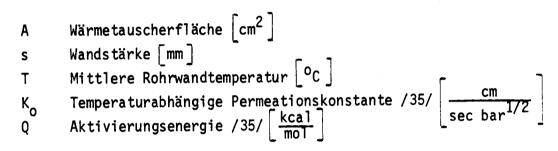
Neutronendosis, Neutronenfluß

Neutronendosen der verschiedenen

Kugeltypen in Abhängigkeit der Wieder-

beladungszahlen: Tabelle 14

Mittlere Zweigruppenflüsse als Funk-


tion der Wiederbeladungszahl: Tabelle 15

Mittlere Zweigruppenflüsse der Re-

gionen auf der Basis Wiederbeladung 193: Tabelle 16

Wärmetauscherdaten

	A	s	Т	K _o	Q
Economiser I	647	3.5	300	2.95.10-3	11.5
Economiser II	239	3.5	325	2.95·10 ⁻³	11.5
Vorverdampfer I	38.2	3.5	350	2.95.10-3	11.5
Vorverdampfer II	229	3.5	375	2.95.10-3	11.5
Nachverdampfer	286	3.5	400	2.95·10 ⁻³	11.5
Vorüberhitzer	172	3.5	420	2.95.10-3	11.5
Endüberhitzer I	42.5	4.0	485	2.95.10-3	11.5
Endüberhitzer II	26.9	4.0	555	2.95·10 ⁻³	11.5

			ж ы	REGION				
	I	II	111	IV	>	VI	VII	VIII
Graphit- bzw. Kohlesteineinsatz [kg]	4930	2465	5237	6074	90322	5048	7990	50217
Graphit- bzw. Kohlesteindichte $\left[\mathrm{g/cm}^{3} \right]$	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77
Mittlere Graphit- bzw. Kohlestein-temp. $[{}^{O}C]$	850	450	900	450	009	270	270	850
Anteil Lithium [ppm]					1.0	1.0	1.0	1.0
Anteil Bor [ppm]		Tabbele	10		0.9	6.0	6.0	6.0
Anteil Beryllium [ppm]					ı	ı	ı	ı
Freisetzungsanteil für Spalttritium	0.01	0.01	0.01	0.01	1	ı	ı	ı
Freisetzungsanteil für Tritium, das durch Neutronenreaktionen im Graphit bzw. Kohlestein entsteht	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Angaben zur Berechnung des durch Recoil gebundenen Anteils:								
Zu H/R≤1 gehörendes Volumen [cm³]	1	ı	1	1	1.62.10	5 1.25-10	1.62.105 1.25.104 6.64.104	3.81-105
Mittlere Hohlraumgröße [cm]	ı	i	ı	1	0.05	0.05	0.05	0.05
Zu H/R>1 gehörendes Volumen [cm³]	1.82.10	1.82.106 9.10.105	2.08.106 2.37.106	2.37.106	1.61-10	7 1.24-10	1.61.107 1.24.106 6.57.106	3.77.107
Mittlere Hohlraumgröße [cm]	1.0	1.0	1.0	1.0	10.0	10.0	10.0	100.0

Regionale Daten:

Zusammensetzung der Kugelcoreregionen: Tabelle 11

9 ZUSAMMENFASSUNG

Diese Arbeit befaßt sich mit der numerischen Berechnung des Tritium-Haushaltes von Hochtemperaturreaktoren und führt entsprechende Rechnungen am AVR-Reaktor durch. Da viele der benötigten physikalischen Daten ortsabhängig sind, wird das Core in Regionen aufgeteilt, wodurch eine genaue Erfassung der Werte ermöglicht und der Aufwand in vertretbaren Grenzen gehalten wird. In Anlehnung an ein ORNL-Programm, das für Hochtemperaturreaktoren mit blockförmigen Brennelementen geschrieben wurde, erfolgt separat für jede Region die Beschreibung der Produktion und Verteilung für die verschiedenen Tritium-Lieferanten durch lineare Differentialgleichungen. Die Programmbereiche, die sich mit der Bindung des aus der Gasphase durch Recoil in den Graphit gelangenden Tritium-Anteils befassen, wurden für die Belange der Kugelschüttung neu bearbeitet; neuere Ergebnisse zur Adsoprtion von Tritium an Graphit sind in den Rechenalgorithmus übernommen worden.

Eine besondere Problematik bei der Programmentwicklung stellte die wegen des Mehrfach-Kugeldurchlaufes komplexe Zeitabhängigkeit der Tritium-Lieferanten in den verschiedenen Regionen dar. Dieses Problem wurde dadurch gelöst, daß, ausgehend von bekannten Neutronendosen, fiktive Einlagerungszeitpunkte für die einzelnen Kugeltypen und hieraus in Verbindung mit der Kugelzusammensetzung derjeweiligen Region entsprechende Tritium-Vorläufer-Atomzahlen bestimmt wurden. Hieraus ergaben sich dann verursachergerecht aufgeschlüsselt die verschiedenen Tritium-Quellraten.

Parameterstudien mit verschiedenen Lithium-Gehalten der Kugeln haben gezeigt, daß das System hier sehr sensitiv reagiert. Es konnte abgeleitet werden, daß die Lithium-Verunreinigungen der Kugeln ca. 0,5 ppm betragen dürften. In der folgenden Tabelle sind die errechneten und gemessenen spezifischen Werte für diesen Fall gegenübergestellt.

Spezifische Wert	:e	Jahresm errechnet	itte 1975 gemessen
Graphitkugeln	[u Ci/g]	203	$ \begin{array}{c} 180200 \\ 10^{-4}10^{-2} \\ (47) \cdot 10^{-3} \end{array} $
Kühlgas	[u Ci/cm ³]	2.8·10 ⁻⁴	
Dampf	[u Ci/g]	4.25·10 ⁻³	

Bezieht man die gesamte Rechnung in die Betrachtungen mit ein, so zeigt sich, daß das Modell die Wirklichkeit gut beschreibt.

Am Beispiel des AVR-Reaktors wurde demonstriert, daß das entwickelte Programm ein leistungsfähiges Instrument zur quantitativen Beschreibung des Tritium-Haushaltes von Hochtemperaturreaktoren darstellt, das in weiterführenden Arbeiten Anwendung auf zukünftige Leistungssysteme finden sollte. Von besonderer Bedeutung ist hierbei, daß man nicht mehr von der pessimistischen Annahme einer vollständigen Freisetzung des im Graphit gebildeten Tritiums ausgehen muß. Somit dürfte ein Beitrag zur Entschärfung des Tritium-Problems geleistet worden sein.

10 LITERATUR

- /1/ Bundesminister für Forschung und Technologie: Über die Entwicklung des Hochtemperatur-Reaktors. 5. Juni 1978.
- /2/ BOEHNERT, R.; BONKA, H.:
 Zu erwartende Tritium-Verunreinigung durch Kernreaktoren in der Luft
 und im Wasser bei homogener Verteilung bis zum Jahr 2000.
 JÜL-763, 1971.
- /3/ SANDERS, S.M.; REINIG, W.C.:
 Assessment of Tritium in Man.
 Proceedings of the Symposium on Diagnosis and Treatment of
 Deposited Radionuclides, Richland, Washington, May 15-17, 1967.
- /4/ FISCHER, P.G.; STÖVER, D.:
 Der Tritium-Kreislauf in Hochtemperaturreaktoren.
 Interner Bericht IRE-27-73, 1973.
- /5/ FISCHER, P.G.:
 Verhalten von Tritium in Reaktorgraphiten.
 JUL-1238, September 1975.
- /6/ THIELE, W.:
 Tritium-Permeation bei einer HKV-Anlage.
 Bericht HRB, Juni 1978.
- /7/ Beiträge des Instituts für Reaktorentwicklung zum II. Seminar über Wasserstoff- und Tritium-Verhalten in Hochtemperaturreaktoren. JÜL-1497, März 1978.
- /8/ COMPERE, E.L.; FREID, S.H.; NESTOR, C.W.:
 Distribution and Release of Tritium in High Temperature Gas Cooled
 Reactors as a Function of Design Operational and Material Parameters.
 Oak Ridge National Laboratory, June 1974.
- /9/ RAY, J.W.:
 Tritium in Power Reactors.
 Reactor and Fuel; Reprocessing Technology, Vol. 12, No. 1, 1969.
- /10/ FISCHER, P.G.; STÖVER, D.; RÖHRIG, H.D.; HECKER, R.:
 Untersuchungen zum Tritium-Transportverhalten in Hochtemperaturreaktoren.
 Reaktortagung DAtF/KTG, Tagungsband Seite 420-423.
 Berlin 1974.
- /11/ RÖHRIG, H.D. et al.: Persönliche Mitteilung. KFA-IRE 1978.
- /12/ RÖHRIG, H.D.; FISCHER, P.G.; HECKER, R.:
 Tritium Balance in High-Temperature Gas-Cooled Reactors.
 The American Ceramic Society, Vol. 59, No. 7-8.
 August 1976.

- /13/ WALTER, K.H.; KIENBERGER, K.H.; LANGE, G.:
 Untersuchungen zur Rückhaltung von Tritium in HTR-Brennelementen.
 J. Nucl. Mater. 48 (1973) 287-292.
- /14/ AMIAN, W.; BIEDERMANN, P.; HECKER, R.; HERZING, R.; MAX, A.; OVERHOFF, Th.; RÜCKERT, M.; STÖVER, D.:

 Neuere Arbeitsergebnisse aus dem Vorhaben "Diffusionsdaten und Spalt-produktfreisetzung".

 JÜL-1421, Juni 1977.
- /15/ ETHERINGTON, H.:
 Nuclear Engineering Handbook, p. 2-34, 1958.
- /16/ HOINKIS, E. et al. Persönliche Mitteilung. HMI, Berlin 1978.
- /17/ MALKA, V.:

 Persönliche Mitteilung.

 KFA-IRE, 1978.
- /18/ RÖHRIG, H.D.:

 Zur Frage, wie sich eine Oxidschicht auf die Inhibierung der TritiumPermeation auswirkt.

 Technische Notiz HMT/25/1978.
- /19/ WAGEMANN, R.:
 Aufbau und Auslegung eines numerischen Simulationsverfahrens für Kugelhaufenreaktoren mit mehrfachem Kugeldurchlauf am Beispiel des AVR.
 AVR, Hauptabteilung T1, März 1974.
- /20/ MALY, V.; NIEDER, R.: Langzeitverhalten des Tritiums (Primärkreislauf) AVR, Arbeitsbericht T19.1, Dezember 1976.
- /21/ MALY, V.; NIEDER, R.: Langzeitverhalten des Tritiums (Sekundärkreislauf). AVR, Arbeitsbericht T19.2, Januar 1977.
- /22/ NIEDER, R.; NIEDERAU, A.:
 Tritium-Messungen an Graphitkugeln und Brennelementen aus dem AVRCore.
 AVR, Arbeitsbericht T15, Mai 1976.

WAGEMANN, R.; WIMMERS, M.; WAHL, D.; MALY, V.; WEBER, J.; SCHWARZ, U.: Zusammenstellung der reaktorphysikalischen Daten des AVR-Atomversuchskraftwerkes (Jahresberichte)

- /23/ für das Jahr 1969 /24/ für das Jahr 1970
- /25/ für das Jahr 1971
- /26/ für das Jahr 1972
- /27/ für das Jahr 1973
- /28/ für das Jahr 1974
- /29/ für das Jahr 1975
- /30/ für das Jahr 1976
- /31/ für das Jahr 1977

AVR, Hauptabteilung T1

- /32/ WAGEMANN, R.:
 Normierte Neutronenflüsse des AVR, aufgegliedert in 43 Energiegruppen für 8 Core-Regionen; Eingruppenflüsse für 107 Core-Zonen.
 Rechner-Output, August 1977.
- /33/ WAGEMANN, R.:
 Persönliche Mitteilung.
 KFA-IRE, 1978.
- /34/ NIEDER, R.:
 Lithium-Bestimmung im Graphit.
 AVR, Arbeitsbericht T.10 2. Teil, Januar 1974.
- /35/ THIELE, W.:
 Tritium-Permeation bei einer HKV-Anlage.
 HRB, Arbeitsbericht BF O216, Juni 1978.

11. ANHANG

RECHNER-OUTPUT

DIRING THE PERICO FRCM II 168 TO 1231 69 THE POWER LEVEL WAS 1.00 AND THE PURIFICATION PLANT EFFICIENCY WAS 1.00 IN EACH MICHANGER RITE OF 5.3502E-06 (SEC-1) AND THE ADSORPTION RATIO OF 564.2295 WERE BASED ON 15.00 PPM HZ

CUMULATIVE TRITICIM IP SCURCE -ATLMS	INVENTORY IN CUR TRITTUM PRODUCTION	CURIES AS OF PE BOUND IN SCLIDS	PERIOD END FOR N ADSORBED ON GR.SURFACE	PRODUCTIONS AND IN PRIMARY CCCLANT	D DISTRIBUTION LEAKAGE FROM PRIMARY	SINKS PUR IF*N PLANT	HZO IN STEAN GENERATOR	BLOWDOWN+LOSS STEAM GENERATOR
KINGELCCRE-PEGICN 1								
FUEL	83,196553	82,364583	0.471696	0.000836	0.004055	0.227777	0, 0002 01	0.127400
HE-3	10.435896	3. 788101	3, 156243	J. 006657	0.032543	1.828167	0.001599	1.022587
FB-10	0.313058	0.281752	96160000	910000*0	0.300249	0.014001		0.007840
01-37	0.263773	C. 237396	C- 015792	0.000328	0.000119	0.306693		0.003741
r-1	0.973565	0.876239	0.058902	0° CCC104	0.003433	0.024302	0.000025	0.013590
C2	C. 020967	0. C1887C	0.001638	0.00003	0.000005	0.000289	0.000001	0.000161
8E-9	0.012704	0.011434	0.000902	0° 000005	\$0000c0 °0	0.000232	ċ	0.000130
11-6	624.929536	562,456583	28,566812	0.050630	0.382135	21.467010		12.014195
REGION TETALS	720-146052	650.014927	32.881182	0.058276	0.419543	23.568468	0.014007	13.189649
KUGELCORF-REGICN 2								
FUEL	55.128511	54.517224	C. 312560	Q 000554	0. 002687	0.150932	_	0.084423
E-31	13,743408	3.452092	4.118160	0.007299	0.035679	2.004312		1.121114
F6-10	0.163194	C. 146674	J. CC4385	0.000308	0.000135	0.307558		0.004232
SB-10	0.138218	0.124396	0.007634	0.000014	0.00000	0.003913		0.002189
11-7	0.744254	C. 665837	0.044985	0.000080	0.000331	0.018607	0.000019	0.010405
C-12	0.024088	0.021680	0.001874	£ 000003	900000*3	0.003337		3.000188
5-18	0,014216	0.012795	666000°0	0.00000	0.000005	0.300266	0.00000	0.000149
4	538.604166	364.743750	14.461710	3, 625631	0.218539	12.276775		6.871599
REGION TOTALS	405.557066	363, 146648	18. 952306	0.033590	0, 257451	14.462699	0,308074	8.094299
KUGELCERE-REGIEN 3								
	74.223893	73.481650	0.420824	0.000746	0.003617	0.203211	0,000179	0-113665
HE-3	8.913567	3, 207637	3, 224055	0,005714	0.027933	1.569150		0.877706
F8-10	0.004850	0.004365	0.000155	0.000000	0.000004	0.000209		0.000117
07-9	0.003865	0. 003478	0.003242	0.00000	0.00000	1 6000000		0.000051
L1-7	0.186897	0.168207	0.010638	0.000019	0.000091	0.005091		0.002847
C-12	0.019071	C. C17164	0.001494	0.00003	0.000005	0.000260		0.030145
RE-9	0.011773	C.010596	3.000842	00000 T	C. 000004	0.003212		0.000118
11-6	616.867476	555.180728	29.489338	0.052265	0.362616	20,370,72		11,399495
KEGIUN TL TALS	700,231391	632.073826	33.147587	0.058748	0.394270	22-148696	0.014119	12.394145
KINGEL COPE-REGION 4								
	94.208163	93.266076	C. 534128	J. 000947	0.004591	0.257924	0.000227	0.144268
HE - 3	18,354098	5.735908	7.129730	0.012636	0.061770	3.470045		1.940973
FB-10	0.005499	0.034549	0.000169	0.00000	0.00000	0.000241		0.000135
88-10	0.004524	0.004072	0.000278	0.000300	0.000002	0.000110		0.000062
L 1-7	0.236354	C.212719	0.013455		0.000115	0.006436		0.003600
C-12	0.028799	0.025919	0 0002253		0.00007	0.000395		0.000220
SE- 9	0.017632	0. 115869	0.001257	0	0.00000	0.003320	0.000001	0.000179
9-17	735,333667	¢ 61.773301	34.472642	0.061097	0.439904	24. 112277		13.829761
								9
REGION TOTALS	848.158738	761,038814	42.153911	3.07.4711	0.536400	28.447749	0.017955	15.41918

REFLEKTOR-REGICN 5								
HE-3	18,13,815	7.508014	6- 002829	0.010639	0.052007	2.921582	3.33555	1 434100
F8-10	0.025850	0.023265	0.001323	0°C00005	6.000014	3,000799	00000	744000-0
SB-10	0.034338	C. 003905	0.000308	0.00000	0.00001	0.00074	0000	11000
1-1	0.172607	0, 155347	0.00000	A. 0000017	0.00004	0 006 717		*****
C-12	7-000047	0.00042	4000000	00000	100000	10000	*000000	0.002638
9E-9	0.000031	0.603628	0.0000			100000	0000000	000000
9-11	5647.960668	5378.666601	312 002:34	000000		1000000	0000000	000000
		***************************************	1000000	714766.0	61166007	15% 568408	0.132816	89.239064
,								
RESION TOTALS	5661.295356	5086,355201	318,017300	0.563631	2.851880	162.455586	0.135375	90.876383
KEFLEKTOR REGION 6								
111-3	6.154950	2, (79833	2, 302587	0.004081	0.019949	1,123671	0.00000	078767 0
FB-10	0.003566	0.003210	0.003148	0.00000	0.303002	C-000132	000000	0.00000
S8-10	0.001765	C. 001589	0.000120	0.00000	000000	0.00034		*******
LI-7	0.047498	0.042748	0.002702	Q. 000005	0.000023	0.001294	10000	46,000
C-12	0.00169	0.000152	0.000013	0000000	0000000	0-00000	10000	10000
8E-5	0.000109	0.000398	3,000038	0.00000	0-00000	0.00000		10000
LI-6	783.281177	734.953060	41.052050	0.072758	0.419675	23.575846	0-017480	1000000
REGION TOTALS	789.489234	707.380688	43.357628	0.076844	0.439650	24.697584	0,018462	13.817978
AEFLEKTOR-REGICN 7								
HE-3	4.832336	0.678816	2.346871	0.004159	0.020333	1.142224	0,00000	438904
FB-10	0.001567	0.001410	0.000084	0.000000	C. 303001	0.000046	0.000000	0.000026
07-80	0.000154	0.000139	0.000011	0.000000	0.000000	0.00003	00000000	0.00000
·- ''	0.08851	0.007965	0.000502	0, 000001	£.000034	0.000242	0.00000	0.000135
71-70	0.00001	0.00001	0000000	00000000	00000000	0.000000	0.00000	0.00000
1-6	100000.0	130000 0	00000000	000000	0.00000	0.000000	00000000	00000000
3	0.1104.0.000.0	6640010117	054657-11	0.030554	0.153259	8.611773	0,007338	4. 81 71 97
ATOT MOTOR	000000			,				
	100000000000000000000000000000000000000	TC0474*017	816086*61	0.034714	0-173637	9.754288	0,008337	5.456264
REFLEKTOR-REGION A								
	7.794040	A 2 B 3 F B	1 347667	900000	***************************************			
FB-10	0.013668	0.012301	0.4100764	0.00000	0.011676	0.655906	0.000574	0.366881
<b-10< td=""><td>0.000272</td><td>0.000245</td><td>0-000020</td><td>7000000</td><td>000000</td><td>086000</td><td>0000000</td><td>0.000213</td></b-10<>	0.000272	0.000245	0-000020	7000000	000000	086000	0000000	0.000213
LI-7	0.062776	0.056498	0.003560	0,00000	C-0000-3	917100	00000	500000
C-12	0.00001	C. 000001	0.00000	00000000	0000000	0000000	20000	1960000
86-9	0.00000	C. C00001	0.00000	0,00000	0000000	0000000	0000000	00000
9-17	120.477839	378.430055	23, 767446	0.042124	0.235738	11.557610	0.010116	6. 464751
REGION TOTALS	423.348597	378.908063	25.119448	0.044523	0.217451	12.215618	0.010692	6.832809
INTAL CURIES	5861-665425	8857.644994	533.216279	0.945034	5.300281	297.751088	0.22 7022	166.580725

DURING THE PEFICO FROM 7 20 70 TO 12 31 70 THE POWER LEVEL WAS 1.00 AND THE PURIFICATION PLANT EFFICIENCY WAS 1.00 THE HEAT EXCHANGER RATE OF 5.3502E-06 (SEC-1) AND THE ADSORPTION RATIO OF 564.2295 WERE BASED ON 15.00 PPM HZ

SOURCE -ATOMS	TRITIUM PRODUCTION	SOL IDS	PEKIUD END FOR IN ADSORBED ON GR.SURFACE	PRUDUCTION, AND IN PRINTERY COOLANT	PRODUCTION, AND DISTRIBUTION IN PRIMARY LEAKAGE FROM COOLANT PRIMARY	PUR I Fey PLANT	HZO IN STEAM GENERATOR	BLOWDOWN+LOSS STEAM GENERATOR
KIKELICORE-REGICA 1								
	131,834537	130,516185	0.535423	0.000949	0.08821	0.495543	0,000228	0.277388
HE-3	16.512370	5.993785	4. 263622	J. 007557	0.070474	3,958999	0.001815	2.216117
F8-10	0.377098	0.339388	0.007293	0.000013	0.000343	0.019269	0.000003	0.01 C7 92
.8-10	0.309722	C. 27875C	0.009463	0.000017	0.000242	0.013620	0.00004	0.307626
LI - 7	1.146191	1,031572	0.038232	0.000068	0.000851	0.048364	0.000016	0.027079
C-12	0.023358	C. 021 023	0.000890	0.000002	0.000016	0.000915	0.00000	0.000512
0E-9	0.033268	0.029942	0.001945	0,00000	C. COOC16	0.000874	0.00000	0.000489
11-6	754.435509	678.991958	20.469431	0.036279	0.619730	34.814270	0, CC8722	19.495119
REGION TOTALS	934.672355	817-202603	25,326295	0.044887	0.700504	39,351854	0.010790	22.035121
KUGEL CURE-REGICN 2								
	87.357487	86.483908	C. 354787	J. 000629	0.005845	0.328362	0.000151	0.183805
# 13	16,994139	5.402130	4.674426	0.03285	0.077265	4-340452	0-001990	2-429642
F8-10	0.196884	C. 177195	3, 103563	0.00000	0.000182	0.010217	0.000002	0.005722
58-13	0.171923	0.154731	0.C05155	0000000	0.000136	C. 307622	3,000302	0.004268
L1-7	C. EE7059	C. 780353	0.028558	0.000051	0.000655	0.036816	0.000012	0.020613
C-15	0.026989	0.024290	0.001031	0, 000002	C. 000019	0.001056	0000000	0 • 000591
8.5-4	0.238830	U. 034947	0.002288	*00000°0	0.000018	0.031308	C.CC0001	0.000564
: I -6	387.864036	349.277666	5.251874	0.016408	0, 332914	18.701916	0.003946	10.473344
							-	
REGION TOTALS	493.517368	442-195161	14,327680	0, 025393	0.417033	23,427448	0.006104	13,118549
KUCELCORE-REGILN 3								
FUE	117,610322	116.440153	0.477678	0.000867	0.007870	0.442093	C- 000203	0-247472
FE-3	14.103639	5, 075337	3,655548	0.006486	0.060489	3,398085	0.001558	1.902136
FB-10	0.004914	0.004423	0.000010	0000000	0.00000	0, 300267	0.00000	0.000149
.B-10	0.003900	C. CC3510	0.000106	0,00000	0.00000	0.000180	0.00000	0,000,00
11-7	3,297877	C. 268089	0.012164	0.000022	66,000.0	0.011155	0.00005	0.006244
C-12	J.321164	0. 019048	C. CC3836	0.00000	0.000015	0.000830	0.000000	0.000465
8E-9	0.029392	C.C26182	C .001677	0.000003	3.000014	C-C00119	0.00000	0.000436
-1-¥	789.755340	710.816256	23, 783627	3, 342152	0.622167	34.951126	0.010133	19. 570379
REGION TOTAL	921.872748	832.652999	27.935677	0.049511	0.693761	38.834520	006110°C	21.727381
KUGEL LORE -REGION								
FUE	149.283704	147.790860	0.666290	0.001075	0.009889	0.561131	0.000258	201416
HE-3	29. C41C76	9. C75736	8.032788	0.014343	0.133767	7.514582	0.003445	4.206415
FB-10	0.005550	0.004995	3.000015	დ ლიიიი	0.000005	0.000304		0.000170
56-13	0.004555	0.04100	0.000122	000000*0	\$00000°0	0.000211		0° 0007 ! 8
1-1	0.376324	C. 338692	J. C15358	0, 300327	0. 000251	0.014098		0.007892
C-12	0.332014	0.028613	0.001219	3.000002	0.000022	0.001255		0.000702
8E-9	0.044122	C. 039710	0. 002551	3.000005	0.300021	0.001177		0.000658
9-17	424 • /1 JBBB	8 32.2 39 195	26.899178	0-04/6/4	0.739151	41. 522 899	0.011461	621067.62
FEGION TOTALS	1133.498230	989.522701	35.617580	0.063126	0.883211	49.615657	0.015172	27,780783

324.468927	0.220613	579.569389	10.316942	3.918195	518, C72941	1252C-255440	14653.822449 12626.255440	IOTAL CURIE.
14. 775981	0.011999	26.396479	0.469885	0.049955	28, 185841	555. 693816	665, 58395+	REGION TOTALS
13.978331	0.011346	24.971512	0.444519	0.047235	26.651234	254.937602	097 140 -199	9.17
000000	0000000	0.000000	0,00000	0.000000	0000000	0.000032	0.000003	8E-9
0000000	0-000000	0.000000	0.00000	000000	0.00000	C. C00001	0.000002	C-12
0.000007	0.000000	0.000013	0.00000	0,000000	0.004013	0.030301	0.099924	07-8C
0.795094	0.000651	1.420401	0.025285	0.002111	1,529693	0.647081	4.420916	HE=3 FB=10
								REFLEKTOR-REGION &
11.533952	0.008992	20.604103	0.366775	0.037430	21.119173	424. 960531	478.630955	KEGION TOTAL.
10.148988	0.007857	18.129924	0.322732	0.032708	18,454627	423, 871519	470,968354	L1-6
000000000	0.00000	0.000000	00000000	0.00000	0.00000	0.000001	0.000001	6-38
0.000298	00000000	0.000531	0.00000	₹ 000001	0.000586	0.012833	0.014259	7- II
0.000050	0000000	0.000089	000000000000000000000000000000000000000	0.00000	0.00000	0,000,62	0.000179	SB-10
1.384612	0.001134	2.473551	0.044032	0.004721	2, 663877	1.074067	7.645955	KEFLENTOR-REGION 7 HE-3
25.984242	0,016042	46.410392	0.826154	0.066755	37,665183	943.978462	1054.947230	HEGICH TOTALS
24.623992	0.014928	43,580363	0.782857	0.062117	35.048218	%0.612626	1045-125140	6-11-6
0.00000	0.00000	0.000008	0.00000	0.00000	C. CC0018	0.000275	0.000336	BE-9
0.001604	0.000001	0.002866	0.0000000	0.0000000000000000000000000000000000000	0.00001	0.069531	0.0077257	C-12
0.000045	0.000000	0.000000	1000000	0.00000	0.000055	0.001629	0.001810	SB-10
0.000107	000000000000000000000000000000000000000	C. 000190	6.000003	0.00000	0.000075	0.003384	0.03760	FB-10
	611100	0.00767	0.043301	0.004432	2, 613613	3.250850	9.738772	REFLEKTOR REGICN 6
187.512918	0.139613	334.958937	5.962620	0.581139	327.895512	7574.049169	8431.099938	REGION TUTALS
0.000001	0.000000	0.000002 328.620051	5.849781	0.569040	321.069075	0.000075 7561.883457	0.000083	3E-9 LI-6
0.000001	0.00000	0.00000	00000000	0.000000	0.000002	9,00000	0,000051	C+12
0.000112	0.000000	0.000200	C. 000185	0-000000	0.000170	C. 25172G	0.274689	0/-98 11-1
0.000803	0.00000	0.001434	0.000026	C.000002	0.001048	0.029813	0.033125	FB-10
3,541563	0.002901	6.326852	0.112625	0.012076	6.813668	11.879680	28. 589365	KEFLEK TOR-PEGICN 5 ML-3

INDING THE PERIOD FROM 4 21 71 TO 12 31 71 THE POWER LEVEL WAS 1.00 AND THE PURIFICATION PLANT EFFICIENCY WAS 1.00 THE HEAT EXCHANGER RATE OF 5.3502E-06 (SEC-1) AND THE ADSORPTION RATIO OF 564.2295 WERE BASED ON 15.00 PPM H2

177.52244		PRODUCT ION	SOL 10S	GR. SURFACE	COOLANT	PRIMARY	PLANT	GENERATOR	STEAM GENERATOR
11.5.586.4) 175.866.0 0.560946 0.000099 0.018959 0.018959 0.0200039 0.018959 0.0200039 0.0200039 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.0200039 0.022899 0.022899 0.0200039 0.022899									
2.1.4727.0	FUEL	177.592641	175.816736	0.560946	\$66000°C	0.013695	0.769312	0,000239	0.430749
0.41774	HE-3	21.422130	1, 175956	4.053694	0.007255	0.107675	6.048818	0.001743	3.386959
1,258359	F8-10	0.417744	0.375969	0.005535	0.000010	0.003409	0.322959	2.000002	0.012860
1,356,56243 931,98568+ 18.046332 0.023307 0.000314 0.000310 0.000301 0.0003	07-8	0.343595	C. 3C9239	0.006734	0.000012	0.000311	0.017499	0.000003	008577 0
0.022273 0.022243 0.000724 0.000001 0.000002 0.000002 0.0000000 0.0000001 0.000001		1.258380	1.132542	0.024659	44000000	0.001141	0.064089	0.000011	0.035894
2 117.678169 7.64.99564 18.646332 0.033047 0.901290 50.631266 0.000158 0.000159 0.000158 0.000159 0.00	C-12	0.027273	0, 024546	0.000722	0.00000	0.000023	0.001270	0200000	0.000711
1136,562543 931,965684 18,646332 0,033047 0,901290 50,631266 0,000158 117,678169 116,521381 C,371700 D,000559 0,00074 0,509769 0,000158 2,2,047182 1,236,220 C,488125 0,003763 0,003751 0,003752 0,003751 0,00375	06 -9 LI-6	829.439338	746.495404	13.950910	0.024726	0.178002	43.705411	0.00001	24.478940
2 117.678169 116.551381 C.371700 L.000659 0.009074 0.509769 0.000158 C.25.04.782									
22.047184 (116,52)381 (2.371700 0.000659 0.009074 0.509769 0.000158 (2.2047182 1.2047182 1.2047182 1.2047182 1.2047182 1.2047182 1.2047182 1.2047182 1.2047182 1.2047182 1.2047182 1.2047182 1.204222 1.2047182 1.204222 1.2047182 1.2042222 1.204222 1.204222 1.204222 1.204222 1.204222 1.204222 1.2042222 1.204222 1.204222 1.204222 1.204222 1.204222 1.204222 1.2042222 1.204222 1.204222 1.204222 1.204222 1.204222 1.204222 1.2042222 1.204222 1.204222 1.204222 1.204222 1.204222 1.2042222 1.204222 1.204222 1.204222 1.204222 1.204222 1.204222 1.204222 1.204		1030,562543	931.985684	18.646332	0.033047	0.901290	50.631266	0.007944	28.356981
11.5.7816.9 116.5.5131 C.371700 0.000559 0.108574 0.509769 0.0000118 0.000118 0.22.0,718									
22, 67, 182 7. 286.520	FUEL	117.678169	116.521381	C. 371700		0.009074	0.509769	0.000158	0.285427
0.031678	F-3	22.047182	7.386220	4.488125		0.118050	6.631626	0, 001911	3, 713295
3,544388 C.85564 0.00848 0.000007 0.000017 0.0008412 0.000088	FE-10	C.2185C8	C. 196657	3. CG2747		0.000215	0.012103	0000000	0.006779
0.031671 C.028549 0.018251 0.000002 0.000026 0.001469 0.00000000000000000000000000000000000	58-10	0.194873	C. 175386	0.003997	0.000007	0.000175	0.009812	0.00002	0.005495
0.031671 C.028564 C.000002 0.000002 0.000226 0.000231 0.000201 0.072019 0.072019 0.072019 0.072019 0.072019 0.000201 0.072019 0.000201 0.072019 0.000221 0.000201 0.000221 0.000221 0.000221 0.000201 0.000201 0.000221 0.000201 0.000221 0.000201 0.0	1-17	0.948388	C.853549	0.018251	Q. COC032	0.000864	0.048514	0.003008	0.027171
0.072019	C-12	0.031671	0.028504	0.000848	0.00000	0.000026	0.001469	0.00000	0.000822
\$56.545763	8E-9	0.072019	C. C64817	J. CC3674	0.00000	0,000000	0.002231	3.000005	0.001249
\$56.545763 \$\(\chickgrapsis \) \$\(\chickgrapsis \	LI-6	415.404954	373.864459	5.840728	0.010352	0.432557	22.6164.87	0,002489	12,667843
158.439464 156.855061 0.5C0449 0.C00887 0.012218 0.686343 0.C00213 18.297166 6.584421 3.513696 0.C00227 0.05242C 5.191816 0.011496 0.C00227 0.000005 0.C00293 0.000000 0.000009 0.C00293 0.0000000 0.000009 0.C00293 0.0000000 0.0003973 0.000009 0.0000000 0.C002130 0.C002130 0.0000000 0.C002130 0.C002130 0.0000000 0.C002130 0.000210 0.0001293 0.000000 0.000000 0.C001231 0.C000001 0.C002130 0.0002130 0.0002130 0.0000000 0.0000000 0.C001231 0.C000001 0.C000000 0.0000000 0.0000000 0.0000000 0.000000	REGION TOTALS	556.595763	498.770973	10.736069	0.019317	0.531041	29.832011	0.004571	16.708082
158.439464 156.855061 0.5C0449 0.C00887 0.012218 0.686343 0.C00213 158.439464 156.855061 0.5C0449 0.C00227 0.5C242C 0.5191816 0.000029 0.C000005 0.C000293 0.C0000005 0.C000293 0.C0000005 0.C0000093 0.C0000005 0.C000009 0.C000218 0.C000000 0.000318 0.0000000 0.C0000000 0.C000018 0.C000000 0.C000000 0.C0001180 0.000018 0.C000000 0.C0001180 0.C000000 0.C0001180 0.C000000 0.C0001180 0.C000000 0.C000000 0.C001180 0.C000000 0.C0001180 0.C000000 0.C0001180 0.C000000 0.C0001180 0.C000000 0.C0001180 0.C000000 0.C000000 0.C0001180 0.C000000									
18.297166 6.584421 3.518696 0.00022 0.059242C 5.191816 0.011496 0.000493 0.0000032 0.0000049 0.0000000 0.0000010 0.0099293 0.0000018 0.0000048 0.0000000 0.0000010 0.0000010 0.027889 0.022130 0.022130 0.002049 0.000001 0.000000 0.0000219 0.0000000 0.027889 0.022130 0.002693 0.000001 0.000020 0.001150 0.0000000 0.027889 0.022130 0.002693 0.000001 0.000020 0.001151 0.0000000 0.027889 0.022130 0.002693 0.000001 0.0018719 45.992743 0.000000 0.027889 0.022130 0.002749 0.003771 0.0018719 45.992743 0.000001 0.052.787834 587.885565 22.575496 0.001126 0.041557 51.891430 0.003871 201.098194 199.087202 0.635191 0.001126 0.041557 0.0001637 0.003371 0.005025 0.0000054 0.00000000000000000000000000		158.43966	156.855041	0.500449	0.00087	812218	0.686343	3_000213	0.384294
201.098194 C.C04+53 0.000032 0.000005 0.000005 0.000218 0.000000 0.403933 C.C04+53 0.000048 0.0000000 0.000004 0.0000218 0.0000000 0.403928 C.C045431 0.000048 0.0000000 0.0000000 0.0000000 0.403928 0.022131 0.0000126 0.000000 0.403928 0.002213 0.000000 0.403928 0.002213 0.000000 0.403928 0.002213 0.000000 0.403928 0.002213 0.000000 0.403928 0.002213 0.000000 0.403928 0.000000 0.403928 0.000000 0.403928 0.403934 18.545980 0.003371 0.20372 51.891430 0.003371 0.203801 0.203821 0.403928 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18.207166	6.584421	1.513696	6-006227	0.352420	5.191816	0.001496	2 - 90 7091
0.039923	FR	0.11 (Z : C)	C-004.53	0.000032	0.00000	0.000005	0.000293	000000	0.000164
0.024589 0.022130 0.02643 0.00002 0.000307 0.017231 0.000000 0.0224589 0.022130 0.026493 0.000001 0.000020 0.001637 0.001030 0.0000000 0.0224589 0.022130 0.026493 0.000001 0.000020 0.001637 0.0000000 0.0224589 0.0224589 0.033578 0.033578 0.001637 0.0001637 0.0000001 0.001637 0.0000001 0.0000001 0.0001637 0.0000001 0.0000001 0.0001637 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.00000001 0.00000001 0.00000001 0.00000001 0.00000001 0.00000001 0.00000001 0.0000001 0.00000000	01100	51.51.50 E.C.	C. CO3533	0.000048	000000	900000	0.000218	0.00000	0.000122
0.024565 0.022130 0.022493 0.00002 0.000150 0.0001050 0.0001050 0.0001050 0.0000000 0.055899 0.0022130 0.0022493 0.000004 0.000029 0.001637 0.000001 0.055172 0.002493 0.000004 0.003578 0.001637 0.000001 0.055172 0.000001 0.03578 0.000001 0.03578 0.000001 0.003578 0.000001 0.003578 0.000001 0.003578 0.000001 0.003578 0.000001 0.003578 0.000001 0.003578 0.000001 0.003578 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000	01.00	0.000	1000000	0.00040	3	100000	0.00000	90000	7 1000
0.053260 824.015934 18.945940 0.033578 0.01637 0.001647 0.001647 0		200000000000000000000000000000000000000	0.00000	0.1242	300000	000000	000		449000
201.098194 199.087202 2.575496 0.340720 0.923722 51.891430 3.009787 201.098194 199.087202 C.635191 0.001126 0.015507 C.871136 3.000270 3.034578 0.000374 0.000377 0.00037 0.000377 0.000377 0.000377 0.00037 0.000377 0.00037 0.00037 0.00037 0.00037 0.000037	21.5	197130.0	0.02233	20000	10000	020000	257100	100000	410000
201.098194 199.087202 0.6135191 0.001126 0.015507 0.811136 0.000270 31.676.045 11.774284 7.770246 0.013771 0.204379 11.481269 0.003308 0.005580 0.005022 0.00034 0.000000 0.000000 0.000325 0.000300 0.005580 0.004.20 0.000054 0.000000 0.000005 0.000000 0.0000000 0.0000000 0.0000000 0.000000	7 10	40.00 CO - 00	77104040	C6420000	* 00000°	6700000	150100 M	100000	26 26625
201,098194 199,087202 C.£35191 C.001126 C.015507 C.871136 0.000270 37,676345 11,776246 0.013771 0.204379 11,481269 0.003308 0.005580 0.00522 0.00034 0.000000 0.000006 0.000325 0.004520 0.0000054 0.0000000 0.000005 0.000000 0.037250 0.004520 0.0000978 0.0000000 0.000387 0.000007 0.037250 0.0033525 0.000978 0.000000 0.000001 0.000001 0.037251 0.0033525 0.000978 0.000000 0.000001 0.000001 0.037251 0.003352 0.000978 0.000000 0.000001 0.0000001 0.037251 0.003352 0.000978 0.000000 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.00000001 0.00000001 0.0000001 0.0000001 0.0000001 0.00000000	6-1-1	002010-016	*C # CT O ** 78	16.540760	0.0000	67,919.0	C+1366.C+		
201,098194 199,087202 0,635191 0,001126 0,015507 C,871136 0,000270 37,676345 11,774284 7,770246 0,013771 0,204379 11,481269 0,003308 0,005580 0,005022 0,000034 0,000000 0,000006 0,000332 0,000000 0,00578 0,004,20 0,000054 0,000000 0,000000 0,000005 0,000270 0,437153 0,44437 0,215338 0,000027 0,00000 0,000000 0,000000 0,000000 0,000000	REGION TOTAL.	1092.787834	587.885565	22.575496	0.340720	0.923722	51.891430	3.009787	29.061114
201.038194 199.081702 0.6.513191 0.6.001126 0.0.204379 11.481249 0.000270 37.67045 11.770284 7.770246 0.0.013771 0.0.204379 11.481249 0.000318 0.00580 0.005025 0.000034 0.000000 0.000006 0.000032 0.000000 0.03558 0.0004,20 0.0000054 0.000000 0.000005 0.0000256 0.000000 0.0497153 0.0447437 0.015338 0.000002 0.0000387 0.001749 0.000000 0.03750 0.033525 0.000378 0.000002 0.000387 0.001749 0.0000007 0.077163 0.05447 0.053790 0.000007 0.000044 0.002484 0.0000002 1062.926313 956.633681 21.101775 0.037399 0.962580 53.561993 0.008990	KUGELCORE-REGION								
37,676.945 11,774284 7,770246 0,013771 0,204379 11,481269 0,003368 0,005580 0,005922 0,000034 0,005000 0,005000 0,0000005 0,0000000 0,0000000 0,000005 0,0000000 0,0000000 0,000005 0,0000000 0,0000000 0,000005 0,000000 0,0000000 0,000005 0,000000 0,0000000 0,000005 0,000000 0,003750 0,0033525 0,000378 0,000002 0,0000031 0,001740 0,000000 0,0077163 0,06447 0,063790 0,000007 0,000004 0,000244 0,000000 0,0000000 0,000000 0,000000 0,000000	F1#1	201,098194	199.087232	0.635191	0.001126	0.015507	C. 871136	0. 20002 10	7911940
0.005580 0.005022 0.00034 0.000000 0.000006 0.000332 0.000000 0.004524 0.000054 0.000005 0.000005 0.000005 0.000005 0.00000000	HE-3	37,676345	11, 774284	7,770246	0.013771	0.204379	11.481269	0.003308	6.428791
3,334578 0,004;20 0,000054 0,000005 0,000005 0,000256 C,CCCCCO 0,497153 C,444437 0,01338 0,00007 0,00337 0,0000387 0,0000387 0,00000387 0,000007 0,033750 0,001740 0,0000978 0,000007 0,0000387 0,001740 0,000000 0,017163 C,C69447 0,013790 0,000007 0,000044 0,0002484 0,000000 0,000004 0,0000383 95,561993 0,000002 0,000004	F8-10	0.005580	0.005022	0.000034	0.00000	900000	0.000332	0000000	0.000186
0.497153 0.447437 0.C15338 0.03027 0.60387 0.021768 0.000007 0.437250 0.033525 0.000378 0.600002 0.003031 0.031743 0.C00000 0.C77163 0.C069447 0.3C3790 0.030007 0.000004 0.002484 0.000002 1062.926313 956.633681 21.101775 0.C37399 0.963580 53.561993 0.C08990	58-10	3,004578	0.004120	0.000054	000000	0.000005	0.000256	00000000	0.000143
0.037250 0.033525 0.000978 0.000002 0.000031 0.001740 0.000000 0.077163 0.069447 0.003790 0.00007 0.000044 0.002484 0.000002 1062.926313 956.633681 21.101775 0.037399 0.960580 53.561993 0.008990	LI -7	0.497153	0.447437	0, 015338	0, 030327	0.000387	0.021768	0.00000	0.012188
0.C77163 C.069447 0.0C3790 0.000007 0.000044 0.002484 0.000002 1062.926313 956.633681 21.101775 0.C37399 0.9650580 53.561993 0.C08990 3	C-12	0- 437250	0.033525	0.000978	0.00002	0.000031	0.001740	0.00000	0. COC974
1062.926313 956.633681 21.101775 0.037399 0.963580 53.561993 0.08990 3	, or	0-677163	C-069447	0-063240	0.00000	9900000	0.002484	0.000002	0. 001390
	71-6	1062,926313	956.633681	21-101775	0.037399	0.963580	53, 561 993	0.088990	30.221894
	•								
013010 C 110070 / 010007	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	01000	0.4.30						

REFLEK TOR-REGION 5								
HE-3	37,219761	15.411943	4. 542107	3031100				
FB-10	0.037094	0.033385	0.00.0731		5107110	9.666578	0.002786	5.412678
SB-10	0.005233	C-004709	10000		0.000034	0.001 887	0.00000	0.001057
11-7	0.376.002		+0 T000 •0	0000000	0.000000	0.000266	0.00000	0.000149
(-1)	0.0000	58616600	0.00110.0	G. 000021	C. 000289	0.015241	0.000005	600000
10	4 COOO • 0	6.000053	0000000	0.00000	00000000	200000		
00.	0.000165	0-000148	0- 00000	0.00000	000000	100000		0.0000
9-17	13372,047239	9334.842515	279 642321	0.495618	8.540149	C0000000	000000	000000
						674661 • 614	0.11.088	208.652125
SECTION TOTALS			;		~ .			
	7+0+00°60+01	9350.630336	286.197133	0.507235	8.712552	489.440401	0.121878	274.075106
KEPLEKIUR REGICN 6								
75-3	12. 634464	4.269339	2.509446	0.004448	0.0460.05	2 10704.5		
F8-10	0.003798	0.003418	0,000035	0-00000	00000	24610100	3-001068	2.076215
SB-10	0.001822	0.CC164C	0. CCC024	00000		0.00013	0.00000	0.000122
1-1-	0.103485	0.093136	0.003271	-00000-C	20000	0.000.0	000000	0.000056
C-12	0.000215	C. 0001 63	0.00004			19.400.0	000001	0.002509
8E-9	0.000612	0.000551	00000	00000	0000000	01000000	000000-0	9000000
1.1-6	1191-0542-0	1071-984816	25.435.85	000000	00000000	3.000018	0.00000	01000000
			70000100	180640.0	1.056183	59.332647	0.010836	33, 228825
REGION TOTALS	1203, 838635	1674. 353002	23 040447					
		640606-0104	10004.	0.049534	1.122274	63-045417	0.011906	35.307744
K FFI FK TUR -R FG 10% 2								
E-3	0.010420	TC 760E 1						
FR-10	0 000541	124686.1	2,557707	0.004533	3, 367275	3.779253	0.001089	2,116145
01-9:	0.000201	000303	0.000061	0.00000	0.000002	0.000124	0,00000	6900000
7-17	0.019076	0.017149	0.00003	000000	00000000	0.0000.0	0.00000	0.00000
- 1-2	100000	607.10°0	0090000	0.0000	0.000015	6.000828	0000000	994000
BE-9	100000	10000	0.00000	2.00000	0.000000	0000000	0.000000	0.00000
1-6	592000	533 300103	0000000	000000	000000	0.000000	0.00000	000000
		66 1006 9666	59/70/01	0.029601	0.479798	26-953347	0.007112	15.052840
REGION TOTALS	602.585888	534, 793240	19.260138	0.034135	0.547090	30.733561	0.038201	17.209523
REFLEKTOR-REGION 8								
E- 1	3 (7362 3	0000						
F8-10	0.627070	0-024442	1.468727	0.002603	0.038632	2.170182	0.000625	1,215166
88-10	20.20.0	0.024303	\$6.000°0	0000000	0.000022	0.001211	0000000	0-000678
7-1	0.000401	19520000	0.003011	J. 000000	0.00000	0.000018	0000000	0.00000
C-12	57.751.60	IC#611*0	0.004122	0.000007	6-0001C3	C.005794	2,000002	0.003244
0114	700000	700000	0.000000	0-00000	0000000	0000000	0.000000	0000000
4-11-	500000	5000000	0000000	0000000	0.00000	000.000	0.00000	0.00000
•	00+660 •100	100.437334	25.227539	0.044711	0.675568	37.951 008	0.010742	21.250380
A STOR TOTAL S	857, 495098	767.423196	26.701193	0.047323	0.714324	40-128214	0.011369	22.469479
TOTAL CURIE:	17055. 672683 15315. 896806	15315, 896806	441.986435	783346				
			***********	0.105542	14.633231	822.043276	0.188234	460.341357

DUKING THE PERIOD FRCM 9 11 72 TO 12 31 72 THE POWER LEVEL WAS 1.00 AND THE PURIFICATION PLANT EFFICIENCY WAS 1.00 IMP HEAT EXCHANGER RATE OF 5.3502E-06 (SEC-1) AND THE ADSORPTION RATIO OF 564.2295 WERE BASED ON 15.00 PPM M2

CUMULATIVE TRITIJM IN SOURCE -ATCMS	NVENTORY IN CUR TRITIUM PRODUCTION	CURIES AS CF PE BOUND IN IN SOLIDS	AS CF PERIOD END FOR SOUND IN ADSORBED ON SOLIDS	PRODUCTIONSAN IN PRIMARY COOLANT	PRODUCTION: AND DISTRIBUTION IN PRIMARY LEAKAGE FROM COOLANT PRIMARY	SINKS PURIF#N PLANT	HZO IN STEAM GENERATOR	BLOWDOWN+LOSS STEAM GENERATOR
KUCELCGRE-REGICN 1 FUE!	222.970798	219.850079	0.548327	0.000972	0.018855	1.059184	0.000233	0.593148
HE-3	25.917970	5.371632	3. 655176	0.036549	0.143767	8.076318	_	4.522986
(HB+1)	L.421033	C. 378930	0.002565	0.00000	0.000446	0.025053		0.014034
01-00	1 366036	0.1010.0	0.014430	000000	Ue 000333	196610.0	1000000	0.011182
21-1	0.027876	0.025089	020010-0	0.00000	0.000.027	0.001540		0.000.0
8E-9	0.076809	0.069128	0.002492	0.00000	0.000058	0.03285		0.001839
LI-6	881.870800	793.683720	9.416093	0.016688	0.888394	49.906828	0.004012	27.955065
REGION TOTAL:	1131,574861	1024.899164	13.684588	0.024254	1.053232	59.166847	0.005829	33.140946
KUGELCORE-FEGION 2								
FUEL	147.150719	145.679204	0,363338	0. CCC644	0.012494	0.701847		0.393038
HE-3	26.571320	6,540331	4. C51209	0.007180	0.157619	8.854477		4.958779
F8-10	0.223271	0.198244	0.001275	0,000002	0.000234	0.013149	٠,	0.007366
01-96	C+192641	1 100 T 10	0.001763	0,00000	0.000201	0.011279		0.006318
61-1	0.0326373	0-029175	0.000422	120000-0	2001000	0.601786	5000000	0.001001
21.36	3-090864	C. C. 81778	0.002986	0.000005	0.000049	0.003862		10010010
9-17	433.527183	390-174464	3.670980	0.006506	0.447559	25.142310		14.083796
REGICA TOTALS	£08.796785	545, 786837	8,103992	0.014363	0.619209	34, 784 981	0.303452	19.483981
KUCEL CORE-PESTON 3								
	158,120659	156.139482	0.** 69191	0.000867	0.016821	0.944952	0.000208	0.529178
HE-3	22.051792	7.935561	3, 171640	0,005621	0.123398	6.932057		3.882165
FB-10	3, 30, 962	0.034866	0.000015	0000000	0.000000	0.000305		0.000171
07-90	0.00000	0.436460	12000L - 0	0000000	*0000°0	0.00028	0000000	0.000132
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.025110	0.022599	3, 0,00317	0.00001	0.000325	0.001340		0.000779
8E-9	0.061742	0.055568	0.001894	0.00003	0.000048	0-002710		0.001518
L 1-6	1019,165175	917.248657	14.977786	0.026546	0.980419	55.076505	0.006380	36.848882
KEGICN TOTAL,	1239, 917249	1121.845325	18-652315	0.033058	1.121137	62.981546	0.607945	35,275923
7 Anton 0 2 200 130 13								
	251.463327	248,948681	0.620902	0.001100	6.021350	1,199374	0.000264	5571790
HE-3	45.407271	-	7.013818	0.012431	0.272884	15, 329669		8.585085
FB-10	0.005590	0.035031	0.000015	O 00000	0.00000	0.000344	00000000	0.000193
01-30	3.004580	0.004122	0.000024	0.00000	0.00005	0.000275		0.000154
7-11	0.610855	597645	0. C14447	0.000026	0.000526	0.029539		0.016542
71.7 #F-9	0.098055	0.034250	0.000482	100000	0.000037	0.002105		0.001179
- 17	1175.300142	1057.770128	16. 444994	0, 029146	1.139968	64.039401	0.007005	35.869499
REGICA TOTALS	1472.923844	1321.547000	24.097578	0.042709	1.434850	80. 604 828	0.010264	45.146615

KEF LEKTCR-REGICA 5								
HE-3	44.857352	18.574513	5,905237	J. 03 0464				
	0.039643	0.035676	0.000485	0.00000	0,000,39	571906177	0.032514	7.228155
01-97	0.005320	C. CO4788	0.003051	0.00000	5000000	*0.2200 0	0000000	0.001234
)	0.467265	0.420538	0.011467	0-00000		0.000.00	00000000	0.000171
21-2	0°0000	0° 000054	0.00001	000000		166 220 0	0.000005	0.012506
, ,	0.000237	0.000186	0,000007	00000		5000000	0-00000	C- 00C002
-1-5	11963.764254	10767.387829	229.418970	0.406606	10.933250	0.000009 612.506084	0.000000	343.043819
REGIEN TOTALS	12009,134097 10786,423584	13786.423584	235.336218	0.417093	11.133445	625,437649	0.100217	350,285891
REFLEKTOR REGION 6								
HE -3	15.227089	5, 145419	2, 246162					
F8-10	0.003839	0.003428	0.000016	5 10 500 5	0.088130	4.953805	0.000964	2,772603
01-88	0.001823	0.001641	0.000011		\$00000°0	C* 000 531	00000000	0.000130
7-13	0.128594	0.115734	0.603140	100000	200000-0	0.003109	3.000000	0.00061
21-12	0.000219	C. CC01 97	0.00000	9000000	0.00010	0.006156	0.000001	0.003447
4 J J	0.000775	0.000698	0.000026	0.00000	00000	2100000	3.00000	0.00007
	1286.922025	1158.229823	17.418012	0.030870	1.254889	70.495216	0.000000	0.000018 39.485796
REGION TOTALS	13.02, 284.333	1163						
	666407.700	A6 606 4 00 11	19.686360	168480*0	1.343135	75.452561	0.008386	42.262062
REFLEKTOR-REGICN 7								
HE-3	11.954921	1.679367	2 350316					
F8-10	0.032861	0.002575	0.0000.0	260400 m	0. C89824	5.046019	0.000983	2.825925
0(-q-)	0.00001	0.030186	0-00000	00000	0.00000	C. 000 152	0,00000	0.000085
7-17	0.023741	0.021367	0.000580	00000	00000000	0.000012	0.00000.0	0000000
7117	000000	C- C00001	0.00000	100000-0	220000	0.031136	0.000000	0.000636
1 1 = 4	\$00000°0	0.00000	0.00000	0,00000	00000	000000	0000000	000000
•	0 70. 044343	625. 539909	14-224738	0.025211	0.623302	35.014928	0.006057	0.000000 19.610198
DEGTIN TOTAL C								
AEGICA IL IALS	707.026078	627,243403	15.534084	0.029304	0.713150	40.062247	0.007040	22.436851
REFLEKTOR-REGION 8								
HE-3	6.912337	1.011745	1, 325347					
F8-10	0.032604	0.029344	3.000722	0.002350	0.051580	2.897603	J.000564	1.622747
01-9:	0.000424	0.000382	0.00000	100000-0	6200000	0.001608	0000000	0060000
\ - 1.1	0.164278	0.147850	0.003952	000000	000000	0.000023	0.00000	C. 000013
AF-19	0.00000	C. C30002	0.00000	0.00000	1110000	0.007902	0.00002	0.004425
9-11	9000000	9000000	0.00000	0.00000	0000000	000000	000000	0-00000
		76 1090 • 1 16	22-442915	0.039776	0.896600	50-367832	C. C05556	28.207787
REGION TOTALS	1026,754310	018, 84063)						
		176400 1014	746611.65	0.042134	0.948350	53.274968	0.010122	29.835872
TOTAL CUPIES	19498-811557 17510-151743	7510-151743	359.868478	0.637805	18.366509	1031.765627	0.153255	677 646141
								711000000

DURING THE PERIOD FRUM 6 16 73 TO 12 31 73 THE POWER LEVEL MAS 1.00 AND THE PURIFICATION PLANT EFFICIENCY MAS 1.00 THE HEAT EXCHANGER RATE OF 5.3502E-06 (SEC-1) AND THE ADSORPTION RATIO OF 564,2295 WERE BASED UN 15.00 PPM H2

CLMULATIVE TRITTIUM INV OUPCE -ATOMS		ENTORY IN CURIES AS OF PERIOD END FOR TRITIUM BOUND IN ADSORBED ON PRODUCTION SCLIDS CR.SURFACE	ADSORBED ON GR. SURFACE	PRODUCTION, AN IN PRIPARY COOLANT	PRODUCTION, AND DISTRIBUTION IN PRIPARY LEAKAGE FROM COOLANT PRIMARY	SINKS PUR IF *N PLANT	H2O IN STEAM GENERATOR	BLOWDOWN+LUSS STEAM GENERATOR
KUGELCCRE-REGICN 1								
Firet	272,548590	270,219189	0.587745	0.001042	0.024148	1.356576	0.000250	C. 759738
HE-3	30.512541	11.075673	3.658180	2,006483	0.177920	9. 994 892	0.001558	5.597835
FB-10	0.421332	661616	0.001123	0.000002	0.000463	186620-0	0000000	86647000
01-81	0.344737	t. 3102e 3	C. C. 1283	700000	\$ 5000°0	0.021031	1000000	79/110*0
7-11	1.437735	+6 66 67 ° T	616610-0	********	0.00000 0.00000	0.000	000000	107940 °0
71-17	0.023330	700000	2670779	10000		2001000	20000	20000
L 1-6	945.458662	85C, 912796	8.198509	0.014530	0.973884	54.709364	3.003493	30.646687
REGION TOTAL	1251.257412	1134,311425	12.463986	0.022090	1.178368	66.196549	0.005309	37.079684
KUGELCORE-FEGIUN 2								
FUEL	180.863924	179.055276	0.389458	ეგიე გე	0.016002	0.898908	0.000166	0.503425
弄-3	31.432875	10.093249	4.010649	0.007108	0.195062	10.557908	0.001708	6.137191
F8-10	0.220427	C. 198384	C. CC0558	D 000001	0° 000242	0.013614	0.000000	0.007627
07-30	0.195705	0.176134	0.000764	0.00000	6.000212	0.011917	0000000	0.006676
)-17	1.072455	C. >63218	710577.5	10000 °	101100-0	1 92 190 0	*000000	260460-0
C-12	0.034437	466080°0	0.000357	7000000	0.000039	0.001556		0.001095
BE-9	0.123951	2,111336	0.003932	0.00000	5600000	9666000		000637.5
4-11	460.568346	414.511511	1. 369298	Q. 005865	0.482151	276680.17	014100-0	15-1 (2540
KEGICN TOTALS	674.482118	605-142311	7.724626	0.013691	006459*0	39.037043	0.2500.0	21.866256
KUGELCERE-REGIEN 3								
	243.511464	241,076337	0.524358	0.000929	0.021544	1.210271	C. 000223	0.677801
£-3	26.361545	5,378511	3,135886	Q. 035565	0.152712	8.578806	0.001337	4.804729
FB-10	0.005033	0.004530	0.000010	0.00000	3.000000	0.000312		0.000175
08-10	9,66000	0.003552	0.000010	0.00000	0.00000	0.000243	0.00000	C.00C136
11-7	0.584081	0.525673	0.011860	0.00001	0.000525	0.029484		0.016513
C-12	0.026559	0.023903	0.000263	0.00000	0.000027	0.001516		0.000849
BE-5	0.081452	0.073307	0.002404	+00000 ನ	C* C00065	0.003636	0.00000	0.002036
9-17	1130,763297	1017.686967	13.811110	0.024478	1.119493	62.889146	0, 005683	35.226219
REGICA TOTALS	1401.037377	1268,772779	17.489901	0.030998	1+294375	72.713+16	0, 007450	40.728459
K. GEL CORE-REGION 4								
FUEL	309.075242	305.984474	0.665537	0.031180	0.027345	1.536128	0,000283	0.860295
HE-3	53,663831	16,770686	6.543597	0.012306	0.337709	18.971317	0.002957	10.625259
F8-10	0.005664	0.05098	0.000011	000000	0.00000	0.000352	0.00000	0.000197
58-13	0,004603	0.004143	0.000012	0.00000	9000000	0.000284	0.00000	0.000159
11-7	0.737261	0.663535	0.014558	3,000027	0.000663	0.037225		0.020848
C-12	3.040282	0.036254	0.000402		9	0.002298		0.001287
9E9	0.124246	C-111821	C. C33680		0	0.005537		0.003101
9-11	1299, 706899	1169.736209	15.243857		-	72.685606	0.006494	40.713835
		,		,				
KEGION TOTALS	1663,358028	1493.312219	22.872054	0.040537	1.655747	93,238748	0.009742	52,224981

REFLER TOR-REGICN 5								
HE-3	53, 613919	21. 951 9.81	E. 844.115	176010				
FB-10	0.041588		046000	196010.0	7664970	_	0.002489	8.945866
SB-10	0.0054.5		0.00039	100000	5 00000		0.00000	0.001355
1-1-1	0-571462		0.00029		9000000	0.000324	0000000	0.000182
C-12	0.0000		100000	220000	C. 000508	0.028511	0.000005	0.015967
₩E-5	0.000200		10000	00000	000000	0.00000	0000000	0.00000
9-11		1215	206 - 709578	0.00000	0.000000	3.000012	0.00000	0.000001
				51070	4 21776.77	192666.671	0.087181	406-611459
PEGICN TOTALS	13560,123549	13560.123549 12178.350649	210.568227	473106	13 20765			
					669193961	715666-161	3, 989675	415.574838
KEFLEFTOR REGICN 6								
HE-2	17.595883	6. 081028	2,242475	760260 0	4,000,0		,	
F8-10	0.003812	0.003431	0.00007	0-00000	690601-0	6.126897	0.003955	3.431489
S8-:0	0.001824	0. 001641	0.000005	0-00000	*200000	0.00023	0000000	0.000133
;; ;;	3.156903	0.141213	0.003309	9-00009	7000	6110000	0.00000	0.00003
37 ± 0	C. 000231	0.000207	0.000002	0.000000	00000000	0.000013	100000	265400-0
7-1	260100.0	J. CCC983	0.000037	ი ეიიიი	3.000001	9400000		200000
;	A 6 4 6 0 B • 73 6 1	1.26.578895	12.642636	0.022407	1.354522	78,339204	Q. C05386	43.882289
O TOTAL								
CTURE TO THE	1361.020.83	1232,807399	14.888471	0.026387	1.533734	84.474.52	0.006342	47.318398
C MULTIPOLOGICAL MANAGEMENT								
HE-5	14-128726	1.586726	2, 2664.03					
F8-10	0.003129	0.002816	0.00038	150*000	0.111163	6.244729	0.000973	3.497483
28-30	0.000215	C. 0001 93	0-000002	000000	0.00000	C. 000174	0000000	26000000
1-17	0.029035	0.026131	0.00000	00000	0000000	£1000000	0000000	0.000007
	C- 00000 T	100000 *0	0.00000	0.000000	0-000000	6++ TOO - O	0000000	0.000811
7 30	3,000035	0.000005	300031*3	J. C 30000	0.00000	0000000		000000
3	198-303335	718.473001	13,234434	0.023456	0.750975	42.187151	0.005636	23.628681
REGION TOTALS	812.4644.6	720.486874	15,520691	0.027508	0.852167	48.433516	0° 000609	27.127081
REFLEKTUR-PEGIUN 8								
HE-3	8,169231	1,195714	1 312474	, , , , , , ,				
FB-13	0.038555	0-034700	0.000721	3.00000	0.063834	3, 585 945	0.000559	2 • 008379
S8-10	0.000460	0.00014	0.00006	100000	550000-0	0.001986	3.000000	0.001112
2-17	3,199993	0.179094	0-100-0	0.0000	000000	0.000026	00000000	0.000014
C-12	J.000032	3.000062	000000	0.00000		0.010026	C- C00002	0.005615
96-9	9° 0000 36	800000000	00000000	3-00000	0000000	000000	000000	0.00000
9-17	1150.957953	1077, 298157	21.513430	0.038838	1.102648	0000000	0,00000	0000000
					9407044	769746*10	0.009331	34.692656
REGION TOFAL	1205.406203	1078, 708989	23.230801	0.041173	1.166696	65,540875	0.009892	36.70776
7 01 0 1 0 1 0 v								
מיני מעונ	21949.154316 19711.892645	19711.892645	324, 758757	0.575579	21.567640	1211.593911	0.138309	678.627474

DURING THE PERICO FROM 8 28 74 TO 12 31 74 THE POWER LEVEL WAS 1.00 AND THE PURIFICATION PLANT EFFICIENCY MAS 1.00 THE HEAT EXCHANGER RATE OF 5.3502E-06 (SEC-1) AND THE ADSORPTION RATIO OF 564.2295 WERE BASED ON 15.00 PPM H2

CUNULATIVE TRITIUM IN SOURCE -AFON:	INVENTORY IN CURIES AS OF TRITIUM BOUND PRODUCTION SOLLOS	IRIES AS OF PE BOUND IN SOLIDS	PERIOD END FOR IN ADSORBED ON GR.SURFACE	PRODUCTION, AND IN PRIMARY I	D DISTRIBUTION LEAKAGE FROM PRIMARY	SINKS PURIFW P	H2O IN STEAM GENERATOR	BLDWDGWN+LDSS STEAM GENERATOR
KUGELCÜRE-REGICN 1 FUEL	314-546966	311,401481	0.541950	196000*0	0.029359	1.649259	6, 000231	0.923726
AE-3	24000000	12. 363492	3.148086	0,005579	0.209218	11.753118	0.001340	6.583056
017	366774	7,37,76,7	CB4000*0	0.00001	0.4000470	0.026393	0.00000	0-014786
1-1-	1.510250	1.350203	466010	100000	0.000383	0.021495	0.00000	0.012642
C-12	0.030170	6.027153	0.00017	610000	196100-0	0.088794	0.00000	0.049740
8E-9	0.124084	0-111675	0.002913	C00005	0.00000	\$ 100° 0	0.00000	0.001008
7-F	976,265348	878-638813	5.575699	0.009882	1.038275	58.326620	0.002375	32.673683
REGION TOTALS	1327,308791	1204, 593315	9.280751	0.016449	1.279423	71.873491	0.003953	40.261408
KUGELCORE-REGION 2								
FUEL	208.428180	206.343888	C. 359112	Jr 000636	0.019454	1.092848	0.000153	0.612089
# - 3	35, 25991 3	11.268662	3.451407	0.006117	0.229376	12.885540	C. 001469	7-217338
F8-10	0.220431	C. 198388	3. C 00241	0.000000	0.000246	0.013816	0.00000	0.007740
- 1-7	0.195706	0.176136	0.000330	0.00001	0.000217	0.012193	0.000000	0.006830
C-12	0.035221	1.010204	910000 C	*100001	091100-0	0.066299	0.00003	0.037139
86-9	0.148331	0.133498	0.003536	90000	70,000	0.002096	000000000000000000000000000000000000000	0.001174
۲.	471.684429	424.515586	2, 152523	0, 003815	0.507762	28.524301	0.000917	15.979123
REGION TOTALS	716.894747	643,678541	5.574983	a, 010590	0. 758400	42.604248	0.002545	23.865441
NUGELCORE-REGICN 3								
FJEL	280.523410	277.817162	0.483501	£ 38000 C	101200			
HE-3	29.096554	10.470690	2-102062	0.004789	7.1020.0	1000114-1	0.000206	0.824103
FB-10	0, 005063	C. C04557	0000000	00000000	9000000	0-000317	000000	2000000
58-10	0.003953	C. C33558	0.000005	Q. 00C000	C. 00000	0.000247	0000000	0.000139
LI-7	0.663578	C.597220	0.010628	0.000019	0.000628	0.035304	C. 000005	0.019774
21-12	0.027118	0.02467	C. CC0157	J. C00000	0.000029	0.001619	0.00000	0.000901
0E-9	1216, 762609	16683381	6.001888	0.000003	0.000083	0.004672	0.00000	0.002617
					10004341	94.670.00	CB&+20+0	39. 025323
KEGIĞN TOTAL :	1527-274931	1364.087322	14,903082	0.026413	1.446825	81.277540	0.006347	45,527402
FUGEL COPE-REGIUN 4								
FUEL	356-179323	352,617512	C.61 3681	0.001088	0.033244	1.867549	0.000261	1.045988
HE-3	59, 913276	16,723724	5.975387	0.010590	0.397117	22.308608	0.002544	12.495307
01181	6.00000	0.005125	9000000	იიიიიი უ	0.000006	0.000357	0.00000	0.000200
11-1	0.837522	0.160.0	9000000	0000000	0.000005	0.000289	00000000	0.000162
5-12	0-041146	120200	************	\$20000 m	0.000793	0.044565	90000000	0.024961
86-9	0-141492	0.127342	0.000040	00000000	0.000044	0.002455	000000	0.001375
9-11	1393.699601	1254,329641	12.630801	0.022740	1.427178	80.173823	0.005465	0.005954 44.909954
REGION TOTALS	1810.822667	1626.598296	19.436423	0.634448	1.858514	104.404.711	0.008277	58.481936

REFLEKTOR-REGICN 5								
HE-3	59,187678	24.508409	5.030937	0.008916	0.334350	18.782584	0.002142	10,526340
F8-10	0.042675	0.038407	0.003220	0000000	0.000046	0.002564	0000000	0.001437
28-1C	0.005453	0° 00+008	0.000016	0000000	9000000	0.000336	0.0000	88.000.0
-17	0.654944	0.589449	C. C11018	0,000020	C. 000614	0.034510	0.00005	0.01010
C-12	4-200000	0.000057	0.00000	0.000000	0000000	4000000	00000	20000
BE-9	0.300346	0.000311	C. CC000B	0-00000	00000000	0.000.0		20000
0-17	14571,151966	13114.036769	161.712628	0.286608	14.605653	820-718750	0.068863	459.718695
RESION TOTALS	14631.043125 13139.178311	13139-178311	166.754827	0.295544	14.944669	839.538764	0.071010	470.259999
REFLEKTOR REGION'S	100 00	F 7						
0.1-69	E18500-0	0.003622	9916761	024500.0	0.128251	7.204694	0.000822	4.035432
SB-13	0.401824	0.001641	000000	00000	10000	0.000240	0.00000	0.000134
11-7	0.179411	0.161470	C. CC2988	00000	0.000169	0.000114	000000	4900000
C-15	0.000235	0.000211	0.00001	000000	00000000	A10000.0	10000	600000
BE-9	0.301307	0.001177	C. C00032	0.000300	0.00000	0.000062	00000	800000 · O
9-17	1406.457446	1265.811701	8.424577	0.014931	1.491362	83. 779477	J. 003589	46.931809
REGION TOTALS	1426.735637	1272,768830	10,357389	0.018357	1. 619790	\$10,894.074	0.004412	50.972787
C BEN EKTÜB+GESTÜN 7								
	15.774093	2,215858	1.566899	0.003486	91133718	75 6 1 7 1 7	0 000037	*******
F8-10	0,0033 03	3,002972	0.000028	0000000	0 000003	0-000191	0.0000	740077
53-10	0.000218	C. 000157	C. CC3001	0,00000	0.00000	0.000013	000000	200000
11-1	0, 033268	0.029941	0.000559	0.000301	0.000031	0.001753	0-00000	0.000982
2-12	0.0000	0.00000	000000°	0.00000	0.0000000	0.000000	0.00000	000000
8E-9	90000000	0.000036	00000000	0000000	0000000	C. COCOOO	0000000	000000
9-17	872,178233	784. 560409	10,814105	0.019166	0.861662	48.405113	0-034605	27.113173
PEGION TOTALS	887,989121	787, 209383	12,781593	0.022653	0.992414	55.753325	0.005442	31.227310
PEFLEKTOR-PEGION 8								
HE-3	9,120583	1,334967	1,129463	0.002002	0.078.042	4 314.788		
FB-10	0.343088	0,038779	0.000624	0-00001	0.000042	0-002334	704000	*C01000
SB-10	0.000479	6,000431	4000000	Q. 000000	0.00000	0.000028	0,000000	10000
11-7	0.228501	0.205651	0.003776	0.00000	0.000215	0.012083	C. G00002	0-004768
2-12	0.00000	0.000002	0000000	0.00000	0.000000	0000000	0.00000	000000
2	11000011	6000000	00000000	0.00000	0.00000	0.000001	0.00000	0000000
9-17	1329, 236585	1196.312926	18.615076	0.032992	1.289094	12.416774	0.007926	40.561796
REGION TOTALS	1338, 629248	1157.892761	19.748944	0.035002	1.364414	76.647977	0.008409	42.931742
FOTAL CURIES	23666.658266	23666.658266 21256.006759	259.237991	0.459455	26.266651	1363.001101	.0001	743 63624
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*******	747740+6067	0.110393	103.528026

LURING THE PERIOD FRUM 10 5 75 TO 12 31 75 THE PONER LEVEL WAS 1.00 AND THE PURIFICATION PLANT EFFICIENCY WAS 1.00 THE HEAT EXCHANGER RATE OF 5.3502E-06 (SEC-1) AND THE ADSORPTION RATIO OF 564.2295 WERE BASED CN 15.0C PPM M2

CUMULATIVE TRITIOM I SOURCE -ATCMS	INVENTORY IN CURIES TRITIUM PRUDUCTION	AS OF BCUND 1 SOL IDS	PERIOD END FOR IN ADSCREED ON GR.SURFACE	PRODUCTION, AN IN PRIMARY COOLANT	PRODUCTION, AND DISTRIBUTION IN PRIMARY LEAKAGE FROM COOLANT PRIMARY	SINKS PUR IF M PLANT	H2O IN STEAM Generator	BLUMDONN+LOSS Steam Generatur
NUGELCORE-REGICA 1 FUEL	365,264864	361-612197	0.579381	3.601027	0.034657	1,946,899	6.000247	1.000456
HE-3	38.212132	13.870518	3,157866	0,005597	0.238902	13,420675	_	7.517260
F8-10	0.4213+4	0.379210	0.000209	0.00000	0.000473	0.026568		0.014884
8-10	0.344741	C. 31 02 66	C. 000239	0.00000	0.00386	0.021695		0.012154
2 []	21055-0	111664-1	44.010°0	000000 o	0.001682	605 \$50 0		0.052942
36-9	0.150421	C. 135379	0.003153	0000000	0.000134	0001000	0.00000	0.001033
11-6	1011-955558	910-760002	4.715734	0.008358	1.088254	61.134247		34.246954
REGION TOTALS	1417,979175	1288.534703	8.467414	0.045007	1.364522	76.654004	0-03606	\$2.939920
KUGELCORE-PEGIUN 2								
	242.035369	239.615003		0.000683	0.022565	1.290073	0.000163	0.722569
#E-3	39, 327103	12. 6401 88		0.006136	0.261920	14.713768		8.241554
F8-10	0.220433	0.198389		000000	0.000247	0.013903		0.007789
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.195737	0.176136	0.000.42	00000000	0.000219	0.012312		0.006897
× 1 1 0	0.0366.07	0.032766		0000013	0.00003	0.070782	6,00000	0.039371
36-9	0.186551	0-162496		0.00000	041606-0	000000		0.005041
9-11	484.232764	435,809488	1.727941	0.003062	0.526716	25.589029	0.000736	16.575792
REGION TOTALS	767.412158	806669*689	5.585651	006600*0	0.813518	45.700562	0.002379	25.600241
E NOTE: 90 - 900 D 4900 N								
r Jel.	325. E 14437	322.612707	C. 516896	0.000916		1.736928		C. 972851
F8-10	0.005119	C-00407-11	5000000	*000000-0		177615-11	\$61100°0	6.452207
58-10	0.033968	0.003571	C. CC0033	000000	900000	3,000249		0.000.0
11-7	0,755131	0.679617	0.010823	0.000019		0.040982		0.022954
C-12	0.327971	0.025174	C. CO0133	0.00000	0.000030	0.031690		0.000947
3E-9	0.107100	0.096390	0.001862	0.00000	0.000100	0.005605		0.003139
-1-6	1312.950026	1:81.691024	11.344591	0.020106	1.352928	76.002718	0.004832	42.573827
KEGION FOTALS	1672, 398691	1516.858183	14.584716	0.025849	1.589771	89.307715	0.006212	50.026246
KIJGEL CORE-REGION 4								
FIJEL	413.610069	409-413947	0.656066	0.001163	0.039244	2,204584		1.234785
2112	57.20965	21,002615	5.493836	0.010623	0.453460	25.473801		14.268521
58-10	0.004628	0.004165	0-00000	000000		0.000361	0000000	0.000202
1-17	0.952982	C. E57684	C. C13653	0.000024		0.051725	_	0.028972
C-12	0.042461	0.038215	0.000199	0.00000		0.002564		0.001436
3E-9	0.163743	C. 147369	0- CC2862	0.00000		0.008560		0.004794
j	869687*0061	1350,4257308	12.473888	0.022111	1.551424	87.153535	0.005314	48.820317
REGICA TOTALS	1982,270943	1781,786482	19-142511	0.033927	2.045259	114.895421	0.008153	64,359190

REFLEKTOR-REGICN 5								
HE-3	66, 391496	27,491363	5.046470	0.008944	0.381788	21.447497	971000	, , , , , ,
01-9-	0.043640	0.039276	0° CC0159	0000000	0.000347	0.002664	17000	987610 - 21
58-10	0.305489	C.004940	0.00000	000000	9000000	0.000		66410000
-11	0.757653	0.681887	0.011752	1,00000		34500000	20000	0.000192
C-12	0-300066	0.0000	3000000	10000	7710000	0.040552	0.000003	0.022713
95-9	0.000428	10000 C	10000	000000	0000000	9000000	000000°	0.000002
4-1-	15717 410242	CBC00000	010000	0.00000	00000000	0.000021	0.00000	0.000012
	C+7674***********************************	416110°C4141	141.080.43	0.261218	16.064597	902.452359	0.062765	505.514042
FEGION TUTALS	15784.618014	15784.618014 14173.895229	152.445343	0.270183	16.447161	923.943439	0.064919	517,551740
PEFLEKTOR REGICN 6								
HE-3	22,536979	7.615520	1.915744	127670 0				
FB-10	0.003814	0.003432	000000	154500	200000	8.226911	0.000824	4.608101
01-8>	0.001824	C. 001641	000000		10000	147000 0	000000	0.000135
LI-7	0.207114	0.186403	0.603177	40000	200000	611000.0	0000000	0.000064
C-12	0.000242	C. CC0218	0-00001	90000	000000	801110-0	0.00001	0.006222
86-5	0.001624	0.001462	0.000037	000000	20000	6100000	0000000	0.00000
L I = 6	1446.073127	1301-465814	6.282754	0.011135	1.560255	87.649619	0.000000	0.000045
						•		6.8001.6
REGION TOTALS	1468.824724	1369,274490	8.221715	0.014572	1.706908	98.888.55	0.003502	53, 715449
HEFLEKTOR-REGION 7	!							
71 - 7 C 2	17,693981	2.485553	1.972972	0. 003497	0,149264	8.385131	0.000840	4.694724
07-67	0.035478	C. 0C3130	0.000024	00000000	0.00000	0.000205	0000000	0.000118
~	222000-0	0.00200	C. CC3301	ი ეეიიე	0.00000	0.000014	0.00000	0.00000
	0.038498	0.034648	0.000598	0.00001	C.000037	0.032660	0.00000	0.001154
31 - 3 86 - 4	100000	C- 030301	C. CC0000	000000	0000000	0.000000	0,00000	500000
¥-1.	8000000	0.00000	00000000	000000	0.0000c	0000000	0.00000	
9	6991 14 *466	658, 975898	10.248438	0.018164	0.960825	53.975749	0.004364	30.234226
KEGIUN 101ALS	972,153852	861.499437	12.222033	0.021661	1-110130	62.363160	0.005204	34.932227
KEFLEKTOR-REGION 8								
HE-3	10.230662	1.497442	1.132061			;		
FB-10	0.0484+9	0.0+3604	0.000634	20000	0.085713	4.815040	0.000482	2.697026
S8-10	0.000503	0.000453	C. CC003	0.0000	100000	999700	0200020	0.001494
1-1	0.263734	0.237334	0.004028	0.00000	0-100252	0.000030	0000000	1000000
71-1	0.000002	2.000002	000000	0.00000	00000000	1000000	700000	0.007928
7 LUG	0.000013	0.000012	.00000000	0.00000	00000000	000000		00000
8-1-1	1482.215692	1333,994123	18.446374	0.032693	1.463570	82,218201	0.007854	46.052877
REGION FOTALS	1492, 759026	1335.772970	19.583990	0.034709	1.549583	87.050093	0.008339	48.759342
1 OTAL CURIE	25558.416583 22557, 321402	22557, 321403	240 040		1			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	301436 01 66 33	246.653312	3,425808	26-626850	1495.802483	0.102314	837.884353

DURING THE PERIOD FROM 6 2 76 TO 12 31 76 THE POWER LEVEL WAS 1.00 AND THE PURIFICATION PLANT EFFICIENCY WAS 1.00 THE HEAT EXCHANGER RATE OF 5.3502E-06 (SEC-1) AND THE ADSORPTION RATIO OF 564.2295 WERE BASED CN 15.00 PPN H2

SUURCE -ATEMS	NVENTURY IN CURIES TRITIUM PRODUCTION	BOUND 1 SOL 105	N ADSORED ON GR.SURFACE	IN PRIMARY COOLANT	LEAKAGE FROM PRIMARY	PUR IF M PLANT	HZO IN STEAM GENERATOR	BLOWDOWN+LOSS STEAM GENERATOR
KINGELETRE-REGIEN								
FJEL	418.702650	414.515602	0.614047	0.001388	0.040293	2,263531		1.267826
HE-3	42.210572	15,321913	3.097431	0.002490	0.268317	15. 073091	0.001319	8 -443011
FB-10	0.+21345	C. 379210	0.000000	00000000	0.000474	0.026644		0-014926
SB-10	0.344741	C.310267	0.000103	Q. 00000	0.000388	0.021781		0-012202
11-7	1.691494	1.522345	0.010936	0.000019	0.001785	0.100248		0.056157
C-12	0.032878	0.029590	0. 606207	0-00000	0.000035	0.001952		0.001093
36-9	0.186349	0.167714	0.004119	0.000007	0.000164	0.009194	0.000002	0.005149
rI-6	1043.293558	538. 5642 C2	4.062576	0.007203	1.130986	63.534787	0.001731	35.592076
KEGION TCFALS	1506.883587	1371.210844	7. 789508	0.013806	1-45441	81.031229	0.003318	45, 392442
KIIGEL CORE-REGION 2								
FUEL	277.444836	274.670373	0.406886	0.000721	0.026699	1.499883		0.840100
HE-3	43.4422+£	13, 562842	3,395871		0.294169	16.525396		9.256562
FB-10	0.220433	0.198389	0.000045		0,000248	0.013940		0.007810
58-10	0.195707	0.176136	0.000061	0.00000	0.00020	0.012363		0.006926
\-11	1.24/686	1. 122918	0.0075	0.000013	0.001322	0.074261		0.041599
21-3	0.038543	C.034689	0.000253	0.00000	0.003041	C*005282	000000°C	0.001278
7-10	0.224164	84/107-3	C. CO4997	3.000009	9610000	0.011033		0.006179
9 17	474.480133	443.0350.6	162845.1	0.002478	0.542008	30.448123		17.057219
KEGION TOTALS	817,300368	735,405173	5.213934	0.009241	9.864904	48.587282	0.002221	27.217613
KUGELCORF -REGICN 3								
FUEL	373,546015	369, 810535	0.547822	0.000971	0.035948	2.019412		1,131093
HE-3	36.053134	12,974085	2,658584		0.230301	12,937522	0.001132	7-24-6797
F8-10	3,005126	C. 004614	0.00003		9000000	0,000323		0.000181
SB-13	0.003970	0.033573	C. CC0001		400000	0.000251	0.00000	0.000140
11-7	0.823358	0.741022	0.009314		0.CC3824	0.046263	\$00000°	0.025914
ごーご	0.029519	0.026567	0. C00184		0.000031	0.001754		0.000983
BE-9	0.123853	0.111468	0.002100	0.00000	0.000116	0.006515	0.00001	0.003649
7-17	1366.605056	1229,944551	8.397284	0.014883	1.446715	81.271345		45.526701
HEGION TOTALS	1777.190032	1613.616416	11.615294	0.020586	1.713945	96.283385	0.004948	53.935458
KUGEL CORE -R EGION 4		1						
- OF L	474.120696	469.379466	C*65330	0.001232	0.045626	2,563125		1.435632
HE-3	74.237705	23, 200305	5.879238	0.010.20	0.509293	28.610255		16.025690
F8-10	0.005759	0.005183	0.00003	Q. 00000	9000000	0.000363		
C1-88	0.004630	0.004167	0.000002	0.00000	0.000000	0.000292	000000000	
11-7	1.039015	C. 935113	0. C11746	Q. 000021	0.001039	0.058386		
2-12 2-12	0.044844	0.040359	0.000283		0.000047	0.002662		
7	1557,759555	1401.983600	9,119939	0-016164	1.656182	0.009959	0.000001	0.005578 52-055684
KEGION TLTALS	2107,401672	1895,718715	15,709756	0.027863	2.210176	126, 171 144	0.006692	69.557147
	1			1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.724.4			

08 13,492723 CC 0,00194 00 0,000194 05 0,006295 00 0,000015 78 546,902948	92 560.423710	09 5.175589 00 0.000135 00 0.000065 01 0.007189 00 0.00056	96 55.898841	24 5.275126 50 0.000122 00 0.000008 00 0.000000 00 0.0000000 00 0.000000 00 0.000000 00 0.00000	33 38.439405	3 3.629165 30 0.001683 00 0.000018 22 0.000018 00 0.000000	· · · · · · · · · · · ·
0.002108 C. (C00CC 0.00000 0.000000 0.000000	0.058392	0.000809 0.000809 0.000000 0.000000 0.000000 0.00000000	0.032796	0.000824 C. CCCCO 0.000000 0.000000 0.000000	0.034883	0.000473 0.000000 0.000000 0.000000 0.000000	0.008092
24.089214 0.002737 0.00346 0.006946 0.000000 976.319793	1000.458665	9.239847 0.000741 0.000115 0.012834 0.000105 0.000109	99.784174	9.417548 0.000217 0.000014 0.002386 0.000000 0.0000000	68.622883	5,407891 0,003005 0,000031 0,000000 0,00000 0,00000 91,817569	97.246844
0.428795 0.35046 0.03006 0.003006 0.000000 0.300000	17.809201	0.164479 0.000000 0.000000 0.000000 0.000000 0.300000	1.776263	0.167642 0.000004 0.000000 0.000000 0.000000 1.000000	1 •221559	0.054266 0.000053 0.000051 0.000091 0.000000 0.000000	1.731060 28.769750
0.008773 0.000000 0.000000 0.000000 0.000000 0.234203	0.242998	0, 003365 0,00000 0,000000 0,000000 0,00000 0,00000	0.011634	0, 003430 0,000000 0,000000 0,0000001 0,000000 0,000000 0,000000	0.020323	0.001970 0.000001 0.000001 0.000008 0.000000	0, 033680
4.545985 0.000116 0.00007 0.012357 0.000000 0.000114	137.106448	1,898734 0,000001 C,CC0000 0,003333 0,00001 0,00001 4,661903	6.564026	1,935250 C,000020 C,000030 C,000630 C,000630 3,000003	11.466808	1.111290 0.000636 0.000636 0.004240 0.004240 0.000000	19.003452
3C, 368C27 0,039914 0,04972 0,78147 C,030062 0,000501	16864.620777 15688.521963	e.412359 0.003433 0.601441 0.212328 C.600229 0.001907	1236,406592	2,745638 0,003264 0,003264 0,03956 0,00000 0,000009	925, 530009	1.654133 C.048414 C.00481 0.270381 0.000002 1465, 285903	1467,259329
73.338626 0.044349 0.005524 0.864608 0.00069 0.000557	16864-620777	24.895222 0.003414 0.001824 0.235920 0.00254 0.002119	1500.444326	19.545459 0.003627 0.000226 0.0043953 0.00001 0.000010	1049,305870	11.301187 3.053793 0.000535 0.30624 3.000002 0.000012	1639.751435 1467,259329 27202.898036 24437.669041
A EFLEXTOR-PEGION 5 HE-3 FR-1C S-9-10 LI-7 C-12 RE-5 LI-c	REGION TOTALS	FLELEKTOR REGION 6. (15-3) FR-10 18-10 LI-7 G-12 BE-5 LI-6	REGILM TUTALS	KEFLEKTUR-REGIEN 7 HE-3 F9-10 S9-10 LI-7 C-12 BE-9 LI-6	REGION TOTALS	FEFLEKTUR-KFGIGN 8 HE-3 FB-10 SB-10 LI-7 C-12 BE-9 LI-6	KEGION TOTALS Total curies

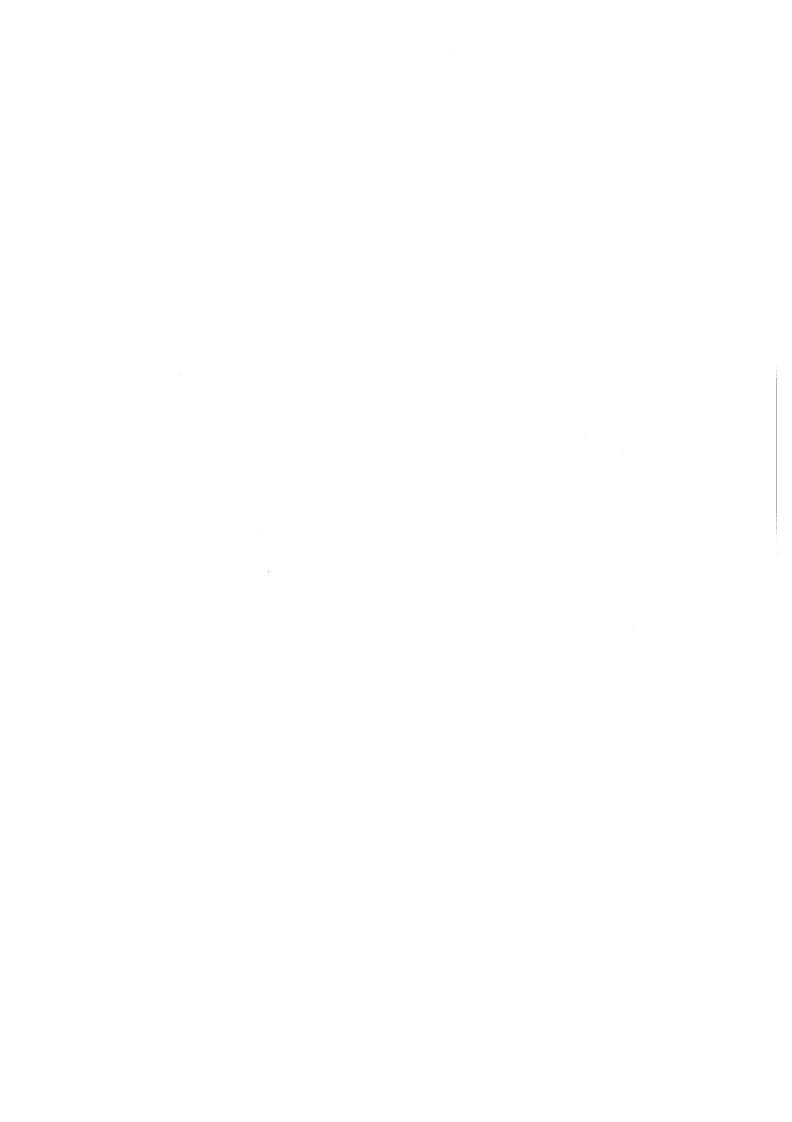
DURING THE PERLOD FROM 11 19 77 TO 12 31 77 THE POWER LEVEL WAS 1.60 AND THE PURIFICATION PLANT EFFICIENCY WAS 1.00 IN HE HEAT EXCHANGER RATE OF 5.35.22E-36 (SEC-1) AND THE ADSORPTION RATIO OF 56.2295 WERE BASED ON 15.00 PPM H2

CUMULATIVE TRITIOM IN QURUE -RIOMS	NVENTORY IN CURIES AS OF TRITIUM BOUND PRODUCTION SOLIDS	RIES AS OF PE BOUND IN SOLIDS	PERIOD END FOR IN ADSORBED ON GR.SURFACE	PRODUCTION, AND IN PRIMARY COOLANT	ID DISTRIBUTION LEAKAGE FRCM PRIMARY	SINKS PURIF*N PLANT	HZO IN STEAM GENERATOR	BLOWDOWN+LOSS STEAM GENERATOR
KUGELCORE-REGICN 1								
FJEL	451.581271	+47.461436	0.495302	0.000878	0.045389	2.549802		1.428253
FR+10	0.421346	10.210092	469624-7	96740000	0.293644	16.495902		9.240393
58-13	0.344741	0.310267	0.000044	000000	C-00045	0.021818	0.00000	0.014945
11-7	1.749146	1.574231	0.038709	0.000015	0.001875	0.105315		0.058997
C-12	0.033071	C. 029764	C. CC0103	G-00000	9.00000	0.002030		0.001137
6-3	0.196137	0.176523	0 *002480	3.000004	C.000193	3.010855		0.006080
+	1072.253620	565.028258	3. 164747	3.006566	1.167698	65.597154		36.747620
PEGION FOTALS	1571.654946	1431.176384	6. 635079	0.011760	1.509699	84.809553	0.002825	47,505648
KUGEL CORE-REGION 2								
FUEL	299.496240	296.501263	0.328202	C. 000582	0.030076	1.689575	0.000140	0.946403
HE-3	45.579215	14, 778254	2.657175	0.004109	0.321937	18.085296	0.001131	10.130713
01-84	0.220433	0.198390	0.000019	0,00000	0, 300248	0.013957	0000000	0.007819
01-96	1 287495	05.101.100	0.000026	0.000000	0.000220	0.012385	0.00000	0.006939
5-12	0-038784	0.036906	0.000127	10000	0.000042	0.00.1100	6000000	0.043384
9E-9	0.235314	C. 212682	0.003.024	0.00005	0.00032	F 20 20 0	20000	26.00.0
٠١ - 9	505.751436	455.176292	1.356148	0.002404	0.555191	31.188698	0.000577	17.472126
REGION TOTALS	853.205623	768.236667	4.350748	0.007711	0.909333	51.083106	0.001852	28.616206
NUGELLORE-REGION 3								
FJEL	÷03, 235572	355,203196	0.443.884	0.000783	0.040494	2.274809	881000-0	1.274216
HE-3	38,158589	13,731755	2,080268	0.003687	0.252041	14,158747	0.000886	7.931205
FB-10	J. UJ5138	C. 004624	0.000002	0.000000	9000000	0.000324	0.00000	0.000182
SB-10	0.003972	C. 003575	C. CCGC01	ი იიიიი	0.00000	0.000251	000000	0.000141
· 1-1	0.886480	0.797832	0.008389	0.000015	3,000905	0.050851	0.00000	0.028485
C-12	0.029689	0.026720	C- 000045	0.00000	0.000032	0.001823	0.00000	0.001021
8E-9	0.129279	0.116351	0.001297	0.00000	0.000131	C. 0C7369	0.00000	0.004128
LI-t	1434, 783155	1291-364839	8.243701	0.014611	1.525359	85.689310	0.003509	48.001826
REGION TOTALS	1877.231873	1735.188891	10.175633	0, 019098	1.818973	102.183485	0.004587	57.241205
4 NOTES 01 9800 1981X								
	511,803962	504.685896	. 5.40.8EQ	100000	700.130.0	3007100	00000	1 41 1200
HE-3	78.573088	24-555172	4.650361	00000	0 557347	700012 12	0.00029	1. 5 26 26 2
FB-10	0.005767	0.005191	0.000000	000000-0	9000000	445000-0	0.00000	0-000204
38-10	0.004631	C. CC4168	0.00001	3.00000	0 000005	0 0000293	0000000	9,000
11-7	1.118618	1.006756	0.010579	0.000019	0.001142	0-064172	0.000005	0.035946
C-12	0.045106	0.040596	0.000141	0000000	0.000049	0.002769		0.001551
	0.197855	C-178069	0.001996	0° 00000¢	0.000201	0.011271		0.006314
11-6	1632, 8931 03	1469,603792	9.014664	0.015977	1.740127	97.754167	0.003837	54. 760538
		·						
REGION TOTALS	2224-642130	2002-079640	14.188582	0.025147	2.350294	132,031216	0,006039	73.961212

015 560 195 520 002 174	585	138 158 168 168	2	24 27 27 00 00 00 00 00	9	20038448 20038448	5
14.767015 0.001560 0.00195 0.029520 0.000018 579.991374	594. 789685	5.664387 0.000135 0.00066 0.000060 0.000068 51.820319	57.493042	5.773324 0.000127 0.001501 0.001501 0.000000	41.350260	3.315248 0.001847 0.000018 0.000018 0.000000 0.000001 56.015258	59.342635
0.001649 6.000000 0.000000 0.000000 0.000000	0.042952	0.000632 C.00000 0.000000 0.00000 0.00000 0.300000 0.001279	3.001913	0.000645 0.000000 0.000000 0.000000 0.000000	0.003699	0.000370 0.000000 0.000000 0.000001 0.000000	0.006269
26.361998 0.002785 0.00348 0.000348 0.000000 0.000032	1061.773617	10.112034 0.000242 0.000115 6.014386 0.000116 0.000122	102.628238	10.306508 0.000226 0.000014 0.002019 0.002010 0.000010	73.815632	5.918364 0.003297 0.00333 0.018322 0.000000 99.997512	105.937529
0.469271 0.400050 0.400050 0.60050 0.600000 0.600000 18.430416	18.900682	C.180005 0.000004 0.000005 0.00000 0.000000 1.646620	1.826890	0.183467 0.000000 0.000000 0.000000 0.000000 0.000000	1, 314013	0.1 C53 53 0.200359 0.000316 0.000000 0.000000 1.780060	1.885799
0.006865 0.0000000 0.0000000 0.0000018 0.0000000 0.0000000000	0.178802	0, 002633 0,000000 0,000000 0,000000 0,000000 0,000000	0.007961	0.002684 0.000000 0.000000 0.000000 0.000000 0.012714	ئ 105399	0.000001 0.000001 0.000000 0.000000 0.000000 0.024552	0, C26100 0, 291576
3. £ 732 26 3.0000 73 0.000948 0.00000 0.00000 9.000009	100.885160	1,485707 0,000000 0,000000 0,002680 0,00001 0,000033	4.4 92 097	1,514280 0,000014 0,000508 0,000508 0,000000 7,173495	e. ce8297	0.869553 0.CCC497 0.000002 0.003417 0.00000 0.000000	14.726154
32.141480 0.040215 0.004977 0.838158 C.CC062 0.C00533	15611.959338	8.903672 0.003433 C.601641 0.228472 C.000230 0.002031	1349, 546364	2,905985 0,003335 0,00205 0,046824 0,04001 0,000010	965.572510	1.750732 C.C51311 O.C.00488 C.291025 O.000002 O.000016	1547, 177243
77.621534 0.04684 0.05530 0.93128 0.00069 0.000592	17388.520236 15611,959338	26.349373 0.003814 0.001824 0.253858 0.00255 1489.785427	1516, 356505	20.686887 0.00327 0.00227 0.047360 0.047360 1074.022617	1094.763813	11,961161 0,057012 0,000542 0,323361 0,00002 0,00002 1716,759633	1729.131729 1547.177243 28255.523851 25385.337038
REFLEKTOR-REGILN 5 HE-3 FB-10 5B-10 LI-7 C-12 BE-9 LI-6	REGIUN TUTALS	KEFLEKTOR REGION 6 HE-3 FR-10 58-10 LI-7 C-12 6E-9 LI-5	REGIUN TOTALS	FEFENTUR-REGION 7 16-3 16-3 18-10 18-10 11-7 1-7 12-9 11-6	REGICN TOTALS KEFLEKTCR-REGTON A	HE-3 FB-10 SB-10 L1-7 C-12 GE-9 L1-6	KEGICN TOTALS TOTAL CUPIES

• .

Die Arbeit wurde am Institut für Reaktorentwicklung der Kernforschungsanlage Jülich GmbH durchgeführt.


Mein besonderer Dank gilt Herrn Prof. Dr. R. Hecker für die Themenstellung, das stets große Interesse am Verlauf der Arbeit und die wertvolle Betreuung.

Ich bedanke mich bei Herrn Prof. Dr. R. Schulten für die kritische Durchsicht der Arbeit.

Herrn Dr. H.D. Röhrig bin ich ebenfalls zu besonderem Dank verpflichtet für die wertvollen Anregungen aus zahlreichen Diskussionen und die kritische Begleitung der gesamten Arbeit.

Bei Herrn Dr. R. Wagemann bedanke ich mich für die Bereitstellung der reaktorphysikalischen Daten des AVR-Reaktors und die fachliche Beratung bei der Aufbereitung dieser Daten zur Programmeingabe.

Nicht zuletzt danke ich allen, die mir bei der Durchführung und Fertigstellung dieser Arbeit geholfen haben.

