
Toxizitätsprüfungen in Zellkulturen für eine Vorhersage der akuten Toxizität (LD50) zur **Einsparung von**

W. Halle

Forschungszentrum Jülich GmbH Projektträger Biologie, Energie, Umwelt des Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie

Toxizitätsprüfungen in Zellkulturen für eine Vorhersage der akuten Toxizität (LD50) zur Einsparung von Tierversuchen

Willi Halle

Schriften des Forschungszentrums Jülich Lebenswissenschaften/Life Sciences

Band 1

ISSN 1433-5549

ISBN 3-89336-221-5

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Halle, Willi:

Toxizitātsprūfungen in Zellkulturen für eine Vorhersage der akuten Toxizitāt (LD50) zur Einsparung von Tierversuchen / Wille Halle. Forschungszentrum Jülich GmbH, Projektträger Biologie, Energie, Umwelt des Bundesministeriums für Bildund, Wissenschaft, Forschung und Technologie. - Jülich: Forschungszentrum, Zentralbibliothek, 1998 (Schriften des Forschungszentrums Jülich : Reine Lebenswissenschaften ; Band 1) ISBN 3-89336-221-5

Herausgeber

Forschungszentrum Jülich GmbH

und Vertrieb:

ZENTRALBIBLIOTHEK

D-52425 Jülich

Telefon (02461) 61-5368 · Telefax (02461) 61-6103

e-mail: zb-publikation@fz-juelich.de Internet: http://www.kfa-juelich.de/zb

Umschlaggestaltung: Grafische Betriebe, Forschungszentrum Jülich GmbH

Druck:

Grafische Betriebe, Forschungszentrum Jülich GmbH

Copyright:

Forschungszentrum Jülich 1998

Schriften des Forschungszentrums Jülich

Reihe Lebenswissenschaften/Life Sciences (Biotechnologie/Biotechnology) Band 1

ISSN 1433-5549

ISBN 3-89336-221-5

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie oder in einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung, Wissenschaft, Forschung und Technologie unter dem Förderkennzeichen 0310007A im Rahmen des Förderschwerpunktes "Ersatzmethoden zum Tierversuch" gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

•

Vorwort

Untersuchungen der Wirkung von Xenobiotika an Zell- und Gewebekulturen von Vertebraten haben seit den richtungsweisenden Arbeiten von Charles M. Pomerat im Jahre 1954 eine lange Tradition in der Arzneimittelforschung. Das mit dieser Monographie vorgestellte erweiterte Register der Zytotoxizität (RC) mit den Teilen RC 1 und RC 2 zeichnet sich durch einen umfangreichen Pool von Zytotoxizitätsdaten (IC50x) und Daten zur akuten oralen und intravenösen Toxizität (LD50) für Ratte und Maus aus und ermöglicht damit eine detaillierte Untersuchung der bereits im Jahre 1956 von Harry Eagle entdeckten gleichgerichteten toxischen Wirkung unterschiedlicher Stoffe in vitro (in der Mammalier-Zellkultur) und in vivo (im Tierexperiment).

Auf der Grundlage der Daten zur Zytotoxizität wird ein neues und als allgemeingültig eingestuftes Verfahren vorgestellt, von Stoffen unterschiedlicher chemischer Substanzklassen die akute orale und intravenöse Toxizität vorherzusagen und die Stoffe in Toxizitätsklassen bekannter Klassifikationssysteme für die akute orale Toxizität einzuordnen. Dieses Verfahren, einem Tierversuch vorgeschaltet, trägt zur Reduzierung der Zahl der Versuchstiere bei und ist somit für die Belange des Tierschutzes relevant.

Die Untersuchungen zur Weiterentwicklung des Verfahrens wurden im Rahmen eines Forschungsvorhabens mit dem Förderkennzeichen 0310007A vom Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) über den Projektträger Biologie, Energie, Ökologie (BEO) im Förderschwerpunkt "Ersatzmethoden zum Tierversuch" in großzügiger Weise finanziell unterstützt und in der Zeit vom 01.09.91 bis 31.03.94 im Forschungsinstitut für Molekulare Pharmakologie (FMP) im Forschungsverbund Berlin e.V. bearbeitet.

Das Forschungsvorhaben wurde in Kooperation mit dem Forschungsvorhaben des Bundesinstituts für gesundheitlichen Verbraucherschutz und Veterinärmedizin (BgVV) "Entwicklung eines EDV-gestützten Expertensystems zur Vorhersage von Haut- und Augenreizwirkungen chemischer Stoffe auf der Basis ihrer physikalisch-chemischen Eigenschaften" (Förderkennzeichen 0310005A, Leitung Frau Dr. Ingrid Gerner) durchgeführt.

Der Schlußbericht zum BMBF-Projekt 0310007A wurde beim Projektträger BEO im September 1994 vorgelegt. Für die vorliegende Monographie wurden einige Passagen neuer Erkenntnisse entsprechend und der Abschnitt 11. Zusammenfassung geändert. Mit Fördermitteln des Bundesverbandes der Tierversuchsgegner "Menschen für Tierrechte, Baden-Würtemberg e. V.", Stuttgart, konnnte in der Zeit von 1995 bis 1996 ein dritter Teil des RC (RC 3) erarbeitet werden. Für Zwecke der Vergleichbarkeit der Ergebnisse wurden an zwei Stellen dieser Monographie die Ergebnisse des RC 3 mit einbezogen (Tabelle 2 und Tabelle 3).

Das besondere Verdienst des Direktors der Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergänzungsmethoden zum Tierversuch (ZEBET) im BgVV, Herrn Professor Dr. Horst Spielmann, ist es, daß der gesamte Datenpool nach PC-gestützter Aufarbeitung in neuer Form und übersichtlich präsentiert werden kann. Unter Einbeziehung von Rechenprogrammen sind die Daten als ZEBET-Datenbank "Register der Zytotoxizität" (RC) gespeichert. Nach

Komplettierung der RC-Datenbank durch Aufnahme der IC50-Einzelwerte der 361 Substanzen sollen alle Daten für Interessenten abrufbar zur Verfügung stehen.

Herrn Professor Spielmann möchte ich für die ständige Unterstützung und fachlichen Beratungen und Diskussionen herzlich danken. Allen Mitarbeiterinnen und Mitarbeitern der Einrichtung ZEBET sei für die vielfältigen Unterstützungen gedankt.

Den Leitungen und Mitarbeiterinnen und Mitarbeitern der Wissenschaftlichen Bibliotheken des ehemaligen Bundesgesundheitsamtes und der Wissenschaftlichen Zentralbibliothek der Schering AG danke ich für die hilfreiche Unterstützung bei der Literaturbereitstellung.

Für die Auswertung der Laborversuche mit Zellkulturen etablierter Aortenendothelzellinien und für die Übernahme zusätzlicher organisatorischer Aufgaben im Rahmen der Projektarbeiten möchte ich Frau Dr. Elvira Rohde, FMP, Dank sagen.

Für die ausgezeichnete technische Assistenz bei der Betreuung der Zellkulturen und Durchführung der Versuche danken wir Frau Gertraud Schönherr, Frau Bettina Kahlich und Herrn Klaus-Peter Schreier im FMP besonders.

Willi Halle Berlin, den 31. März 1997

Inhaltsverzeichnis

1 EINLEITUNG	7
2 DAS REGISTER DER ZYTOTOXIZITÄT (RC)	8
3 DAS ERWEITERTE REGISTER DER ZYTOTOXIZITÄT	9
3.1 Zielstellung	9
3.2 Der Aufbau des erweiterten Registers	9
3.3 Die IC50-Werte	10
3.4 Der Faktor F _s	12
3,5 Die IC50x-Werte	12
3.6 Die LD50-Werte	13
3.7 Physikalisch-chemische Stoffeigenschaften	14
3.8 Abbreviations and selected definitions	15
4 DATENBLÄTTER ZU DEN 361 STOFFEN	16
4.1 Erster Teil (RC 1): Das RC von 1988 mit ergänzten IC50-Werten, RC-Substanz-Nr. 1 - 131	
Zweiter Teil (RC 2): Das RC mit neuen Substanzen, RC-Substanz-Nr. 132 - 361	16
4.2 Literatur-Nummern für die IC50-Einzelwerte	25
4.3 Anmerkungen - Ergänzungen	34
5 AUSWERTUNG UND BERECHNUNGEN	36
5.1 Statistisch relevante Parameter	36
5.2 Die Beziehung zwischen der IC50x und LD50 p.o.	37
5.3 Die Beziehung zwischen der IC50x und LD50 i.v.	40
5.4 Die Position der Regressionsgeraden	40
5.5 Schlußfolgerungen	42
6 UNTERSUCHUNGEN ZUR VERBESSERUNG DER LD50-VORHERSAGE	42
6.1 Analyse der Abweicher-Wertepaare IC50x - LD50 p.o.	42
6.2 Multiple Regression mit physikalisch-chemischen Stoffeigenschaften und formalen Parametern	
(in Zusammenarbeit mit DiplMath. Ingo Baeger, Forschungsinstitut für	
Molekulare Pharmakologie)	50
6.3 Schlußfolgerungen	52
7 DIE SPANNWEITE DER IC50-WERTE (Fs)	53
8 ANWENDUNG DES VERFAHRENS ZUR VORHERSAGE DER LD50	55
8.1 Die Bestimmung der Zytotoxizität	55
8.2 Vergleich der RC-Daten mit der ATC-Methode	59
8,3 Schlußfolgerungen	62
9 PERSPEKTIVEN FÜR DAS RC	64
10 ZUSAMMENFASSENDE SCHLUßFOLGERUNGEN	65
11 ZUSAMMENFASSUNG	66
12 LITERATURVERZEICHNIS	71
13 ALPHABETISCHES SUBSTANZVERZEICHNIS	81
14 SUMMARY	90

1 Einleitung

Die Bemühungen, für toxikologische und pharmakologische Untersuchungen lebender tierischer und menschlicher Zellen außerhalb des Organismus die Vorteile der Zell- und Gewebezüchtung zu nutzen, sind so alt wie dieses Fachgebiet selbst. Im Jahre 1956 entdeckte Harry Eagle (Eagle-Medium) die gleichgerichtete toxische Wirkung von Xenobiotika in der Zellkultur und im Tierexperiment. Er fand eine signifikante positive Korrelation zwischen der Zytotoxizität (IC50) und der akuten Toxizität (LD50 i.p. bei der Maus) für potentielle Kanzerostatika. Seit dieser Zeit ist eine große Zahl von Arbeiten bekannt geworden, die den gleichen Effekt beschreiben: Die Zytotoxizitätsstärke in der Zellkultur korreliert positiv mit der Toxizitätsstärke im Tierversuch. Es ist nicht eine Arbeit bekannt geworden, die eine negative Korrelation für diese Beziehung beschreibt. Darüber hinaus wurde 1985 die Vermutung geäußert (164), daß auf der Grundlage dieser positiven Korrelation mit Hilfe der Zellkultur eine Vorhersage der Stärke einer toxischen Wirkung eines Wirkstoffes oder einer Wirkstoffklasse im Tierversuch grundsätzlich möglich ist. Zur Abklärung dieser Problematik wurde erstmalig das einfache lineare Regressionsmodell für diese Beziehung IC50 - LD50 angewandt (164), mit folgendem Ergebnis:

Zwischen der Stärke der Zytotoxizität, die Xenobiotika in der Mammalier-Zellkultur entwickeln, und der akuten Toxizität im Tierexperiment läßt sich bei Beachtung bestimmter Voraussetzungen eine signifikante positive lineare Beziehung nachweisen (164, 167).

Diese Tatsache kann genutzt werden, um von der Zytotoxizitätsstärke einer Substanz in vitro auf ihre Toxizitätsstärke im Tierexperiment zu schließen. Ein solches Alternativverfahren eröffnet neue Möglichkeiten zur Reduzierung von Tierversuchen zur Bestimmung der LD50 oder einer approximativen LD50 im Tierexperiment durch Vorhersage der Toxizität in vivo auf der Basis von Zytotoxizitätsdaten. Das ist möglich, wenn bei einem Zelltyp von einer Anzahl Xenobiotika die Inhibitionskonzentration bestimmt wird, die eine Zelleistung oder ein Zellmerkmal in vitro im Vergleich zur Kontrolle um 50 % zu ändern vermag (IC50). In diesem Falle wird also die Zytotoxizität einer Substanz an einem Zelltyp und mit einem zytotoxischen Endpunkt bestimmt.

Mit biostatistischen Methoden werden diese IC50-Werte mit den entsprechenden bekannten LD50-Werten in Korrelation gesetzt. Nach Anwendung des einfachen linearen Regressionsmodells für die Wertepaare IC50 - LD50 auf molarer Basis konnte erstmals gezeigt werden, daß unabhängig der von Labor zu Labor unterschiedlichen Versuchsprotokolle, Zelltypen und zytotoxischen Endpunkte und unter Zugrundelegung der LD50-Werte aus dem NIOSH-Register (165, 166) sich die Werte der Parameter der linearen Regression für die Wertepaare IC50 - LD50 aus jeweils einer Literaturarbeit in gewissen Grenzen gut miteinander vergleichen lassen (167). Dieser Trend ist auch nach einer Berechnung der Werte aus fünf Literaturarbeiten (12, 20, 24, 34, 85) in Tabelle 1 ersichtlich. Damit konnte ein erster Beweis für eine gewisse Allgemeingültigkeit eines Zusammenhanges zwischen der IC50 und der LD50 erbracht werden (167). Dieser Befund bildete die Grundlage für die Konzeption eines Registers der Zytotoxizität für Möglichkeiten zur Abschätzung der akuten Toxizität (LD50) im Tierexperiment aus der Zytotoxizität (IC50) in der Zellkultur.

Tabelle 1

Parameter der linearen Regression für die Wertepaare IC50 - LD50 p.o. Ratte von FRAME-Referenzsubstanzen; zytotoxischer Endpunkt: Reduzierung des Proteingehaltes der Kulturen.

Lfd. Nr	Zellinie	Zahl der Substanzen n	r	a	b	$F_G \le \log 5$ %	Literatur Nr
1	V79/4	9	0,889	0,584	0,707	78	12
2	BCL-D1	22	0,719	0,536	0,633	77	20
3	3T3	15	0,607	0,253	0,422	60	24
4	V79	17	0,573	0,577	0,485	76	34
5	3T3-L1	91	0,721	0,631	0,427	74	85

r = Korrelationskoeffizient; a = Intercept; b = Regressionskoeffizient; berechnet nach log LD50 = a + b * log IC50; FG-Bereich siehe Abschnitt 2.

2 Das Register der Zytotoxizität (RC)

In das RC von 1988 (168) wurden nur solche Substanzen aufgenommen, für die zwei oder mehr IC50-Werte pro Substanz nach definierten Kriterien aus der Literatur recherchiert werden konnten. In diesem Falle wird die Zytotoxizität einer Substanz bei zwei oder mehr Zelltypen und/oder mit zwei oder mehr zytotoxischen Endpunkten bestimmt. Das RC enthält 131 Substanzen mit 580 IC50-Werten. Von 102 Substanzen standen zusätzlich die oralen LD50-Werte für Ratte und/oder Maus aus dem NIOSH-Register (RTECS) zur Verfügung. Nach Bildung des geometrischen Mittels der einzelnen IC50-Werte einer Substanz (IC50x) wurde mit dem einfachen linearen Regressionsmodell auf einen Zusammenhang zwischen der IC50x (in mmol/1 Nährmedium) und der oralen LD50 für Ratte/Maus (in mmol/kg Körpermasse) zur Vorhersage der LD50 aus der IC50x nach der Gleichung log LD50 = a + b * log IC50x geprüft. Für die 102 Wertepaare IC50x - LD50 p.o. für Ratte/Maus errechneten sich folgende Werte:

 $\log LD50 = 0,598 + 0,471 * \log IC50x$, mit einem Korrelationskoeffizienten r = 0,644. Von den 102 Wertepaaren liegen 75 (73,5%) in einem Bereich der LD50 um die Regressionsgerade, der durch den von uns empirisch festgelegten Faktor $F_G \le \log 5$ definiert ist und damit das \pm 5fache der geschätzten LD50-Werte ý auf der Geraden umspannt. Dieser LD50-Vorhersagebereich von etwas mehr als einer Größenordnung einer Dosiseinheit garantiert für eine Prädiktion noch eine für die Praxis und Forschung ausreichende Genauigkeit.

Von praktischem Interesse ist die Frage, in welchem Umfange sich die "Trefferquote" von 73,5 % und die anderen Werte der Parameter der linearen Regression nach Erweiterung des RC ändern werden. Nach einer ersten Ergänzung des Registers durch Aufnahme weiterer IC50-Werte und Erweiterung durch neue Substanzen blieben die Lage und der Anstieg der Geraden im Koordinatensystem weitestgehend konstant (67, 169). Diese gute Repro-

duzierbarkeit der mit diesem Verfahren erzielten Ergebnisse führte zu der These, daß sich durch Neuaufnahme von IC50-Werten und weiterer Substanzen die Werte der Parameter der linearen Regression nicht wesentlich ändern werden (169). Diese These läßt sich mit dem erweiterten Register der Zytotoxizität verifizieren.

3 Das erweiterte Register der Zytotoxizität

3.1 Zielstellung

Mit dem erweiterten RC wird geprüft ob und unter welchen Voraussetzungen eine Allgemeingültigkeit der Beziehung zwischen der Zytotoxizität in vitro und der akuten Toxizität in vivo nachweisbar ist. Die Bedingungen sollen definiert werden, die es erlauben, zur Abschätzung der oralen LD50 und der intravenösen LD50 für Ratte/Maus je eine Standardregressionsgerade zu erstellen. Die Parameter dieser Standardgeraden zur Vorhersage der LD50 sollen nach einer Phase der Validierung - koordiniert durch die Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergänzungsmethoden zum Tierversuch (ZEBET) im Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin (BgVV) - einem breiten Nutzerkreis für eine praktische Anwendung zugänglich sein.

Zusätzlich soll nach Verfahren zur Verbesserung der Vorhersage der oralen LD50 gesucht werden.

3.2 Der Aufbau des erweiterten Registers

Für Möglichkeiten des Vergleiches zwischen den Substanzen des alten (ergänzten) und des erweiterten RC (s. Abschnitt 5.) sind die Datenblätter im Abschnitt 4. in zwei Teile gegliedert. Der erste Teil umfaßt die 131 Substanzen des alten RC von 1988 (168) mit Erhöhung der Zahl der IC50-Werte von 580 auf 1046. Im zweiten Teil sind zusätzlich 230 Substanzen mit 866 IC50-Werten erfaßt (RC-Substanz-Nr. 132 bis 361). Die Substanzen sind in beiden Teilen jeweils nach abnehmender Zytotoxizitätsstärke, d.h. nach steigenden IC50x-Werten geordnet. Durch Neuaufnahme von IC50-Werten in den ersten Teil des RC änderten sich auch die IC50x-Werte und damit auch die Reihenfolge der Substanzen im Vergleich zum RC von 1988.

Wie im ersten Teil sind auch im zweiten Teil des RC nur zufällig ausgewählte Substanzen aus unterschiedlichen chemischen Substanzklassen registriert, die nur insofern selektiert sind, daß wiederum zwei oder mehr IC50-Werte pro Substanz und orale (p.o.) und intravenöse (i.v.) LD50-Werte für Ratte und/oder Maus aus der Literatur recherchiert werden können. Substanzen ohne orale LD50-Werte sind im zweiten Teil nicht mehr enthalten.

Die Substanznamen entsprechen der englischen Schreibweise im NIOSH-Register (RTECS).

3.3 Die IC50-Werte

Anders als im RC von 1988 sind die IC50-Werte einer Substanz nicht mit aufgeführt. Das ist vertretbar, da entsprechend der Zielstellung nur mit den IC50x-Werten Berechnungen angestellt werden. Für eine weiterführende Orientierung über Versuchsprotokolle und zytotoxische Endpunkte für einzelne IC50-Werte dienen die Literaturzitate.

Die Stärke der Zytotoxizität in vitro bzw. die Empfindlichkeit der Zellen gegenüber Xenobiotika kann von folgenden extrazellulären Faktoren besonders stark beeinflußt werden:

- Die Einwirkungszeit t_E einer Substanz auf die Zellen:
 Allgemein bekannt ist der Befund, daß bei einer t_E von 2 bis 3 h eine höhere Substanzkonzentration zur Erzielung einer zytotoxischen Reaktion benötigt wird als bei einer einer t_E von z. B. 24 h.
- Die Serumkonzentration im N\u00e4hrmedium: Unter geringen Serumkonzentrationen um 1 % (170) oder in serumfreien N\u00e4hrmedien (9) ist eine st\u00e4rkere zytotoxische Wirkung zu verzeichnen als mit Konzentrationen um 10 %. Die meisten IC50-Werte wurden in N\u00e4hrmedien mit Serumanteilen um 10 bis 20 % oder in serumarmen N\u00e4hrmedien nach Kompensation des fehlenden Serums durch andere Proteinanteile (171) gewonnen.
- Die Koloniebildungsrate: Durch veränderte Zell-Zell-Wechselwirkungen wird man im allgemeinen davon ausgehen können, daß die Koloniebildungsrate sich als empfindlicher erweist als ein zytotoxischer Endpunkt, der mit Zellkulturen erzielt wird, die bei relativ hoher Zelleinsaatdichte innerhalb weniger Tage die stationäre Proliferationsphase erreichen. Doch Vergleiche von IC50-Werten aus beiden Kultivierungsarten liefern nicht in jedem Falle dafür einen eindeutigen Beweis. Deshalb wurde die Koloniebildungsrate als zytotoxischer Endpunkt mit einbezogen.

Für die Aufnahme von IC50-Werten gelten wie im RC von 1988 wiederum folgende Kriterien:

- Die IC50-Werte stammen nur von Mammalier-Zellinien oder von primären Mammalier-Zellkulturen mit einem definierten Zelltyp; die Zellen werden entweder auf der Unterlage (Glas oder Plastik) als Einzelzellen (Koloniebildung), einschichtige Zellrasen (cell monolayers) oder Zellinseln (micromass cell islands) oder flottierend als Zellsuspensionen kultiviert.
- Die Inkubationszeit in einem spezifischen Test ist mit t_E ≥ 16 h ausgewiesen.
- IC50-Werte aus einem Labor werden nur aufgenommen, wenn die Werte mit unterschiedlichen Zelltypen und/oder unterschiedlichen zytotoxischen Endpunkten gewonnen wurden (Ausnahmen: Lit. Nr. 74, 80).
- Um die Beeinflussung eines IC50-Wertes durch eine zellvermittelte metabolische Aktivierung oder Inaktivierung einer Substanz möglichst weitgehend auszuschließen, enthält auch das erweiterte RC keine IC50-Werte von Leberzellkulturen (Hepatozyten, Hepatomzellinien).

In den meisten Fällen sind IC50-Werte folgender zytotoxischer Endpunkte von tierischen und menschlichen Zellen registriert:

- Zellproliferation

Zellzahl; Zellproteingehalt, Kenazidblau-Methode (KB50-Test) u.a.; DNS-Gehalt und -Synthese, ³H-Thymidineinbau; Koloniebildungsrate.

- Stoffwechselmarker

Stoffwechselhemmtest mit pH-Änderung des Nährmediums (MIT-24-Test); Mitochondriales Diaphorase-System: Reduktion des Tetrazoliumsalzes Thiazolylblau zum Formazan (MTT-Test).

- Vitalität - Membranmarker

Neutralrotaufnahme in Lysosomen (NR50-Test); Zellanheftung, Zellablösung; Trypanblau-Exklusionstest.

- Differenzierungsmarker

Funktionelle Differenzierung innerhalb von Zellinseln; Morphologische Differenzierungsherde innerhalb von Zellinseln; Intrazelluläre Morphologie.

Die IC50-Werte von zytotoxischen Endpunkten, die den Austritt von Stoffen aus den Zellen, z.B. von Enzymen des Zytosols (172) und von anderen Makromolekülen (DNS, RNS) oder die Uridinaufnahme betreffen, wurden nicht mit aufgenommen. Für Vergleichszwecke wurde nur in einem Falle der Austritt von Laktat-Dehydrogenase und DNS in das Nährmedium bei PHA-stimulierten menschlichen Lymphozyten in der Primärkultur (75) als Marker der Zytotoxizität mit herangezogen.

Seltene zytotoxische Endpunkte sind die spontanen Kontraktionen von Skelettmuskelzellen (90) und die Zellanheftung an der Unterlage (93).

Nur in zwei Ausnahmefällen enthält das erweiterte RC mehrere IC50-Werte pro Substanz aus einem Laboratorium, die mit dem gleichen Zelltyp und dem gleichen zytotoxischen Endpunkt gewonnen wurden. In einem Falle wurden für Testungen leicht flüchtiger Stoffe die IC50-Werte nach Abdeckung der Mikrotestplatten mit COSTAR-Plastefilm oder der Mediumfläche in den Kavitäten mit Paraffinöl mit den IC50-Werten nicht abgedeckter Kulturen verglichen (74). In einem anderen Falle handelt es sich um Unterschiede der Substanzapplikation, die entweder zu Versuchsbeginn mit der Zelleinsaat in das Kulturgefäß oder 24 h nach Kultivierungsbeginn erfolgte (80).

Zum Aufnahmemodus für die IC50-Werte gilt, daß prinzipiell alle IC50-Werte einer Literaturarbeit in das RC aufgenommen werden, wenn für sie die in diesem Abschnitt festgelegten Kriterien zutreffen. (Ausnahme: Bei Abschluß des Registers wurde aus der Arbeit mit der Literatur-Nr. 157 nur eine Substanz mit der RC-NR. 229 aufgenommen). Enthält eine nach 1988 recherchierte Arbeit IC50-Werte von Substanzen, die bereits im RC von 1988 erfaßt sind, so werden auch diese IC50-Werte registriert. Dadurch erhöhte sich im ersten Teil ihre Zahl von 580 auf 1046 Werte.

Alle IC50-Werte einer Substanz lassen sich durch die zitierte Literatur belegen. Die Literatur-Nummern 1 bis 66 sind für die IC50-Werte der Substanzen im ersten Teil des RC reserviert. Diese Nummern sind bis auf zwei Ausnahmen (Lit.-Nr. 21, 63) identisch mit den Nummern des RC von 1988. Die Literatur-Nummern 67 bis 157 belegen ergänzende IC50-Werte im ersten Teil und die IC50-Werte der neu aufgenommenen Substanzen im zweiten Teil des RC.

Für einige publizierte Substanzwirkungen konnten die IC50-Werte selbst bestimmt werden, soweit die Graphiken der Konzentrations-Wirkungskurven oder die quantitativen Angaben (Zellzahlen u.a.) zu den jeweiligen Inhibitionskonzentrationen das ermöglichten.

3.4 Der Faktor F_S

Als Prüfgröße der "Streubreite" der IC50-Einzelwerte einer Substanz ist wie im RC von 1988 (168) der Faktor F_S als Quadratwurzel aus dem Quotienten der Spannweite IC50 max/ IC50 min definiert:

$$F_{S} = \sqrt{\frac{IC50 \text{ max}}{IC50 \text{ min}}}$$

Die F_S-Werte und die Zahl der IC50-Werte pro Substanz sind in den beiden letzten Spalten der Datenblätter (Abschnitt 4.1.) verzeichnet.

3.5 Die IC50x-Werte

Aus den IC50-Werten einer Substanz wird das geometrische Mittel IC50x berechnet. Dieser für jede Substanz bestimmte Wert in mmol/1 Nährmedium (mM) ist wie die LD50 selbstverständlich keine biologische Konstante zur Substanzcharakterisierung. Die IC50x-Werte werden für weitere Prüfungen eingesetzt.

Aus einer Datensammlung der Arbeitsgruppe um Spielmann et al. (121) stammen 41 Stoffe im RC 1 und RC 2, für die je zwei NR50- und KB50-Werte pro Stoff vorliegen. Die mittleren NR50- und KB50-Werte haben im RC den Rang von Einzelwerten für den jeweiligen Stoff erhalten. Die NR50-Werte sind 1996 publiziert worden (202).

Mit folgenden Ungenauigkeiten für einen registrierten IC50x-Wert muß gerechnet werden:

- Beim Vorliegen von nur zwei IC50-Werten pro Substanz ist nicht auszuschließen, daß sich durch Hinzufügung weiterer IC50-Werte der Wert des Faktors F_S vergrößert und die IC50x ändert.
- In einigen Arbeiten fehlen eindeutige Substanzangaben. In diesen Fällen muß unklar bleiben, ob bei alleiniger Angabe der Stammsubstanz diese oder ein Salz (z.B. als Hydrochlorid) eingesetzt wurde. Weicht die Substanzbezeichnung auf dem Datenblatt in dieser Beziehung von dem Derivat ab, das zur Bestimmung der IC50 verwendet wurde, erfolgte die Umrechnung in molare Konzentrationen unter Berücksichtigung der veränderten Molmasse.
- Mit Änderungen der Empfindlichkeit gegenüber Xenobiotika kann möglicherweise bei solchen Tumorzellinien gerechnet werden, die sich seit Ende der 40er Jahre in Kultur befinden (HeLa-, L-Zellen) und an denen in den 60er und 90er Jahren Substanztestungen erfolgten.
- Die IC50-Werte können sich durch unterschiedliche chemische Reinheitsgrade einer Substanz, die in den 60er bis 70er Jahren und in den 90er Jahren getestet wurden, erheblich unterscheiden. Das trifft auch für die LD50-Werte zu, die aus der älteren Literatur in das NIOSH-Register aufgenommen wurden.

3.6 Die LD50-Werte

Wichtigstes Anliegen des erweiterten RC ist der Vergleich der IC50x mit der LD50 p.o. und der LD50 i.v. für Ratte/Maus. Dementsprechend enthält das erweiterte RC wie das RC von 1988 die im NIOSH-Register verzeichneten LD50-Werte p.o. und i.v. für Ratte und/oder Maus umgerechnet in mmol/kg Körpermasse. Zum Verständnis für den Aufnahmemodus von LD50-Werten in das RC sind einige Erläuterungen notwendig:

Das NIOSH-Register (RTECS) ist so konzipiert, daß in Nachträgen und Ergänzungen die jeweils am stärksten toxisch wirksame Dosis einer Substanz, die in der Literatur beschrieben ist, aufgenommen wird. Das bedeutet, daß in einigen Fällen beträchtliche Unterschiede zwischen den LD50-Werten auftreten können. So ist in der Druckausgabe 1982 (165) für die all-trans-Retinoinsäure ein oraler LD50-Wert (Ratte) von 7000 mg/kg und in der Druckausgabe 1983/1984 (166) ein Wert von 2000 mg/kg angegeben. Die LD50-Werte im RC stammen zumeist aus der Druckausgabe 1983/1984. In Fällen, in denen nur in späteren Druckausgaben oder in der RTECS-Datenbank LD50 p.o.-Werte zu finden waren, wurden diese Werte in das RC aufgenommen. Dadurch erhöhte sich im RC 1 von 1988 die Zahl der Substanzen mit oralen LD50-Werten für Ratte/Maus von 102 (1988) auf 117 (1993).

Zur Auswahl der LD50-Werte muß noch an eine früher getroffene Festlegung für andere Toxizitätsdaten erinnert werden, wonach beim Vorliegen mehrerer Werte für einen Stoff für die Berechnungen stets nur der höchste Wert verwendet wird (Halle et al., 1987, Lit.-Nr. 167). Auf die LD50-Werte aus dem NIOSH-Register angewandt bedeutet das, daß zum Zwecke einer bestmöglichen Standardisierung der LD50-Werte ab den NIOSH-Druckausgaben 1983/1984 (166) nur jeweils der höchste LD50-Wert eines Stoffes für eine Tierspezies in das RC aufgenommen wird.

Das NIOSH-Register enthält nach unterschiedlichen Richtlinien ermittelte LD50-Werte: Es sind also Werte registriert, die sowohl nach "klassischen" Verfahren (163) als auch nach neuen, behördlich verbindlichen Festlegungen (178, 179) bestimmt wurden.

Im zweiten Teil des RC sind 52 Substanzen nicht enthalten, für die keine LD50 (39 Substanzen) oder nur die LD50 i.v. (13 Substanzen) aus dem RTECS zu recherchieren waren.

Von den 361 Substanzen des RC sind 282 Substanzen mit einer oralen LD50 Ratte und 238 Substanzen mit einer oralen LD50 Maus registriert. Von 88 Substanzen liegt die LD50 i.v. für die Ratte und von 121 Substanzen die LD50 i.v. für die Maus vor.

Für die Regressionsanalysen besitzen die LD50-Werte für die Ratte Priorität. Nur in Fällen, in denen kein LD50-Wert für die Ratte zu recherchieren war, wurde auf den entsprechenden LD50-Wert für die Maus zurückgegriffen, als Ratte/ Maus bezeichnet (s. dazu Abschnitt 5.2. und 5.3.).

3.7 Physikalisch-chemische Stoffeigenschaften

Auf den Datenblättern sind die Molmasse (Mm) und der Oktanol/Wasser-Verteilungskoeffizient als log P-Wert verzeichnet. Als Quelle für die meisten der experimentell bestimmten (gemessenen) log P-Werte dienten die Standardwerke von Hansch und Mitarbeitern (180, 181).

3.8 Abbreviations and selected definitions

Mm = molecular weight, taken from NIOSH Registry (see reference No. 165, 166), exceptions in paragraph 4.3.

NIOSH = substance code in the NIOSH (RTECS) Registry (see reference No. 165, 166)

IC50x = the geometrical mean of two or even more single IC50 values per substance, calculated in millimoles per litre medium (mM)

F_S = factor of concentration range of the IC50 values from one substance, calculated by the square root of the quotient maximale IC50/minimal IC50 (see paragraph 3.4. and reference No. 67)

n = indicates the number of single IC50 values per substance in paragraph 4.1.

log P = logarithm on base 10 of the octanol/water partition coefficient taken from standard monographs by C. Hansch et al. (see reference No. 180, 181)

LD50 = the numeric value of acute toxicity taken from NIOSH (RTECS) Registry and calculated as millimoles per kg body weight (mmol)

KM = body weight

R p.o. = oral LD50 rat

M p.o. = oral LD50 mouse

i.v. = intravenous LD50

t_E = exposure time, cells were exposed to a chemical for at least 16 hours (see reference No. 67)

 $F_G \le \log 5 =$ a factor, given as percentage, characterising the dosage range of LD50 deviating from the regression line by the minimum and maximum LD50 values which do not differ more than ± 0.699 from the estimated mean LD50 on the regression line (ý).

Literatur Nr. = only references No. 1 to 157 (in paragraph 12.) are containing single IC50 values for given substances in paragraph 4.2.

Substances are arranged according to increasing IC50x values seperately for part 1 (substance No 1 to 131) and for part 2 (substance No 132 to 361) of the RC.

4 Datenblätter zu den 361 Stoffen

4.1 Erster Teil (RC1): Das RC von 1988 mit ergänzten IC50-Werten, RC-Substanz-Nr. 1 - 131

Zweiter Teil (RC2): Das RC mit neuen Substanzen, RC-Substanz-Nr. 132 - 361

	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmot	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmol	Mm	log P	F _S	IC50- Werte pro Stoff n
1	Trenimon	3.30E-06			0.0022		231.28		3.32	2
2	Actinomycin D	8.10E-06	0.0057	0.01	0.00037	0.0008	1255.6	3.21	144	13
3	Aminopterin	1.20E-05		0.0068			440.47		45.6	8
4	Vincristine sulfate	1.50E-05			0.0011		923.14	2.82	20	21
5	K-Strophanthin	4.40E-05			0.021	0.0035	710.9		1.58	2
6	Colchicine	5.40E-05		0.015	0.004	0.0043	399.48	1.03	469	13
7	Ouabain	7.20E-05			0.024		584.73		8.79	6
8	Digitoxin	0.00011	0.073		0.012	0.0065		1.76	4.16	3
9	Amethopterin	0.00014	0.3	0.32	0.031	0.14	454.5		48.1	18
10	Emetine	0.00016	0.14				480.71	3.24	2.71	3
11	Doxorubicin * HCl	0.00033		1.2		0.036	580.03	1.27	49.2	8
12	Puromycin	0.00033		1.43		_	471.58	0.03	5.05	6
13	Cycloheximide	0.00059	0.0071	0.47	0.0089	0.53	281.39	0.55	44.4	32
14	Mitomycin C	0.00084	0.042	0.051	0.009	0.015	334.37	-0.38	13.7	5
15	8-Azaguanine	0.0013		9.86		0.2	152.14	-0.71	4.8	4
16	Azaserine	0.002	0.98	0.87		0.36	173.15		6.67	9
17	5-Fluorouracil	0.0026	1.77	0.88	3.84	0.62	130.09	-0.89	22.4	15
18	Captan	0.0039	33.3	23.3			300.59	2.35	3.16	3
19	Cytochalasin B	0.005					479.67		2.39	2
20	Cadmium II chloride	0.0064	0.48	0.95		_	183.3		13.3	14
21	6-Mercaptopurine	0.008		1.84	1.64	0.53	152.19		55.2	12
22	Digoxin	0.0085		0.023	0.032	0.0098	781.05	1.26	1790	10
23	Daraprim	0.0089		0.51			248.74	2.69	2.5	6
24	Ethylenediaminetetraacetic acid	0.01		-			292.28		3.07	3
25	Thio-TEPA	0.011		0.2	0.079		189.24	0.53	2.49	8
26	Kelthane	0.012	1.55	1.13			370.48		5.31	2
27	Chlorpromazine	0.014	0.44	0.82	0.094	0.05	318.89	5.35	2.13	5
28	Aldosterone	0.014			7		360.44	1.08	40.1	3
29	Mercury II chloride	0.015	0.0037	0.037	0.011	0.029	271.49	0.06	17.8	19
30	Sodium arsenate, dibasic	0.015					185.91		4.21	4
31	Chloroquine diphosphate	0.017	1.88	0.97			515.92	4.63	18.7	10
32	Hydrocortisone	0.022					362.51	1.61	56.9	6
33	p-Chloromercuribenzoic acid	0.024		0.07			357.16		4.84	18
34	Diethylstilbestrol	0.025				1.12	268.38	5.07	18.2	17
35	Flufenamic acid	0.029	0.97	2.54	0.35	0.56	281.25	2.08	3.36	5
36	Progesterone	0.03					314.51	3.87	1.88	4

RC-Nr	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmol	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmol	Mm	log P	F _S	IC50-Werte pro Stoff
37	Aflatoxin B1	0.034	0.016	0.029			312.29		1.87	4
38	Imipramine * HCI	0.054	0.96	1.18		0.11	316.91	2.65	1.3	3
39	2,4-Dichlorophenol	0.055	3.56	9.82			163	3.3	11	2
40	Chlordan	0.06	1.12			0.24	409.76	6	1.83	4
41	Chloroquine sulfate	0.06	2.6				418	4.63	7	10
42	p-Aminophenol	0.062	15.2				109.14	0.04	1.52	6
43	Aldrin	0.067	0.11	0.12		0.058	364.9	3.01	2.12	6
44	Hydroxyzine * HCI	0.067	2.31		0.11		411.41		2.24	2
45	Quinine * HCI	0.075	1.72	3.21		0.19	360.92	2.14	2.61	5
46	Lead II chloride	0.043					278.09		10.5	5
47	Naftipramide	0.084	3.45	3.64		0.24	298.47		2.99	2
48	Mefenamic acid	0.087	3.27	2.61	0.46	0.4	241.31	2.37	2.21	5
49	Parathion	0.093	0.0069	0.021		0.06	291.28	3.81	3.83	4
50	Trypan blue	0.095	6.43			0.34	964.88		16.2	3
51	Disulfoton	0.11	0.0073	0.02	0.02		274.42	1.93	2.58	3
52	all-trans-Retinoic acid	0.11	6.66				300.48		10.4	10
53	Quinidine sulfate	0.12	1.08	1.41	0.13	0.16	422.54	2.11	3.54	4
54	Propranolol * HCI	0.12		1.59		0.074	295.84	3.09	3.65	9
55	Zinc II chloride	0.13	2.57	2.57			136.27		3.81	6
56	Manganese II chloride * 4 H ₂ O	0.13	7.5				197.92		10	9
57	L-Dopa	0.13	9.03	12		2.28	197.21		2.21	4
58	Dihydralazine sulfate	0.14	2.84	1.39			288.32		1.85	2
59	Tetracycline * HCl	0.14	13.4				480.94	-1.37	2.05	2
60	Indomethacin	0.16	0.034	0.053			357.81	-1	_1.3	6
61	p,p'-DDT	0.16	0.32	0.38	0.19	0.19	354.48	6.19	6.41	9
62	Cobalt II chloride	0.16	0.62	0.62	0.15		129.83		3.94	6
63	Diazepam	0.16	2.49	1.88			284.76	2.82	124	15
64	Bendiocarb	0.18	0.8				223.25		4.55	6
65	Oxyphenbutazone	0.19	3.08	1.48		0.16	324.41	3,28	2.24	4
66	Cortisone	0.19					360.49	1.47	1.9	5
	Malathion	0.2	2.68	2.35	0.15	0.56	330.38	2.89	5.64	5
	2,4-Dinitrophenol	0.21	0.16	0.24			184.12	1.54	17	41
	Secobarbital sodium	0.21	0.48		0.25	0.38	260.3	1.97	2.14	2
	Atropine sulfate	0.22	0.92	1.13	0.061	0.046	676.9	1.83	3.86	9
	Diphenhydramine * HCI	0.24	2.93	0.39	0.51	0.1	291.85	3.4	4.12	4
	Butylated hydoxyanisole	0.24	12.2	11.1			180.27		2.02	10
	Carbaryl	0.26	1.24	2.18	0.21		201.24	2.34	2.96	4
	Nickel II chloride	0.27	0.81				129.61		4.33	10
	Trichlorfon	0.27	1.75	1.16		1.13	257.44	0.51	3.46	3
	Sodium dodecyl sulfate	0.27	4.45		0.41	0.41	289.43	1.6	3.37	28
	Cinchophen	0.27					249.28		2.09	2
	6-Methylcoumarin	0.31	10.5				160.18		14.6	6
79	Phenylbutazone	0.32	1.22	1.43	0.32	0.29	308.41	1.25	3.44	16

	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmol	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmol	Mm	log P	F _s	IC50-Werte pro Stoff n
80	2-Thiouracil	0.32	7.8				128.16	-0.28	3.16	2
81	Cupric sulfate * 5 H ₂ O	0.33	1.2				249.7		2.2	7
82	Diphenylhydantoin	0.39		0.79	0.56	0.46			5.92	19
83	Thiopental	0.55		2.48		0.29	242.37	2.59	2.76	6
84	Amobarbital	0.56		1.52			226.31	1.58	2.79	2
85	Metamizol	0.58	21.5				334.38		1.36	2
86	Warfarin	0.67	1.05	1.21	0.6	0.54	308.35	0.05	4.18	12
87	Pentobarbital sodium	0.71	0.81	1.13	0.26	0.45	248.29	2.18	2.47	12
88	Dibutyl phthalate	0.76	43.1				278.38		17.6	3
89	2,4-Dichlorophenoxyacetic acid	0.77	1.67	1.66			221.04	2.81	3.65	15
90	Iproniazid	0.79	2.04	3.8		4.04	179.25		2.58	4
91	Chloramphenicol	0.79	10.5	8.17	0.53	0.34	323.15	1.14	7.33	15
92	Di(2-ethylhexyl)phthalate	0.84	79.4	76.8	0.64		390.62	4.2	69.3	4
93	Sulfisoxazole	0.85		25.4			267.33	-0.87	1.47	3
94	Menthol	0.95	20.3				156.3		2.07	2
95	Salicylamide	1.08	13.8	10.2		2.28	137.15	1.28	2.38	4
96	Cygon	1.24	0.66	0.26	1.96		229.27	0.5	1.3	2
97	Phenacetin	1.27	9.21	6.81			179.24	1.57	3.64	10
98	Methylparaben	1.42		11.5		0.98	152.16	1.96	4.73	6
99	Nalidixic acid	1.5	5.81	2.46		0.77	232.26	1.41	2.28	6
100	L-Ascorbic acid	1.52	67.6	19.1		2.94	176.14		3.41	10
101	Glutethimide	1.56	2.76	1.66			217.29	1.9	2.24	3
102	Acrylamide	1.61	2.39	2.39			71.09		5.49	12
103	Nicotine	1.79	0.31	0.15		0.005	162.26	1.17	32.8	7
104	Tolbutamide	1.81		9.62			270.38	2.34	1.22	2
105	Theophylline	1.83		3.33		1.16	180.19	-0.02	4.74	10
106	Sodium I fluoride	1.85	4.29				41.99		2.07	13
107	Acetylsalicylic acid	2.27	5.55	4.52	\dashv		180.17	-1.15	27.4	27
108	Gibberellic acid	2.3	18.2				346.41		2.09	2
109	Frusemide	2.33	7.86	13.9		0.93	330.76		1.6	6
110	Acrylonitrile	2.42	1.54	0.51			53.07	-0.92	6.82	7
	Clofibric acid	2.61	5.82	5.45			214.66	2.57	1.55	3
	Caffeine	2.64	0.99	3.19	0.54	0.35	194.22	0.01	5.28	19
	Acetaminophen	2.71	15.9	2.24			151.18	0.8	7.33	17
	Natulan * HCI	2.74	3.04			ì	257.80	0.06	2.85	4
	Phenol	3.01	4.4	3.19		1.19	94.12	0.62	7.6	19
	Cyclophosphamide * H ₂ O	3.12	0.34	0.49	0.57	0.98	279.13	0.63	9.27	8
	Di(2-ethylhexyl)adipate	3.15	24.6	-	2.43		370.64	- 	98.4	2
	Phenobarbital	3.81	0.7	0.72	0.9	0.99	232.26	1.15	2.67	11
	Sodium salicylate	4.33	9.99	5.62		4.37	160.11	-0.85	6.82	7
	5-Aminosalicylic acid	5.07		50.6			153.15	0.87	1.27	<u>:</u>
	Aminophenazone	5.39	4.32	1.55	0.48	0.6	231.33	0.8	2.68	4
	Diethyl phthalate	5.52	38.7	27.8			222.26	3	8.41	3
	Isoniazid	7.49	4.74			1.09	137.16	-1.14	13.6	11

RC-Nr	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmol	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmol	Mm	log P	Fs	IC50-Werte pro Stoff
124	Acetazolamide	8,49		19.3			222.26	-0.26	2.12	2
125	Carbon tetrachloride	8.51	18.2	83.2			153.81	2.83	11.1	5
126	Triethyl citrate	14.7	25.3				276.32		2.46	2
127	Dimethyl phthalate	23.4	35.5	37.1	_		194.2	2	3.34	2
128	2-Propanol	167	97.2				60.11	0.05	3.49	21
129	Dimethyl sulfoxide	252	252	211	68.6	73.6	78.14	-1.35	2.41	15
130	Ethanol	379	304	169	24.7	42.8	46.08	-0.15	3.03	27
131	Glycerol	624	137	282	60.4	46.1	92.11	-1.76	2.03	7
132	Triphenyltin hydroxide	4.9E-05	0.12	0.67			367.03		1.22	3
133	Cytochalasin D	9.2E-05	-	0.071			507.68	-	1.2	2
134	Rotenone	0.00013	0.33	0.89	_		394.45	3.93	7.1	2
135	2,3,7,8-Tetrachlorodibenzo-	0.0002		3.5			321.96	6.64	10	3
136	p-dioxin Diethyldithiocarbamate sodium	0.00039	6.66	E-04 6.66		7.54	225.33		1.43	2
137	Triethyltin chloride	0.00046	0.021		0.035		241.35		4.08	4
138	Tributyltin chloride	0.00054	0.37				325.53	2.60	5.24	8
139	Retinol	0.00054	6.98	14			286.5		22.4	2
140	6-Thioguanine	0.00057		0.96		0.32	167.21	-0.07	2.94	3
	Cytosine arabinoside	0.00068		12.9			243.25	-2.13	24.5	5
	Methylmercury chloride	0.00071		0.23		-	251.08		4.23	7
143	Triethylene melamine	0.00078	0.005	0.073	0.0054		204,27		22.1	8
144	Sodium bichromate VI	0.00093	0.19		-		261.98		2.08	3
145	Potassium chromate VI	0.0015		0.93			194,2		2.07	2
146	Potassium bichromate VI	0.002		0.65	-		294.2	\neg	3.13	5
	Mitoxantrone	0.0024	1,32			0.04	444.54		1.18	2
	Nitrogen mustard * HCI	0.0026	0.052	0.1	0.0083	0.01	192.53		2	2
149	Chromium VI trioxide	0.0027	0.8	1.27			100	\dashv	2,24	2
	Cis-platinum	0.0028	0.086	0.11	0.027	0.037	300.07		8.12	6
	Hexachlorocyclopentadiene	0.0031	0.41				272,75		1	2
	8-Hydroxyquinoline	0.0033	8.27			-	145.17	1.99	3.65	5
	Arsenic III trioxide	0.0042	0.1	0.23			197.84		1.41	7
154	Maneb	0.0042	16.9	15			266.31		1.63	3
	Benzalkonium chloride	0.0052	1.1	0.93		0.027	365		9.52	12
	Stearyl trimethylammonium chloride	0.006		1.54			348.13		3.16	2
157	Hexachlorophene	0.0079	0.15	0.16	0.018		406.89	7.54	5.18	10
158	Dichlorophene	0.0083	10	3.72	0.063		269.13	4.26	2.26	4
	Hexadecyltrimethyl- ammonium bromide	0.0089	1.12		0.12	0.088	364.53		1.1	3
	N-Methyl-N'-nitro-N- nitrosoguanidine	0.012	0.61		0.54		147.12		1.66	4
161	Silver I nitrate	0.013		0.29			169.88		1.8	- 6
162	Chlorhexidine	0.015	18.2	19.5	0.042	0.047	505.52		1	2
	Cetyltrimethylammonium chloride	0.021	1.31				362.16		1.62	2
164	Oxatomide	0.019	3.31	22.5	0.068	0.059	426.61		1.58	2

	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmol	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmol	Mm	log P	F _S	IC50-Werte pro Stoff n
165	Isoproterenol * HCI	0.022	8.96			0.32			4.35	6
166	Triisooctylamine	0.023	4.58				353.76		2.53	2
167	p,p'-DDD	0.024	0.35				320.04	6.02	2.78	3
168	Dicoumarol	0.027	2.11	0.69	0.15	0.19		2.07	2.27	5
169	Epinephrine bitartrate	0.028		0.012		0.0053	333.33	-1.52	2.29	6
170	Thioridazine * HCI	0.029		0.88	0.17	0.13		5.9	2.11	3
171	Fumagillin	0.031		4.36			458.6	3.59	2.66	4
172	Nabam	0.035	1.54	2.26			256.34		1.27	2
173	Pentachlorophenol	0.036	0.19				266.32	3.81	4.14	9
174	Ambazone	0.038	3.16	4.21			237.32		1.11	2
175	Norepinephrine	0.039		0.12	0.00059	0.022	169.2	-1.24	2.34	9
176	Papaverine	0.045	0.96	0.68	0.053	0.074	339.42		7.77	2
177	Busulphan	0.046	0.0076	0.81	0.0073		246.32	-0.52	1.15	2
178	Salicylanilide	0.046		11.3			213.25	3.27	1.25	3
179	Acrolein	0.047	0.82	0.71			56.07		25.7	5
180	p-Phenylenediamine	0.05	0.74				108.16		2.79	2
181	Thallium I sulfate	0.054		0.057			504.8		2.89	8
182	Triton X-100	0.055	2.78				647		2.13	9
183	Amitriptyline	0.056	1.15	0.53		0.058	277.44	4.92	15.6	10
184	Butylated hydroxytoluene	0.056	4.04	4.72			220.39	4.17	3.27	9
185	Heptachlor	0.059	0.11	0.18			373.3	5.44	1	2
186	Zineb	0.059	18.9	27.6			275.73		34.6	4
187	4-Hexylresorcinol	0.064	2.83				194.3	3.45	1.13	4
188	t-Butyl hydroquinone	0.069	4.81	6.02			166.24		1.44	3
189	Antimycin	0.07		0.45			250.27		1.07	2
190	Chlorambucil	0.076	0.25	0.33			304.24	1.7	29.5	8
191	Dimenhydrinate	0.076	2.81	0.43	0.43		470.02		5.03	2
192	1,3-Bis(2-chloroethyl)-1- nitrosourea	0.078	0.093	0.089	0.19		214.07	1.53	1.66	2
	5-Azacytidine	0.079		2.34			244.24		1.27	2
194	p-Toluylenediamine	0.094	0.83				122.19		1.71	2
195	p,p'-DDA	0.099		2.1			281.14		2.1	3
196	Verapamil * HCl	0.1	0.22	0.33	0.033	0.015	491.13	3.79	1.1	3
197	p,p'-DDE	0.1	2.77				318.02	5.69	2.95	4
198	loxynil	0.11	0.3			0.15	370.91		1.31	3
	Cupric chloride	0.11	1.04	1.41			134.44		3.99	3
200	Dimethylaminoethyl methacrylate (polymer)	0.11	11.1				157.24		2.42	2
	13-cis-Retinoic acid	0.12		11.3			300.48		1.18	3
	Formaldehyde	0.12	26.6		2.9		30.03	0.35	8.98	6
203	Thallium I acetate	0.14		0.13			263.42		2.18	2
204	Azathioprine	0.14	1.93	5.01			277.29		4.26	3
205	Versalide	0.15	1.22				258.44		2.38	3
206	Diquat dibromide	0.16	0.67	0.68			344.08		12.5	5
207	Dieldrin	0.18	0.12	0.1	0.024	0.028	380.9	5.16	3.63	7

_	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmol	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmol	Mm	log P	Fs	IC50-Werte pro Stoff n
208	Undecylenic acid	0.18	13.6	46.1			184.31	3.86	1.25	4
209	Propylparaben	0.18		35.1			180.22	3.04	1.39	4
210	p-Nitrophenol	0.2	2.52	3.36			139.12	1.38	1.08	2
211	Catechol	0.2	35.3	2.36			110.12	1.01	2.59	5
212	p-Cresol	0.22	1.91	3.18			108.15	1.95	2.26	4
213	Ammonium persulfate	0.23	3.59			i	228.22		1.02	2
214	Thymol	0.23	6.52	12			150.24	3.3	1.46	4
215	Chlorotetracycline	0.24		5.22	0.25	0.21	478.92	-0.89	6.09	5
216	Refortan	0.25	10.1				313.1		1.08	2
217	Amrinone	0.28	0.54	1.54	0.4	0.8	187.22		1.02	2
218	o-Phenylenediamine	0.31	9.89			-	108.16	0.15	129	3
219	Hydralazine	0.33	0.56	0.76	0.21	-	160.2		1.84	
220	m-Dinitrobenzene	0.39	0.49				168.12	1.49	1.03	2
	2-Nitro-p-phenylenediamine	0.39	20,1				153.16		2.19	2
222	Glibenclamide	0.4		6.58			494.05		1.24	2
	Lindane	0.41	0.26	0.3			290.82	3.72	5.04	5
224	n-Butyl benzoate	0.41	28.8		_		178.25	4.21	1.21	2
225	Ammonium sulfide	0.42	3.29				51.12		28	2
226	Dodecylbenzene sodium sulfonate	0.42	3.62	5.74		0.3			1.07	2
227	Sodium oxalate	0.44	1.16				134		1.52	2
	2,4,5-Trichlorophenoxyacetic acid	0.44	1.17	1.52			255.48	3.13	1.61	7
229	Dextropropoxyphene * HCl	0.49	0.22	0.22	0.04	0.066	375.98	4.18	1.03	2
230	Orphenadrine * HCl	0.49	1.39	0.41	0.09	0.092	305.88	3.77	1.98	3
231	Tween 80	0.49		19.1	1.37	3.44	1310		1.68	7
232	o-Cresol	0.52	1.12	3.18			108.15	2.04	1.96	3
233	Ibuprofen	0.52	4.89	4.75			206.31	3.51	2.16	5
234	Phenylthiourea	0.54	0.02	0.066			152.23	0.73	5.56	3
	Paraquat	0.54	0.31	1.05	0.11	0.97	186.25		5.6	9
236	Hydrogen peroxide 90%	0.56		58.8	0.62		34.02		2.62	4
	Beryllium II sulfate	0.61	0.78	0.76	0.068	0.0048	105.07		1.46	2
238	Imidazolidinyl urea	0.36	9.34	13.3	$\neg \neg$		278.26		2.79	2
239	m-Cresol	0.66	2.24	7.66	-		108.15	2.01	1.87	4
240	Pentoxifylline	0.66		4.98			278.35		1	5
	Sodium azide	0.71	0.69	0.42		0.29	65.02	$\neg \neg$	4.09	4
	1,2,4-Trichlorobenzene	0.71	4.17	4.22			181.44	$\neg +$	1.05	3
	p-Anisidine	0.73	11.4				123.17	0.95	1.12	
	Doxylamine succinate	0.75		1.21	-		388.51		1.56	2
	Resorcinol	0.8	2.73				110.12	0.8	2.63	6
	Barium II nitrate	0.81	1.36			0.061	261.36		1.02	2
	(+)-Thalidomide	0.81	1.00	1.55		0.001	258.25	0.33	6.5	3
	m-Aminophenol	0.86	15.2	1.00			109.14	0.33	2.53	2
249	3-Cyano-2-morpholino-5- (pyrid-4-yl)-pyridine (Chemical 122)	0.96	1.3				266.31	2.6	1.46	2

RC-Nr	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmol	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmoi	Mm	log P	F _s	IC50-Werte pro Stoff n
250	Valproate sodium	1		10.2			166.22		1	2
251	Scopolamine * HBr	1.08	3.3	4.89		0.53	384.31	1.24	1.9	6
252	Potassium cyanide	1.12	0.15	0.13			65.12		5.72	5
253	Isoxepac	1.33	0.74				268.28		1.86	3
254	Buflomedil	1.35	1.19		0.17		307.43		1.25	2
255	Sodium monochloroacetate	1.45	0.65			0.94	116.48		1.13	2
256	Tin II chloride	1.51	3.69	6.33		0.094			5.41	2
257	isononylaldehyde	1.52	22.8				142.27		1.02	2
258	Diethyl sebacate	1.63	56				258.4		19.4	3
259	Methyl salicylate	1.7	5.83				152.16	2.46	1.27	4
260	Coumarin	1.71	2	1.34			146.15	1.39	1.45	2
261	Ferrous sulfate	1.85	2.1	6.44		0.76	151.91		12.1	10
262	Amphetamine sulfate	1.97	0.15	0.065			368.54	1.76	1.89	3
263	Acetaldehyde	2.45	43.8			4.81	44.06	0.43	4.08	5
264	Chloral hydrate	2.65	2.9	6.66			165.4	1.61	1.31	6
265	Streptomycin sulfate	2.73		0.34		0.062	1457.6		2.31	3
266	Potassium hexacyanoferrate	2.82		9.02			329.27		1.75	2
267	p-Hydroxybenzoic acid	2.92		15.9			138.13	1.58	3.43	2
268	1-Octanoi	3.06		13.7			130.26	3.15	2.6	4
269	Potassium I fluoride	3.13	4.22				58.1		1.21	2
270	Propionaldehyde	3.25	24.3				58.09		1.48	2
271	Styrene	3.3	48	3.03		0.86	104.16	2.95	1.02	2
272	Salicylic acid	3.38	6.45	3.47		3.62	138.13	2.26	3.01	6
273	Bromobenzene	3.46	17.2				157.02	2.99	1.28	3
	L-Cysteine	3.56		5.45			121.17		3.08	4
	Nitrilotriacetic acid	3.61	7.69	16.5			191.16		1.02	2
276	Ambuphylline	3.67		2.23			269.35		1.14	2
277	Potassium cyanate	4.14		10.4			81.12		1.44	2
278	Phenylephrine * HCl	4.16	1.72	0.59		0.1	203.69		1.86	3
279	Thioacetamide	4.17	4.01				75.14		1.32	3
280	Theophylline sodium acetate	4.19	2.22		1.19	0.98	262.23		1.08	2
	1,2-Dibromomethane	4.2	0.62				173.85		1.04	2
	(-)-Phenylephrine	4.45	2.09			0.23	167.23		1.03	2
	Milrinone	4.77	0.43	0.65	0.35	0.37	211.24		1.05	2
	Ammonium chloride	5.52	30.8				53.5		1.54	4
	Caffeine sodium benzoate	5.67	2.54	2.36			338.33	0.08	1.16	2
	Benzylpenicillin sodium	5.73	19.4			4.21	356.4	1.83	2.61	4
	Benzylalcohol	5.81	11.4	14.6	0.59	4.44	108.15	1.1	6.68	2
	1-Heptanol	6.25	28	12.9			116.23	2.41	2.36	4
	Tetrachloroethene	6.54	53.4	48.8			165.82	2.6	1	2
	Sodium sulfite	6.78		6.51		1.39	126.04		1.04	2
	Aniline	6.9	4.72	4.72	1		93.14	0.98	5.82	6
292	Allylalcohol	6.94	1.1	1.65			58.09	0.17	20.9	8

RC-Nr	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmol	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmol	Mm	log P	F _s	IC50-Werte pro Stoff n
293	Diisopropylamine dichloroacetate	7		7.39		1.02	230.16		1.08	2
294	Trichloroacetic acid	8.19	30.6	34.5			163.38		7.65	11
295	2,5-Hexanedione	8.45	23.7				114.16		3.08	7
296	Homatropine methylbromide	9	3.24				370.33		1	5
297	1,1,1-Trichloroethane	10.3	77.2	84.3		Ī	133.4	2.49	2,26	6
298	Dichloroacetic acid	11.5	21.9	42.8			128.94		1.86	5
299	Imidazole	11.5		27.6			68.09	-0.08	1.37	3
300	Antipyrine	11.6	9.56	9.03		2.66	188.25	0.38	1.54	2
301	Xylene	12	40.5				106.18	2.77	3.49	4
302	Nitrobenzene	12.2	5.2				123.12	1.88	1.08	2
303	Theophylline sodium	12.4		2.19		0.84	203.18	-0.02	1.01	2
304	Calcium II chloride	12.4	9.01			0.38	110.98		2.13	2
305	n-Butanal	12.8	34.5				72.12		1.17	2
306	Anisole	13.2	34.2				108.15	2.11	1.21	2
307	2-Ethylbutanal	13.2	39.7				100.18		1.07	2
308	Chloroform	13.4	7.61	0.3			119.37	1.97	1.54	2
309	Isobutanal	13.5	39				72.12		1.23	2
310	Tributylamine	15.4	2.91				185.4		1.06	2
311	1-Hexanol	15.4	7.04	19.1			102.2	2.03	2.2	3
312	Benzoic acid	15.7	20.7	19.4			122.13	2.03	2.02	3
313	Xanthinol nicotinate	15.8	32.5	39.9	1.59	1.55	434.51		1.03	2
314	Saccharin	16.4		92.8			183.19	0.91	4.66	5
315	Isobenzoic furano dione	17	27.1	13.5			148.12	-0.62	1.02	2
316	Toluene	17.1	54.3				92.15	2.8	1.09	2
317	Barbital sodium	18.6		3.88	1.36	4.03	206.2	0.65	1	5
318	Trifluoroacetic acid	20.5	1.75	- 1	$\neg \neg$		114.03	$\neg \neg$	1.12	2
319	Methylpentinol	23.8		5.35			98.16		1.15	2
320	N,N-Dimethylacetamide	24.2	58.4	53	30.3	34.7	87.14	-0.77	1.28	2
321	Acetic acid	24.3	55.1	82.6		8.74	60.06	-0.17	1.41	4
322	1-Pentanol	24.9	34.4	2.27			88.17	1.42	1.76	6
323	Urethan	25.9		28.1			89.11	-0.15	1.26	3
324	2-Butoxyethanol	26	12.5	10.4	2.88	9.56	118.2	0.83	1.77	2
325	Cyclohexanol	26.3	20.6				100.18	1.23	1.39	2
326	Halothane	31.1	28.8				197.39	2.3	2.9	3
327	Lithium I sulfate	33.7		10.8			109.94	$\neg \dashv$	3.9	5
328	Dichloromethane	34.9	18.8				84.93	1.25	1.12	2
329	Sodium cyclamate	35.4	75.8	84.5	17.4	23.9	201.24		1.08	3
	Sulfuric acid	36	21.8			1	98.08		1.8	3
331	Strontium II chloride	36.4	14.2	19.6		0.93	158.52		2.39	2
332	1,4-Dioxane	38.1	47.7	64.7			88.12	-0.27	4.2	2
	Lithium I chloride	38.6	17.9	27.5			42.39	-	4.19	6
334	Isobutanol	40.1	33.2		$\overline{}$		74.14	0.83	1.16	2
	Potassium hexacyano- ferrate II	42.3	17.4	13.6			368.37		1.07	2

RC-Nr	Substanzname	IC 50x mM	LD50 p.o. Ratte mmol	LD50 p.o. Maus mmol	LD50 i.v. Ratte mmol	LD50 i.v. Maus mmol	Mm	log P	F _S	IC50-Werte pro Stoff
336	Nicotinamide	44.4	28.7		18		122.14	-0.37	1.01	2
337	Pyridine	46.9	11.3				79.11	0.66	1	2
338	1-Butanol	52.5	10.7				74.14	0.83	1.73	8
339	1-Nitropropane	57.9	5.11				89.11	0.87	1.11	2
340	Diethylene glycol	62.1	. 139	223	61.8		106.14	-1.3	2.75	3
341	Lactic acid	66	41.4	54.1			90.09	-0.62	1.85	3
342	Piperazine	67.2	22.1	16.7			86.16	-1.17	1.12	2
343	Magnesium II chloride * 6 H ₂ O	70.4	39.8				203.33		2.56	2
344	Sodium chloride	75.9	51.3	68.4		11	58.44		3.43	13
345	Sodium I bromide	77.4	33.4	66.7			104.92		1.21	2
346	Potassium I chloride	82	34.9	20.1	1.9	1.57	74.55		1.38	3
347	Thiourea	86	1.64	112			76.13	-0.98	1.02	2
348	1-Propanol	96.5	89.8				60.11	0.05	2.41	7
349	Ethyl methyl ketone	104	47.1				72.12	0.29	1	2
350	Tetrahydrofurfuryl alcohol	111	24.5	22.5			102.15		1.18	3
351	Dimethylformamide	114	38.3	51.3	27.4	47.9	73.11		1.05	2
352	1,2,6-Hexanetriol	123	119				134.2		1.1	2
353	Ethyl acetate	128	125				88.12	0.73	4.05	5
354	1,3,5-Trioxane	213	8.88				90.09		1.07	2
355	D-Glucose	226	143			50	180.18		1.16	3
356	2-Methoxyethanol	251	32.3		28.1		76.11	-0.77	1.34	5
357	Propylene glycol	342	263	315	89.3	105	76.11		2.82	6
358	Acetonitrile	368	92.5		40.9		41.06	-0.34	2.32	5
359	Acetone	444	168				58.09	-0.24	1.76	6
360	Ethylene glycol	555	138	121		48.3	62.08	-1.93	2.97	11
361	Methanol	930	406				32.05	-0.64	3.68	21

4.2 Literatur-Nummern für die IC50-Einzelwerte

RC-Nr		Substanzname	Literatur-Nr
1	DK 7175000	Trenimon	1,2
2	AU 1575000	Actinomycin D	3,5,8,69,70,71,72
3	MA 1050000	Aminopterin	5,8,9
4	OH 6340000	Vincristine sulfate	10,11,12,72,77,80
5	WL 1180000	K-Strophanthin	7,8
6	GH 0700000	Colchicine	2,8,10,13,14,52,72,73,74
7	RN 3675000	Ouabain	6,7,10,68,75
8	IH 2275000	Digitoxin	7,18,67
9	MA 1225000	Amethopterin	1,2,5,6,8,9,10,17,69,71,72,76,77
10	DK 1750000	Emetine	19
11	AV 9800000	Doxorubicin * HCI	16,71,72,78
12	AU 7350000	Puromycin	5,70
13	MA 4375000	Cycloheximide	4,10,11,12,14,20,24,70,72,75,79,
		-, -, -, -, -, -, -, -, -, -, -, -, -,	80,81,82
14	CN 0700000	Mitomycin C	8,69,71,72
15	XZ 6157000	8-Azaguanine	8,22,76
16	VT 9625000	Azaserine	2,5,8,69
17	YR 0350000	5-Fluorouracil	6,8,10,16,69,71,72,73,77,78,83
18	GW 5075000	Captan	22,70
19	RO 0205000	Cytochalasin B	15,23
20	EV 0175000	Cadmium II chloride	22,30,31,32,33,73,74,84,85,86,87
21	UO 9800000	6-Mercaptopurine	1,2,5,8,20,24,69,72
22	IH 6125000	Digoxin	6,7,68,88,89,90,91,92
23	UV 8140000	Daraprim	5,8
24	AH 4025000	Ethylenediaminetetraacetic acid	9,22
25	SZ 2975000	Thio-TEPA	2,5,6
26	DC 8400000	Kelthane	26,27
27	SN 8925000	Chlorpromazine	6,14,20,34
28		Aldosterone	6,28,29
29	OV 9100000	Mercury II chloride	8,9,30,31,32,33,37,38,84,85,87,
			91,93
30	CG 0875000	Sodium arsenate, dibasic	8,10,77
31	VB 2450000	Chloroquine diphosphate	6,13,17,19,25,91
32	GM 8925000	Hydrocortisone	10,13,22,29,94
33	OV 8050000	p-Chloromercuribenzoic acid	11,12,14,20,24,71,80
34	WJ 5600000	Diethylstilbestrol	10,14,20,22,24,34,39,73,77,95
35	CB 4375000	Flufenamic acid	13,17,25,70
36	TW 0175000	Progesterone	9,28,71
37	GY 1925000	Aflatoxin B ₁	35,36,96,97
38	HO 1925000	Imipramine * HCI	6,41,75
39	SK 8575000	2,4-Dichlorophenol	1,40
40	PB 9800000	Chlordan	27,71
41		Chloroquine sulfate	14,20,24,34,71,75,87
42	SJ 5075000	p-Aminophenol	14,20,24,34,98
43	IO 2100000	Aldrin	22,42,70,71
44	KK 2350000	Hydroxyzine * HCI	6,67
45	VA 7700000		6,13,75

LIVOAN	NIOSH	Substanzname	Literatur-Nr
46	OF 9450000	Lead II chloride	9,30,33,99
47	QJ 0700000	Naftipramide	13
48	CB 4550000	Mefenamic acid	13,17,25,70
49	TF 4550000	Parathion	42,44,70
50	QJ 6475000	Trypan blue	9,10,68
51	TD 9275000	Disulfoton	27,42
52	VH 6475000	all-trans-Retinoic acid	9,10,14,73,77,95
53	VA 5950000	Quinidine sulfate	6,67,91
54	UB 7525000	Propranoiol * HC!	6,14,20,24,71,91
55	ZH 1400000	Zinc II chloride	9,31,32,84,85,101
56	OO 9650000	Manganese II chloride * 4 H ₂ O	31,32,33,84,100,101
57	AY 5600000	L-Dopa	6,10,22
58	TH 8880000	Dihydralazine sulfate	6,67
59	QI 9100000	Tetracycline * HCI	6,8
60	NL 3500000	Indomethacin	6,13,22,67
61	KJ 3325000	p,p'-DDT	26,27,42,43,44,46,70,103
62	GF 9800000	Cobalt II chloride	9,31,32,84,85,104
63	DF 1575000	Diazepam	6,9,22,77,88,89,90,91,92,102
64	FC 1140000	Bendiocarb	14,20,24,34,87
65	UQ 8400000	Oxyphenbutazone	13,17,25
66	GM 9020000	Cortisone	13,28,69
67	WM 8400000	Malathion	27,43,90,92
68	SL 2800000	2,4-Dinitrophenol	8,10,11,12,14,17,20,24,34,70,
			71,73,
			74,75,80,82,87,95,155
69	CP 9800000	Secobarbital sodium	6,45
70	CK 2450000	Atropine sulfate	6,10,91,93
71	KR 7000000	Diphenhydramine * HCl	6,10,77
72	SL 1945000	Butylated hydroxyanisole	10,14,20,24,82,152
73	FC 5950000	Carbaryl	42,46,48,70
74			
	QR 6475000	Nickel II chloride	31,32,49,84,85,104,113,114
75	TA 0700000	Trichlorfon	31,32,49,84,85,104,113,114 27,43
75 76			31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80,
	TA 0700000	Trichlorfon	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110,
76	TA 0700000 WT 1050000	Trichlorfon Sodium dodecyl sulfate	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155
76 77	TA 0700000 WT 1050000 GD 4025000	Trichlorfon Sodium dodecyl sulfate Cinchophen	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13
76 77 78	TA 0700000 WT 1050000 GD 4025000 GN 7792000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73
76 77	TA 0700000 WT 1050000 GD 4025000	Trichlorfon Sodium dodecyl sulfate Cinchophen	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13
76 77 78	TA 0700000 WT 1050000 GD 4025000 GN 7792000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52,
76 77 78 79 80 81	TA 0700000 WT 1050000 GD 4025000 GN 7792000 UQ 8225000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin Phenylbutazone	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52, 67,71 9,47 8,32,86,91,111
76 77 78 79 80 81 82	TA 0700000 WT 1050000 GD 4025000 GN 7792000 UQ 8225000 YR 1575000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin Phenylbutazone 2-Thiouracil Cupric sulfate * 5 H ₂ O Diphenylhydantoin	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52, 67,71 9,47
76 77 78 79 80 81	TA 0700000 WT 1050000 GD 4025000 GN 7792000 UQ 8225000 YR 1575000 GL 8900000 MU 1050000 CQ 6300000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin Phenylbutazone 2-Thiouracil Cupric sulfate * 5 H ₂ O Diphenylhydantoin Thiopental	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52, 67,71 9,47 8,32,86,91,111
76 77 78 79 80 81 82	TA 0700000 WT 1050000 WT 1050000 GD 4025000 GN 7792000 UQ 8225000 YR 1575000 GL 8900000 MU 1050000 CQ 6300000 CQ 5075000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin Phenylbutazone 2-Thiouracil Cupric sulfate * 5 H ₂ O Diphenylhydantoin	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52, 67,71 9,47 8,32,86,91,111 6,14,20,22,24,45,50,73,77,91,95 6,45,95 6,45
76 77 78 79 80 81 82 83	TA 0700000 WT 1050000 WT 1050000 GD 4025000 GN 7792000 UQ 8225000 YR 1575000 GL 8900000 MU 1050000 CQ 6300000 CQ 5075000 PB 1300000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin Phenylbutazone 2-Thiouracil Cupric sulfate * 5 H ₂ O Diphenylhydantoin Thiopental	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52, 67,71 9,47 8,32,86,91,111 6,14,20,22,24,45,50,73,77,91,95 6,45,95 6,45
76 77 78 79 80 81 82 83 84 85 86	TA 0700000 WT 1050000 WT 1050000 GD 4025000 GN 7792000 UQ 8225000 YR 1575000 GL 8900000 MU 1050000 CQ 6300000 CQ 5075000 PB 1300000 GN 4550000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin Phenylbutazone 2-Thiouracil Cupric sulfate * 5 H ₂ O Diphenylhydantoin Thiopental Amobarbital	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52, 67,71 9,47 8,32,86,91,111 6,14,20,22,24,45,50,73,77,91,95 6,45,95 6,45 13 6,14,20,34,87,91,95
76 77 78 79 80 81 82 83 84 85 86 87	TA 0700000 WT 1050000 WT 1050000 GD 4025000 GN 7792000 UQ 8225000 YR 1575000 GL 8900000 MU 1050000 CQ 6300000 CQ 5075000 PB 1300000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin Phenylbutazone 2-Thiouracil Cupric sulfate * 5 H ₂ O Diphenylhydantoin Thiopental Amobarbital Metamizol Warfarin Pentobarbital sodium	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52, 67,71 9,47 8,32,86,91,111 6,14,20,22,24,45,50,73,77,91,95 6,45,95 6,45 13 6,14,20,34,87,91,95 6,10,45,93,95
76 77 78 79 80 81 82 83 84 85 86	TA 0700000 WT 1050000 WT 1050000 GD 4025000 GN 7792000 UQ 8225000 YR 1575000 GL 8900000 MU 1050000 CQ 6300000 CQ 5075000 PB 1300000 GN 4550000	Trichlorfon Sodium dodecyl sulfate Cinchophen 6-Methylcoumarin Phenylbutazone 2-Thiouracil Cupric sulfate * 5 H ₂ O Diphenylhydantoin Thiopental Amobarbital Metamizol Warfarin	31,32,49,84,85,104,113,114 27,43 8,12,14,20,24,31,34,39,74,80, 83,105,106,107,108,109,110, 111,112,155 13 14,20,24,34,73 6,13,14,17,20,24,25,34,51,52, 67,71 9,47 8,32,86,91,111 6,14,20,22,24,45,50,73,77,91,95 6,45,95 6,45 13 6,14,20,34,87,91,95

RC-Nr	NIOSH	Substanzname	Literatur-Nr
90	NS 1925000	Iproniazid	14,20,34,85
91	AB 6825000	Chloramphenicol	6,8,10,14,20,22,72,73,75,87,91
92	TI 0350000	Di(2-ethylhexyl)phthalate	53,54,55,57
93	WO 9100000	Sulfisoxazole	6,22
94	OT 0350000	Menthol	58,67
95	VN 6475000	Salicylamide	13,17,95
96	TE 1750000	Cygon	27
97	AM 4375000	Phenacetin	6,13,14,20,34,67,87,95
98	DH 2450000	Methylparaben	14,20,24,95,112
99	QN 2885000	Nalidixic acid	6,9,95
100	CI 7650000	L-Ascorbic acid	9,10,14,20,24,71,111
101	MA 4725000	Glutethimide	6,22
102	AS 3325000	Acrylamide	14,20,24,34,37,87,111,115,116
103	QS 5250000	Nicotine	6,10,75,90,91,92
104	YS 4550000	Tolbutamide	6,67
105	XH 3850000	Theophylline	6,10,22,91,93
106	WB 0350000	Sodium I fluoride	6,61,74,75,85,90,91,92,117,118
107	VO 0700000	Acetylsalicylic acid	6,10,13,14,20,22,24,34,44,73,
			77,88,89,90,91,92,95,102
108	LY 8990000	Gibberellic acid	1,67
109	CB 2625000	Frusemide	6,14,20,24,34
110	AT 5250000	Acrylonitrile	14,20,24,34,85,97
111	UE 9455000	Clofibric acid	60,67
112	EV 6475000	Caffeine	6,10,44,71,73,75,77,85,91,93
113	AE 4200000	Acetaminophen	6,10,14,20,24,34,87,88,89,90,
444	VO 4705000	Natura * HOL	91,92,95,102
114	XS 4725000	Natulan * HCI	1,2,77
115	SJ 3325000	Phenol	10,12,62,75,80,90,91,92,95,111
116	RP 5950000	Cyclophosphamide * H ₂ O	2,22,24,59,73,77,85,119
117	AU 9700000	Di(2-ethylhexyl)adipate	53,55
118	CQ 6825000	Phenobarbital	6,9,14,20,24,34,71,91
119	VO 5075000	Sodium salicylate	13,17,25,52,64
120	VO 1400000	5-Aminosalicylic acid	6,67
121	CD 2625000	Aminophenazone	6,13,67
122	TI 1050000	Diethyl phthalate	53,54,85
123	NS 1750000	Isoniazid Acetazolamide	6,10,34,73,74,77,85,91
124	AC 8225000		6,10
125	FG 4900000	Carbon tetrachloride	64,77,85,91
126	GE 8050000	Triethyl citrate	53,65
127	TI 1575000	Dimethyl phthalate	53,54
128	NT 8050000	2-Propanol	8,66,85,88,89,90,91,92,93,102,
120	DV 6240000	Dimethyl sulfoxide	106,120,121
129	PV 6210000	Difficulty Sulfoxide	6,9,12,52,67,73,74,83,85,106, 111
130	KQ 6300000	Ethanol	65,66,73,74,83,85,88,89,90,91,
130	V/ 0200000	- Cuianoi	92,93,98,102,106,111,120,123
131	MA 8050000	Glycerol	6,67,74,98,121
132	WH 8575000	Triphenyltin hydroxide	70,71
133	GZ 4850000	Cytochalasin D	77,151
133	<u> </u>	Oytochalasiii D	177,101

RC-Nr	NIOSH	Substanzname	Literatur-Nr
134	DJ 2800000	Rotenone	70,155
135	HP 3500000	2,3,7,8-Tetrachlorodibenzo-p-dioxin	125,126,127
136	EZ 6550000	Diethyldithiocarbamate sodium	67,68
137	WH 6840000	Triethyltin chloride	37,38,71
138	WH 6820000	Tributyltin chloride	70,71,74,79,85,128
139	VH 6750000	Retinol	156
140	UP 0740000	6-Thioguanine	8,70,72
141	HA 5425000	Cytosine arabinoside	71,72,78,83
142	OW 1225000	Methylmercury chloride	38,77,129,130
143	XZ 2100000	Triethylene melamine	2,5,69
144	HX 7700000	Sodium bichromate VI	8,131
145	GB 2940000	Potassium chromate VI	131
146	HX 7680000	Potassium bichromate VI	82,98,131
147	CB 5748500	Mitoxantrone	132
148	IA 2100000	Nitrogen mustard * HCl	8,69
149	GB 6650000	Chromium VI trioxide	131
150	TP 2450000	Cis-platinum	72,78,83,97,133
151	GY 1225000	Hexachlorocyclopentadiene	121
152	VC 4200000	8-Hydroxyquinoline	70,95
153	CG 3325000	Arsenic III trioxide	91,93
154	OP 0700000	Maneb	101,134
155	BO 3150000	Benzalkonium chloride	14,20,31,83,106,108,111,112, 155
156	BT 1750000	Stearyl trimethylammonium chloride	108
157	SM 0700000	Hexachlorophene	37,85,95,135
158	SM 0175000	Dichlorophene	95
159	BQ 7875000	Hexadecyltrimethylammonium bromide	109,110
160	MF 4200000	N-Methyl-N'-nitro-N- nitrosoguanidine	70,81
161	VW 4725000	Silver I nitrate	84,85,98,121,136
162	DU 1925000	Chlorhexidine	121
163	ML 9145000	Cetyltrimethylammonium chloride	107,155
164	DE 2276000	Oxatomide	67,68
165	DO 1925000	Isoproterenol * HCI	6,93
166	YF 7175000	Triisooctylamine	121
167	KI 0700000	p,p'-DDD	26,103,138
168	GN 7875000	Dicoumarol	6,95
169	DO 3500000	Epinephrine bitartrate	6,93
170	SP 2275000	Thioridazine * HCl	6,91
171	HE 1750000	Fumagillin	95
172	FA 6825000	Nabam	101
173	SM 6300000	Pentachlorophenol	40,70,73,74,85

RC-Nr	NIOSH	Substanzname	Literatur-Nr
174	MF 5550000	Ambazone	68
175	DN 5950000	Norepinephrine	93,95
176	NW 8450000	Papaverine	6,70
177	EK 1750000	Busulphan	2,72
178	VN 7850000	Salicylanilide	95
179	AS 1050000	Acrolein	14,119,122
180	SS 8050000	p-Phenylenediamine	108
181	XG 6800000	Thallium I sulfate	85,91,93
182	HE 0785000	Triton X-100	12,80,85,110
183	HO 9275000	Amitriptyline	6,88,89,90,91,92,102
184	GO 7875000	Butylated hydroxytoluene	82,95,124,139
185	PC 0700000	Heptachlor	71
186	ZH 3325000	Zineb	46,101,134
187	VH 1575000	4-Hexylresorcinol	95
188	MX 4375000	t-Butyl hydroquinone	152
189	DJ 2275000	Antimycin	71
190	ES 7525000	Chlorambucil	69,72,77,95
191	XH 5082000	Dimenhydrinate	22
192	YS 2625000	1,3-Bis(2-chloroethyl)-1-	11,83
L		nitrosourea	
193	XZ 3017500	5-Azacytidine	71
194	XS 9700000	p-Toluylenediamine	108
195	AF 5475000	p,p'-DDA	26,103,138
196	YV 8320000	Verapamil * HCl	6,91
197	KV 9450000	p,p'-DDE	26,42,103,138
198	DI 4025000	loxynil	14,20
199	GL 7000000	Cupric chloride	32,84,85
200	OZ 4200000	Dimethylaminoethyl methacrylate (polymer)	108
201	VH 6440000	13-cis-Retinoic acid	10,77
201	LP 8925000	Formaldehyde	77,98,122,123
202	AJ 5425000	Thallium I acetate	85,87
203	UO 8925000	Azathioprine	6,22
205	AL 3031000	Versalide	14,20
206	JM 5690000	Diquat dibromide	124,140
207	IO 1750000	Dieldrin	42,70,85,141
208	YQ 2975000	Undecylenic acid	95
209	DH 2800000	Propylparaben	95
210	SM 2275000	p-Nitrophenol	42,70
211	UX 1050000	Catechol	12,80
212	GO 6475000	p-Cresol	95
213	SE 0350000	Ammonium persulfate	121
214	XP 2275000	Thymol	95
215	QI 7750000	Chlorotetracycline	8,95
216	Q1 770000	Refortan	67,68
217	DW 2500000	Amrinone	67,68
211	244 200000	/ diminorio	101,00

RC-Nr	NIOSH	Substanzname	Literatur-Nr
218	SS 7875000	o-Phenylenediamine	69,121
219	TH 8925000	Hydralazine	142
220	CZ 7350000	m-Dinitrobenzene	121
221	ST 3000000	2-Nitro-p-phenylenediamine	108
222	YS 4725200	Glibenclamide	67,68
223	GV 4900000	Lindane	43,46,70,91
224	DG 4925000	n-Butyl benzoate	95,143
225	BS 4900000	Ammonium sulfide	108
226	DB 6825000	Dodecylbenzene sodium sulfonate	85,107
227	KI 1750000	Sodium oxalate	91
228	AJ 8400000	2,4,5-Trichlorophenoxyacetic acid	77,95,144
229	EL 3000000	Dextropropoxyphene * HCl	6,157
230	KR 6300000	Orphenadrine * HCl	6,91
231	WG 2932500	Tween 80	10,31,85,107,109,110
232	GO 6300000	o-Cresol	95
233	MU 6640000	Ibuprofen	25,95
234	YU 1400000	Phenylthiourea	121,145
235	DW 2275000	Paraquat	124,140,146
236	MX 0900000	Hydrogen peroxide 90%	98,108,123
237	DS 4800000	Beryllium II sulfate	84,85
238	YS 2717000	Imidazolidinyl urea	112,154
239	GO 6125000	m-Cresol	95
240	XH 2475000	Pentoxifylline	93
241	VY 8050000	Sodium azide	8,71,98
242	DC 2100000	1,2,4-Trichlorobenzene	74,85
243	BZ 5450000	p-Anisidine	121
244	US 9275000	Doxylamine succinate	77
245	VG 9625000	Resorcinol	95,108
246	CQ 9625000	Barium II nitrate	91
247	TI 4910000	(+)-Thalidomide	9,73,95
248	SJ 4900000	m-Aminophenol	108
249		3-Cyano-2-morpholino-5- (pyrid-4-yl)-pyridine (Chemical 122)	68
250	YV 7876000	Valproate sodium	147
251	YM 4550000	Scopolamine * HBr	6,93
252	TS 8750000	Potassium cyanide	70,90,91,92
253	HQ 4110000	Isoxepac	14,20
254	EL 9885000	Buflomedil	153
255	AG 1400000	Sodium monochloroacetate	121
256	XP 8700000	Tin II chloride	85,111
257	MN 7820000	Isononylaldehyde	121

	NIOSH	Substanzname	Literatur-Nr
258	VS 1180000	Diethyl sebacate	53,95
259	VO 4725000	Methyl salicylate	95
260	GN 4200000	Coumarin	77
261	NO 8500000	Ferrous sulfate	85,88,89,90,91,92,102
262	SI 1750000	Amphetamine sulfate	6,91
263	AB 1925000	Acetaldehyde	74,107,122
264	FM 8750000	Chloral hydrate	6,93
265	WK 4990000	Streptomycin sulfate	6,10,85
266	LJ 8225000	Potassium hexacyanoferrate III	121
267	DH 1925000	p-Hydroxybenzoic acid	17,95
268	RH 6550000	1-Octanol	74,85,106
269	TT 0700000	Potassium I fluoride	8,85
270	UE 0350000	Propionaldehyde	122
271	WL 3675000	Styrene	121
272	VO 0525000	Salicylic acid	95,111
273	CY 9000000	Bromobenzene	14,85
274	HA 1600000	L-Cysteine	85,108,128
275	AJ 0175000	Nitrilotriacetic acid	77
276	XH 4375000	Ambuphylline	121
277	GS 6825000	Potassium cyanate	121
278	DO 7525000	Phenylephrine * HCl	6,121
279	AC 8925000	Thioacetamide	14,24
280	AJ 4550000	Theophylline sodium acetate	121
281	PA 7350000	1,2-Dibromomethane	74
282	DO 7175000	(-)-Phenylephrine	121
283	DW 1762000	Milrinone	67,68
284	BP 4550000	Ammonium chloride	10,74,85
285	EV 6640000	Caffeine sodium benzoate	121
286	XH 9800000	Benzylpenicillin sodium	6,10,73,85
287	DN 3150000	Benzylalcohol	62,107
288	MK 0350000	1-Heptanol	74,85,106
289	KX 3850000	Tetrachloroethene	111
290	WE 2150000	Sodium sulfite	121
291	BW 6650000	Aniline	34,74,85,111
292	BA 5075000	Allylalcohol	74,85,106,111,122
293	AG 6475000	Diisopropylamine	67,68
201	A 1 707500	dichloroacetate	40.74.00.05.400
294	AJ 7875000	Trichloroacetic acid	12,74,80,85,106
295	MO 3150000	2,5-Hexanedione	14,20,116,121 93
296	MS 9000000	Homatropine methylbromide 1,1,1-Trichloroethane	
297	KJ 2975000	Dichloroacetic acid	90,91,92,121
298 299	AG 6125000 NI 3325000		12,80 68,85,87
300		Imidazole	6,95
300	CD 2450000	Antipyrine	
301	ZE 2100000	Xylene	90,91,92

RC-Nr	NIOSH	Substanzname	Literatur-Nr
302	DA 6475000	Nitrobenzene	111
303	XH 6700000	Theophylline sodium	121
304	EV 9800000	Calcium II chloride	9,85
305	ES 2275000	n-Butanal	121
306	BZ 8050000	Anisole	121
307	ES 2625000	2-Ethylbutanal	121
308	FS 9100000	Chloroform	91
309	NQ 4025000	Isobutanal	121
310	YA 0350000	Tributylamine	121
311	MQ 4025000	1-Hexanol	74,85
312	DG 0875000	Benzoic acid	95,111
313	QT 1500000	Xanthinol nicotinate	121
314	DE 4200000	Saccharin	10,73,77
315	TI 3150000	Isobenzoic furano dione	111
316	XS 5250000	Toluene	111
317	CQ 3850000	Barbital sodium	93
318	AJ 9625000	Trifluoroacetic acid	74
319	SC 4900000	Methylpentinol	121
320	AB 7700000	N,N-Dimethylacetamide	121
321	AF 1225000	Acetic acid	74,121
322	SB 9800000	1-Pentanol	74,85,98,106,120
323	FA 8400000	Urethan	10,77
324	KJ 8575000	2-Butoxyethanol	107,111
325	GV 7875000	Cyclohexanol	111
326	KH 6550000	Halothane	6,137
327	OJ 6419000	Lithium I sulfate	85,90,91,92
328	PA 8050000	Dichloromethane	91
329	GV 7350000	Sodium cyclamate	10,77
330	WS 5600000	Sulfuric acid	74,107
331	WK 8400000	Strontium II chloride	84,85
332	JG 8225000	1,4-Dioxane	8,148
333	OJ 5950000	Lithium I chloride	6,14,75,87
334	NP 9625000	Isobutanol	121
335	LJ 8219000	Potassium hexacyanoferrate II	121
_ 336	QS 3675000	Nicotinamide	111
337	UR 8400000	Pyridine	111
338	EO 1400000	1-Butanol	74,85,98,106,120,121
339	TZ 5075000	1-Nitropropane	121
340	ID 5950000	Diethylene glycol	68,149
341	OD 2800000	Lactic acid	107,111
342	TK 7800000	Piperazine	121
343	OM 2975000	Magnesium II chloride * 6 H ₂ O	84,85
344	VZ 4725000	Sodium chloride	6,10,14,73,85,87,90,91,92,111
345	VZ 3150000	Sodium I bromide	6,85
346	TS 8050000	Potassium I chloride	85,91
347	YU 2800000	Thiourea	111

RC-Nr	NIOSH	Substanzname	Literatur-Nr
348	UH 8225000	1-Propanol	66,74,85,98,122
349	EL 6475000	Ethyl methyl ketone	121
350	LU 2450000	Tetrahydrofurfuryl alcohol	106,121
351	LQ 2100000	Dimethylformamide	74
352	MO 4650000	1,2,6-Hexanetriol	121
353	AH 5425000	Ethyl acetate	74,85,121
354	YK 0400000	1,3,5-Trioxane	121
355	LZ 6600000	D-Glucose	74,85
356	KL 5775000	2-Methoxyethanol	74,106,107,148
357	TY 2000000	Propylene glycol	85,106,107,111,148
358	AL 7700000	Acetonitrile	74,85,111
359	AL 3150000	Acetone	74,85,98,111
360	KW 2975000	Ethylene glycol	88,89,90,91,92,102,148,150
361	PC 1400000	Methanol	12,73,74,83,85,89,90,91,92,93, 102,106

4.3 Anmerkungen - Ergänzungen

Substanzdaten, die nicht im NIOSH-Register (RTECS) verzeichnet sind und spezielle Angaben zu einigen Substanzen.

Literaturquellen für LD50-Werte

RC	Literatur	LD50
Nr.	Nr.	
6	158	i.v.R.; p.o., i.v. M
9	158	p.o.R,M; i.v. M
11	72	p.o. M
11	159	i. v. M
17	158	p.o. R; i.v. M
21	158	i.v. M
31	21	p.o. R
33	160	p.o. M
40	161	p.o. R
41	162	p.o. R
59	159	p.o. R
72	159	p.o. R
76	158	i.v. R, M
137	38	p.o. R
138	128	p.o. R
140	158	i.v. M
163	200	p.o. R
190	158	p.o. R, M
204	63	p.o. R, M
216	67	p.o. R
227	91	p.o. R
236	163	i.v. R
241	159	p.o. R
249	67	p.o. R

Literaturquellen für Molmassen (Mm)

RC	Literatur
Nr.	Nr.
11	159
28	159
32	10
41	85
155	106
182	85
216	67
231	. 85
235	159
249	67

Spezielle Substanzangaben

RC-Nr.	Literatur	Änderungen
	Nr.	
98		LD50 p.o. und i.v. von M. monosodium
147		LD50 p.o. von M. hydrochloride
254		LD50 p.o. und i.v. R von B. hydrochloride
. 9	6	IC50 von A. monosodium
27	6, 14	IC50 von C. hydrochloride
31	6, 91	IC50 von C. phosphate
54	20	IC50 von Propranol (ohne Hydrochlorid)
82	6	IC50 von D. monosodium
83	6	IC50 von T. monosodium
84	6	IC50 von A. monosodium
86	6	IC50 von W. monosodium
90	14, 85	IC50 von I. phosphate
105	6	IC50 von T. isopropanolamine
114	77	IC50 von Procarbazine (ohne Hydrochlorid)
132	70	IC50 von Triphenyltin acetate
137	71	IC50 von Triethyltin bromide
141	72	IC50 von C. hydrochloride
148	8	IC50 von Nitrogen mustard (ohne Hydrochlorid)
155	14	IC50 bezogen auf Mm 353 aus Lit. Nr. 85
165	6	IC50 von I. sulfate
175	93	IC50 von N. bitartrate
176	6	IC50 von P. hydrochloride
215	8	IC50 von C. hydrochloride
219	142	IC50 von H. hydrochloride
230	6	IC50 von O. citrate
265	10	IC50 bezogen auf Mm 1619
274	85, 128	IC50 von L-Cysteine hydrochloride
314	85	IC50 zitiert in Lit. Nr. 73
341	107	IC50 von Sodium lactate
361	93	Fünf IC50-Werte nach einer t _E = 168 h

5 Auswertung und Berechnungen

Alle in den folgenden Abschnitten 5.1 bis 11. dargestellten Ergebnisse, Schlußfolgerungen und Diskussionen beziehen sich ausschließlich auf das RC 1 und RC 2. Eine Ausnahme bilden lediglich die in **Tabelle 2** und **Tabelle 3** kommentarlos aufgelisteten Parameter der linearen Regression für die 107 neuen Stoffe des RC 3. Begründen läßt sich die Aufnahme dieser Daten in diesem Bericht mit der Dokumentation der guten Reproduzierbarkeit der Ergebnisse beim Vergleich der drei Teile des RC (RC 1, 2, 3).

5.1 Statistisch relevante Parameter

Die für eine Regressionsanalyse verwendete Zahl der logarithmierten Wertepaare IC50x - LD50 aus dem ersten und zweiten Teil des RC ist in den **Tabellen 2** und **3** verzeichnet. Der Reihenfolge in diesen Tabellen entsprechend enthält die folgende Zusammenstellung für jede Gruppe die Mittelwerte für die IC50x als x und für die LD50 als y, die Standardabweichungen (s), die Varianzen (s²) und die Restvarianzen (s 2 _{v * x}).

Zusätzlich sind als Vortest nach David et al. (175) zur Aussage über eine Normalverteilung die Werte des Quotienten Spannweite/Standardabweichung (R/s) angegeben, wobei R als Differenz von IC50x max und IC50x min definiert ist (entsprechend wird R auch für die LD50 berechnet). In allen Fällen liegen die Werte des Quotienten sowohl im Bereich der 5 %-Schranken (mit einer Irrtumswahrscheinlichkeit $\alpha=0,05$) als auch im engeren 10 %-Schrankenbereich. Auch die Häufigkeitspolygone I und II in **Abbildung 1** lassen auf eine annähernde Normalverteilung schließen.

IC50x

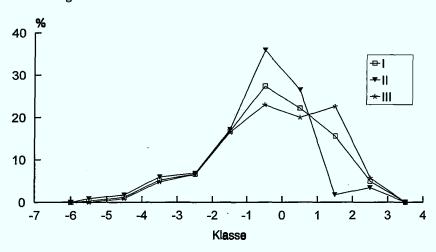
n	х	S	s²	R/s	RC
117	-0,7137	1,4264	2,0345	5,53	Teil 1
230	-0,1207	1,5238	2,3219	4,78	Teil 2
347	-0,3211	1,5157	2,2973	5,32	Teil 1, 2
148	-0,5946	1,6903	2,8571	4,90	Teil 1, 2

LD50

n	у	S	s²	R/s	S ² y*x	RC
117	0,2968	1,0190	1,0383	4,82	0,5808	Teil 1
230	0,5841	0,9479	0,8985	6,40	0,5021	Teil 2
347	0,4854	0,9806	0,9616	6,18	0,5286	Teil 1, 2
148	-0,4863	1,0571	1,1175	5,09	0,4610	Teil 1, 2

Mit dem F-Test läßt sich getrennt sowohl für die Gruppen der IC50x-Werte als auch für die Gruppen der LD50-Werte die Homogenität ihrer jeweiligen Varianzen nachweisen, da der berechnete Quotient Varianz₁/Varianz₂ gleich oder kleiner ist als der zugehörige Tafelwert F für die 10 %-Schranken bei zweiseitiger Fragestellung.

Die Häufigkeitsverteilungen der IC50x-Werte aus Tabelle 2 sind in der Abbildung 1 dargestellt. Für die n = 347 IC50x-Werte zeigt das Häufigkeitspolygon den Trend einer Normalverteilung (Abb. 1, I). Der Kurvenzug ist steilgipflig mit einer linkssteilen, also leicht positiven Schiefe. Einen vergleichbaren Kurvenzug (Abb. 1, II) weisen die n = 117 IC50x-Werte im ersten Teil des RC in Tabelle 2, Nr. 2 auf, während für die n = 230 IC50x-Werte im zweiten Teil des RC in Tabelle 2, Nr. 3 eine zweigipflige Verteilung zu vermuten ist (Abb. 1, III).


Verglichen mit dem ersten Teil des RC enthält dessen zweiter Teil in der Klasse 2 (= log 100 mmol/1 Nährmedium) eine um rund 21 Prozentpunkte größere Zahl von Substanzen für die Regressionsrechnungen.

Für die lineare Regression LD50 i.v. Ratte/Maus auf IC50x sind n = 148 Substanzen in **Tabelle 3**, Nr. 4 erfaßt. Das Häufigkeitspolygon der IC50x-Werte zeigt im mittleren Bereich eine weitgehend symmetrische, glockenförmige Verteilung.

5.2 Die Beziehung zwischen der IC50x und LD50 p.o.

Im ersten Teil des RC hat sich im Vergleich zum RC von 1988 die Zahl der IC50-Einzelwerte um 466 und die Zahl der Substanzen mit oralen LD50-Werten um 15 erhöht. Durch diese Ergänzungen ändern sich die Werte der Parameter der linearen Regression für die Wertepaare IC50x - LD50 p.o. Ratte/Maus nach der Gleichung log LD50 = a + b * log IC50x nicht oder nur unwesentlich (Tab. 2, Nr. 1 und Nr. 2). Eine gleich gute Reproduzierbarkeit der Ergebnisse ist bei Berechnung der 230 neuen Substanzen im 2. Teil des RC (Tab. 2, Nr. 3) und der insgesamt 347 Substanzen (Tab. 2, Nr. 4) zu erkennen.

Abbildung 1

Häufigkeitspolygone der für die Berechnung der linearen Regression verwendeten IC50x-Werte mit n % (y-Achse) und der Klasseneinteilung in log-Konzentrationsstufen (mmol/1 Nährmedium). I = 347 Substanzen, RC Teil 1 und 2; II = 117 Substanzen, RC Teil 1; III = 230 Substanzen, RC Teil 2 in Tabelle 2.

Die vergleichbaren Werte der Restvarianzen s_y^2 , (s. Abschnitt 5.1.) lassen auf eine Homoskedastizität schließen.

Mit dem Durbin-Watson-Koeffizienten (DW-K) wurde auf Autokorrelation der Residuen (e_i) geprüft. Mit Werten des DW-K von 1,7 bis 2,2 kann nicht auf eine Autokorrelation der Residuen geschlossen werden.

Die Varianzanalyse der linearen Regression für die 347 Wertepaare IC50x - LD50 p.o. ergibt mit der Summe der Abweichungsquadrate (SAQ_X) = 794,6 und der Restvarianz = 0,529 einen F-Wert = 285 >> F = 3,89 (1; 345; 0,05) und damit eine statistisch gesicherte Abhängigkeit zwischen den untersuchten Variablen, d.h. es liegt ein sehr gut gesicherter Anstieg der Standardregressionsgeraden vor.

Eine der wichtigsten Voraussetzungen für die Anwendung des linearen Regressionsmodells ist die Prüfung auf Linearität einer Regression. Mit dem Linearitätstest läßt sich mit einem F < 0.90 bei einem Tafelwert $F \approx 1.38$ (260; 85; 0.05) die Linearitätshypothese beibehalten.

Die b-Werte der 117 Substanzen (**Tab. 2**, Nr. 2) und der 230 Substanzen (**Tab. 2**, Nr. 3) sind nicht signifikant unterschiedlich: Mit t = 1,11 < t = 1,967 (343; 0,05; zweiseitig) wird die Nullhypothese auf dem 5%-Niveau aufrechterhalten, bei einem vergleichbaren Niveau der Intercept-Werte a = 0,637 bzw. 0,634.

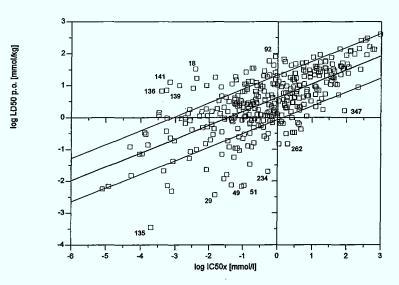
Wie die **Tabelle 2** zeigt, liegen zwischen 72,6 % und 73,5 % der Substanzen in einem Bereich der LD50 um die Regressionsgerade, der empirisch durch den Faktor $F_G \le \log 5$ festgelegt und in Abbildung 2 markiert ist, und der durch seine gewählte Breite eine Vorhersage der oralen LD50 bzw. einer approximativen LD50 mit einer für praktische Belange ausreichenden Genauigkeit ermöglicht.

Aus der graphischen Darstellung in **Abbildung 2** ist eine charakteristische Verteilung der 347 Wertepaare im doppellogarithmischen Koordinatensystem zu erkennen:

- Eine sogenannte Cluster-Bildung der Wertepaare an beiden Endabschnitten der Regressionsgeraden existiert nicht. Damit entfällt ein wichtiges Kriterium, das bei einer solchen Verteilung eine statistisch relativ gute Korrelation zwischen der Zytotoxizität und In-vivo-Toxizität vortäuschen kann.
- Die Wertepaare ab einem ungefähren IC50x-Bereich < 1 mmol/1 beginnen sich fächerförmig zu verteilen. Das bedeutet verallgemeinert, daß mit steigender Zytotoxizitätsstärke eine größere Schwankungsbreite der oralen LD50-Werte bzw. eine größere Ungenauigkeit der LD50-Vorhersage einhergeht. Eine eingehende Analyse dieses Phänomens muß einer gesonderten Studie vorbehalten bleiben (s. Abschnitt 10., Punkt 4).

Für eine erste Orientierung sind in der **Abbildung 2** bei einigen der extrem abweichenden Wertepaare die RC-Substanz-Nummern hinzugefügt worden.

Tabelle 2


Parameter der linearen Regression der Wertepaare IC50x - LD50 p.o. Ratte/Maus für die im RC registrierten Substanzen.

Lfd.	Zahl der	r	a	b ¹⁾	$F_G \leq \log 5$	RC
Nr.	Substanzen				%	
	n					
1	102	0,644	0,598	0,471	73,5	alt
2	117	0,665	0,630	0,475	73,5	Teil 1
3	230	0,666	0,635	0,414	72,6	Teil 2
4	347 ²⁾	0,672	0,625	0,435	72,6	Teil 1, 2
5	107	0,699	0,810	0,415	76,6	Teil 3

Erklärungen in Tabelle 1

Abbildung 2

Standardregressionsgerade für die Wertepaare IC50x in mmol/l und LD50 p.o. Ratte/Maus in mmol/kg für 347 Substanzen.

²⁾ Von 65 Substanzen ohne LD50-Werte für Ratte wurden die Werte für Maus eingesetzt

5.3 Die Beziehung zwischen der IC50x und LD50 i.v.

Die Aussagen zur Erstellung einer Standardregressionsgeraden auf der Grundlage der Werte der Parameter der linearen Regression für IC50x - LD50 p.o. treffen in vollem Umfange für die Wertepaare IC50x - LD50 i.v. Ratte/Maus zu. Eine detaillierte Darstellung der Ergebnisse kann deshalb entfallen, da sie eine Wiederholung der Aussagen im ersten Teil dieses Abschnittes bedeuten würde.

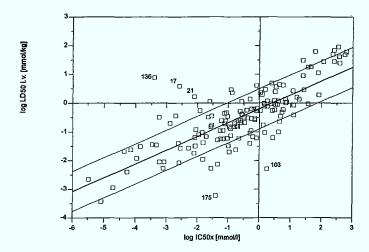
In **Tabelle 3**, Nr. 4 sind die Parameter zur Erstellung einer Standardregressionsgeraden zur Vorhersage der LD50 i.v. Ratte/ Maus aus der IC50x verzeichnet. Die **Abbildung 3** zeigt die graphische Verteilung der Wertepaare.

5.4 Die Position der Regressionsgeraden

Die Prüfung auf Differenz der zwei Regressionskoeffizienten $b_{p,o}$. und $b_{i,v}$. (**Tab. 2**, Nr. 4; **Tab 3**, Nr. 4) mit der Nullhypothese $H_0: b_1 = b_2$ durch den t-Test ergab einen t-Wert = 1,07 < t (0,05; 491) = 1,96. Damit kann der von uns schon früher beschriebene annähernd parallele Anstieg der beiden Standardregressionsgeraden (67, 169) bei einer Irrtumswahrscheinlichkeit $\alpha = 0,05$ auch nach Erweiterung des RC bestätigt werden (**Abb. 4**). Andererseits widerspiegeln die signifikant unterschiedlichen Intercept-Werte $a_{p,o}$ und $a_{i,v}$. (**Tab. 2**, Nr. 1, 2, 3 und **Tab. 3**, Nr. 1, 2, 3) nach Prüfung der Differenz der Mittelwerte mit dem t-Test mit $\alpha < 0,001$ und die unterschiedliche Lage der beiden Geraden in **Abbildung 4** eine häufige Beobachtung im Tierexperiment: Bei einer Tierspezies können die oralen LD50-Werte von den i.v.-Werten um den Faktor 5 bis 10 differieren.

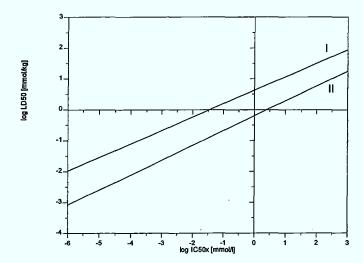
Tabelle 3

Parameter der linearen Regression der Wertepaare IC50x - LD50 i.v. Ratte/Maus für die im RC registrierten Substanzen.


Lfd.	Zahl der	r	a	b ¹⁾	$F_G \le \log 5$	RC
Nr.	Substanzen	-			%	
	n					_
1	66	0,808	-0,110	0,468	80,3	alt
2	71	0,800	-0,139	0,466	81,7	Teil 1
3	77	0,744	-0,267	0,525	72,7	Teil 2
4	148 ²⁾	0,768	-0,201	0,480	77,7	Teil 1, 2
5	40	0,815	-0,170	0,516	75,0	Teil 3

¹⁾ Erklärungen in Tabelle 1

²⁾ Von 60 Substanzen ohne LD50-Werte für Ratte wurden die Werte für Maus eingesetzt


Abbildung 3

Standardregressionsgerade für die Wertepaare IC50x in mmol/l und LD50 i.v. Ratte/Maus in mmol/kg für 148 Substanzen

Abbildung 4

Der nahezu parallele Verlauf der Regressionsgeraden LD50 p.o. (I) und LD50 i.v. (II) auf IC50x nach Abbildung 2 und 3.

5.5 Schlußfolgerungen

Mit der Ergänzung und Erweiterung des RC durch IC50-Werte und neue Substanzen wird die 1992 aufgestellte These (169) verifiziert, daß sich dadurch die Werte der Parameter der linearen Regression nicht oder nur unwesentlich ändern. Mit dieser ausgezeichneten Reproduzierbarkeit der Ergebnisse ist erneut der Beweis erbracht worden, daß zwei Standardregressionsgeraden mit dem Charakter einer Allgemeingültigkeit für eine Vorhersage der akuten Toxizität (LD50) erstellt werden können. Diese Regressionsgeraden mit den Werten in **Tabelle 2**, Nr. 4 und **Tabelle 3**, Nr. 4 stehen nun für eine praktische Nutzung und zur Validierung im Rahmen behördlich regulierter Richtlinien zur Reduzierung toxikologischer Tierversuche zur Verfügung.

6 Untersuchungen zur Verbesserung der LD50-Vorhersage

6.1 Analyse der Abweicher-Wertepaare IC50x - LD50 p.o.

Mit der Einführung des Faktors $F_G \le \log 5$ besteht erstmals die Möglichkeit einer vergleichenden Analyse der Wertepaare, die extrem von der Regressionsgeraden abweichen. Damit zeichnet sich auch eine Verbesserung des Verfahrens der Vorhersage der oralen LD50 ab, wenn die Ursache für die Lage der Wertepaare außerhalb des F_G -Bereiches erklärt und ihre Zahl signifikant gesenkt werden kann.

Die Untersuchungen zu dieser Fragestellung beruhen auf folgenden Grundlagen: Entsprechend der Gleichung $\log \circ_i = a + b * \log x_i$ mit Zuordnung der LD50 zur y-Achse wird die Differenz D der in vivo gemessenen LD50-Werte ($\log y_i$) von den geschätzten LD50-Werten auf der Regressionsgeraden ($\log \circ_i$) nach $D = \log y_i - \log \circ_i$ bestimmt; demnach sind die LD50-Werte über der Geraden durch positive und unterhalb der Geraden durch negative log-Differenzwerte charakterisiert.

Von den 347 Substanzen mit oralen LD50-Werten (**Tab. 2**, Nr. 4) liegen 188 Substanzen über und 159 Substanzen (mit negativen Differenzwerten) unter der Regressionsgeraden. 95 Substanzen (27,4 %) liegen außerhalb des durch den Faktor $F_G \le \log 5 \ (\pm 0,699)$ definierten Bereiches der oralen LD50 um die Regressionsgerade, mit 46 Substanzen als Positiv-Abweicher und 49 Substanzen als Negativ-Abweicher.

Die erste Gruppe der 46 Positiv-Abweicher zeichnet sich durch falsch positive IC50x-Werte aus, durch die also eine stärkere In-vivo-Toxizität vorhergesagt wird als sie im Tierexperiment zu bestimmen ist. Die Lage der IC50x-Werte in der Graphik der Abbildung 2 über dem markierten F_G-Bereich signalisiert demnach mit der Stärke der Zytotoxizität ein höheres Risiko für den Organismus, als es auf Grund bisheriger Befunde im Tierexperiment zu erwarten ist. Dieser Vorhersagebereich mit Signalcharakter ist also in jedem Falle dann von Bedeutung, wenn sich beim Testen neuer Substanzen nach dem Tierexperiment herausstellt, daß die Wertepaare IC50x - LD50 p.o. in diesem Bereich liegen; denn die erhöhte Zytotoxizitätsstärke in vitro wird natürlich nicht durch komplexe Mechanismen beeinflußt, wie sie im Organismus wirksam sind (zentralnervöse Steuerungen, Metabolisierung u.a.).

Das Diethyldithiocarbamat (RC-Substanz-Nr. 136 in **Abb. 2** und **3**) mit relativ hohen LD50-Werten kann als Beispiel angeführt werden: Die Entwicklung zu einem Arzneimittel wurde eingestellt, als eine extrem starke Zytotoxizität mit verschiedenen Zellsystemen, auch in der Zellkultur, nachzuweisen war.

Einer eingehenden Analyse müssen andererseits die 49 Negativ-Abweicher unterzogen werden, mit denen durch die falsch negativen IC50x-Werte höhere LD50-Werte und damit geringere In-vivo-Toxizitäten vorhergesagt werden, als im Tierexperiment zu erwarten wären.

Drei Faktoren können für ausgeprägte falsch negative Werte verantwortlich sein:

- Schwankungen der oralen LD50-Werte
- Speziesspezifität der oralen LD50
- Unzulänglichkeiten der Zellkultur für die Erfassung bzw. Anzeige der komplexen Prozesse einer Intoxikation in vivo.

Schwankungen der oralen LD50-Werte: Aus einer Reihe von Arbeiten ist bekannt, daß die LD50-Werte einer Substanz Schwankungen im Bereich von Faktor ca 4 bis 14 unterliegen können, auch bei einem hohen Grad einer Standardisierung der Tierhaltung und Versuchsbedingungen. Davon zeugen auch aktuelle LD50-Änderungen im NIOSH-Register von Substanzen, deren LD50-Werte erst Mitte der 80er Jahre bestimmt wurden.

Von den 95 Substanzen als Abweicher-Wertepaare IC50x - LD50 p.o. (mit 27,4 % in **Tab. 2**, Nr. 4) konnten für 23 Substanzen hauptsächlich aus dem Merck-Index (159) orale LD50-Werte recherchiert werden, die maximal um den Faktor 38 (RC-Substanz-Nr. 29) und 19 (RC-Substanz-Nr. 49) von den NIOSH-Werten differieren (**Tab. 4** und **5**).

Ein Vergleich der Werte in **Tabelle 4** und 5 zeigt, daß aus der Gruppe der Negativ-Abweicher (**Tab. 4**) eine größere Zahl differenter LD50-Werte vorliegen als aus der Gruppe der Positiv-Abweicher. Verglichen mit den Positiv-Abweichern in **Tabelle 5** zeichnen sich ferner nur in der Gruppe der Negativ-Abweicher (**Tab. 4**) alle neuen LD50-Werte durch höhere Dosen aus.

Aus diesen Befunden mit allerdings nur 23 Substanzen ist ein interessanter Hinweis erkennbar: Größere Abweichungen von LD50-Werten sind eher bei Substanzen zu erwarten, deren Wertepaare IC50x - LD50 p.o. im Vorhersagebereich der falsch negativen IC50x-Werte liegen.

Tabelle 4

16 Substanzen als Negativ-Abweicher mit unterschiedlichen LD50-Werten für jeweils die gleiche Spezies, recherchiert aus dem Merck-Index (159) und anderen Quellen, die als Ausnahmen markiert sind.

RC-Nr.	Substanz	LD50 p.o	. Ratte/Maus	
		mmol/kg KM		
		Merck	NIOSH	
29	Mercury II chloride	0,141)	0,0037	
43	Aldrin	0,16	0,11	
49	Parathion	0,13 ²⁾	0,0069	
51	Disulfoton	0,025	0,0073	
61	DDT	1,36 ²⁾	0,32	
96	Cygon	1,09	0,66	
103	Nicotine	1,42	0,31	
112	Caffeine	1,83	0,99	
135	Dioxin (TCDD)	$0,00086^{3)}$	0,00035	
173	Pentachlorophenol	0,66	0,19	
185	Heptachlor	0,43	0,11	
192	1,3-Bis(2-chloroethyl)-1-nitrosourea	0,16	0,093	
223	Lindane	$0,63^{2)}$	0,26	
229	Dextropropoxyphene * HCl	0,61	0,22	
235	Paraquat	0,49	0,31	
347	Thiourea	24,0	1,64	

¹⁾ Lit.-Nr. 163 ²⁾ Lit.-Nr. 173 ³⁾ Lit.-Nr. 174

Tabelle 5

7 Substanzen als Positiv-Abweicher mit unterschiedlichen LD50-Werten für jeweils die gleiche Spezies, recherchiert aus dem Merck-Index (159).

RC-Nr.	Substanz		o. Ratte/Maus	
		mmol/kg KM		
		Merck	NIOSH	
18	Captan	29,9	33,3	
57	L-Dopa	20,3	9,03	
130	Ethanol	153,0	304,0	
136	Diethyldithio carbamate sod. * 3 H ₂ O	12,6	6,66	
139	Retinol	8,97	6,98	
158	Dichlorophene	6,25	10,0	
340	Diethylene glycol	196,0	139,0	

Wenn für die Berechnung der linearen Regression der n = 347 Substanzen (**Tab. 2**, Nr. 4) die neuen LD50-Werte der 23 Substanzen in **Tabelle 4** und **5** eingesetzt werden, verändern sich die Werte der Parameter nur geringfügig:

$$r = 0.689$$

$$a = 0,653$$

$$b = 0,429$$

$$F_G \le \log 5 = 73.8 \%$$

Die Zahl der Substanzen im F_G-Bereich erhöht sich nur unwesentlich um rund 2 %.

Speziesspezifität der oralen LD50: Von den 347 Substanzen mit LD50-Werten Ratte/Maus (Tab. 2, Nr. 4) stammen 282 Werte von der Ratte und 65 Werte von der Maus. Wird die Regressionsanalyse getrennt für die 282 Wertepaare mit einer LD50 Ratte und für die 238 Wertepaare mit einer LD50 Maus durchgeführt, zeichnet sich folgender Trend ab: Verglichen mit den 347 Wertepaaren mit LD50-Werten Ratte/Maus (Tab. 6, Nr. 1) verbessert sich der prozentuale Anteil der im F_G-Bereich lokalisierten Wertepaare mit LD50-Werten Ratte (Tab. 6, Nr. 2) nur unwesentlich um rund 2 %.

Die Abnahme der Zahl der Substanzen im F_G-Bereich bei Verwendung der LD50-Werte Maus (**Tab. 6**, Nr. 3) ist von uns bereits früher mit den Wertepaaren im RC von 1988 nachgewiesen worden (168).

Zur Prüfung, ob sich die aus der **Tabelle 6**, Nr. 2 und 3 ableitbaren Abweicher-Wertepaare mit 25,9 % = 73 Substanzen (Ratte) und 31,9 % = 76 Substanzen (Maus) unterscheiden, dienten der Test zum Vergleich zweier relativer Häufigkeiten und der χ^2 - Test auf Homogenität. Auf dem 5 % - Niveau besteht kein signifikanter Unterschied der Häufigkeiten der Abweicher-Wertepaare zwischen Ratte und Maus.

Tabelle 6

Parameter der linearen Regression der Wertepaare IC50x - LD50 p.o. getrennt nach der Tierspezies Ratte (R) und Maus (M).

Ī	∠fd. Nr.	Wertepaare	LD50	r	a	b ¹⁾	Bereich	RC
Ţ		n	p.o.]]	$F_G \le \log 5$	
			,				%	
Г	1	347	R/M	0,672	0,625	0,435	72,6	Teil 1, 2
	2	282	Ratte	0,673	0,623	0,439	74,1	Teil 1, 2
	3	238	Maus	0,607	0,582	0,388	68,1	Teil 1, 2

¹⁾ Erklärungen in Tabelle 1

Die Korrelationskoeffizienten r = 0,673 (Ratte) und r = 0,607 (Maus) sind bei einer Irrtumswahrscheinlichkeit $\alpha = 0,05$ nicht signifikant different.

Die Prüfung auf Differenz der Regressionskoeffizienten b = 0,439 (Ratte) und b = 0,388 (Maus) ergab einen t-Wert = 1,16 < t (0,05;516) = 1,96 und damit keinen signifikanten Unterschied auf dem 5 %-Signifikanzniveau.

Zusammenfassend erbrachten die Prüfungen der Werte aus der Regressionsanalyse auf Differenz zwischen den beiden Spezies Ratte und Maus keine signifikanten Unterschiede, und die Trennung der Wertepaare nach der Tierspezies erhöht nicht wesentlich den Anteil der Substanzen im definierten Bereich $F_G \le \log 5$.

<u>Unzulänglichkeiten der Zellkultur?</u>: Von drei Substanzklassen ist a priori nicht zu erwarten, daß sich aus Zytotoxizitätsdaten mechanistisch Rückschlüsse auf die Stärke der In-vivo-Toxizität ziehen lassen. Es sind dies Substanzen mit spezifischen systemischen In-vivo-Wirkungen, die sich den Insektiziden (**Tab. 7**), entsprechend der Arbeit "Pesticides" (176), den Neurotropika (**Tab. 8**) nach dem Merck-Index (159) und den metabolisch aktivierbaren Substanzen mit Giftung im Organismus (**Tab. 9**) zuordnen lassen.

Für die im RC erfaßten 62 Substanzen aus diesen drei Substanzklassen haben sich drei interessante Befunde herauskristallisiert:

- Von den 62 Substanzen liegen 47 Substanzen (75,8 %) unterhalb der Regressionsgeraden, ihre log-Differenzwerte y_i - ý_i sind also negativ.
- Von den 62 Substanzen liegen nur 23 Substanzen (37,1 %) im Bereich der Negativ-Abweicher, davon entfallen auf die 20 Insektizide 10 (**Tab. 7**), auf die 26 Neurotropika 5 (**Tab. 8**) und auf die 16 metabolisch aktivierbaren Verbindungen 8 Vertreter (**Tab. 9**).
- Aus der Gruppe der 49 Negativ-Abweicher kann für 23 Substanzen (46,9 %) eine Erklärung für ihre falsch negativen IC50x-Werte gegeben werden, da sie zu den drei genannten "Problemklassen" von Substanzen in den **Tabellen 7, 8** und **9** zählen.

Tabelle 7 Die 20 wichtigen Insektizide des RC geordnet nach ihren chemischen Merkmalen, mit den Differenzwerten $D = \log y_i - \log \dot{y}_i$

RC-Nr.	Substanz	Substanzgruppe	LD50
1		1	Differenz von
			log ý _i
26	Kelthane	Chlorierte Kohlenwasserstoffe	0,340
40	Chlordan	J	-0,046
43	Aldrin		-1,074
61	DDT		-0,775
167	DDD		-0,378
185	Heptachlor		-1,050
195	DDA		0,133
197	DDE		0,251
207	Dieldrin		-1,223
223	Lindane		-1,043
49	Parathion	Organische Phosphorverbindungen	-2,339
51	Disulfoton		-2,346
67	Malathion		0,106
75	Trichlorfon		-0,136
96	Cygon		-0,848
73	Carbaryl	Carbamatverbindungen	-0,279
186	Zineb		1,185
134	Rotenone	Andere Verbindungen	0,583
173	Pentachlorophenol		-0,720
235	Paraquat		-1,019

Tabelle 826 Substanzen des RC geordnet nach ihren neurotropen In-vivo-Wirkungen, mit den Differenzwerten $D = \log y_i - \log \acute{y}_i$; weitere Daten unter Nr. 183 im Literaturverzeichnis.

RC-Nr.	Substanz	Substanzgruppe	LD50
			Differenz von
			log ý _i
69	Secobarbital sod.	Sedativa, Hypnotica, ZNS-Depress.	-0,651
83	Thiopental		-0,119
84	Amobarbital		-0,335
87	Pentobarbital sod.		-0,654
101	Gluthetimide		-0,270
118	Phenobarbital		-1,035
247	(+)-Thalidomide		-0,397
264	Chloral hydrate		-0,349
317	Barbital sod.		-0,591
38	Imipramine * HCl	Antidepressiva	-0,093
90	Iproniazid		-0,273
183	Amitriptyline		0,021
27	Chlorpromazine	Antipsychotica, Anxiolytica	-0,176
44	Hydroxyzine * HCl		0,248
63	Diazepam		0,116
170	Thioridazine * HCl		-0,013
112	Caffeine	Stimulantia	-0,815
262	Amphetamine sulf.	1	-1,579
82	Diphenylhydantoin	Anticonvulsiva	-0,551
229	Dextropropoxyphene * HCl	Analgetica (Narcotica)	-1,150
251	Scopolamine * HBr	Anticholinergica	-0,123
296	Homatropine methylbromide		-0,532
102	Acrylamide	Neurotoxica (ohne Insektizide)	-0,338
137	Triethyltin chloride		-0,852
142	Methylmercury chloride		0,105
316	Toluene		0,571

Tabelle 9

16 Substanzen mit spezifischen toxischen Wirkungen nach ihrer metabolischen Aktivierung (Giftung) im Organismus, mit den Differenzwerten $D = \log y_i - \log y_i$

RC-Nr.	Substanz	LD50
		Differenz von
1		log ý _i
13	Cycloheximide	-1,370
33	p-Chloromercuribenzoic acid	-1,077
37	Aflatoxin B ₁	-1,783
68	2,4-Dinitrophenol	-1,128
97	Phenacetin	0,292
109	Frusemide	0,109
113	Acetaminophen	0,386
116	Cyclophosphamide * H ₂ O	-1,310
123	Isoniazid	-0,332
125	Carbon tetrachloride	0,229
192	1,3-Bis(2-chloroethyl)-1-nitrosourea	-1,176
260	Coumarin	-0,427
273	Bromobenzene	0,374
279	Thioacetamide	-0,294
281	1,2-Dibromomethane	-1,106
292	Allylalcohol	-0,952

Um bei dieser Übersicht der Substanzzuordnung Überschneidungen zu vermeiden, wurden die Substanzen RC-NR. 38, 49, 69, 173 nicht noch einmal in der **Tabelle 9** erfaßt, und die Insektizide RC-NR. 43, 49, 61, 73, 207, 223 mit spezifisch neurotoxischen In-vivo-Wirkungen (70, 177) fehlen in der **Tabelle 8**.

Es ist nicht gerechtfertigt, aus dem Verhalten einer geringen Zahl von Substanzen aus jeder der drei Substanzklassen verallgemeinernde Schlüsse auf das Verhalten der Gesamtheit der Vertreter in bezug auf die Möglichkeiten einer Vorhersage der akuten oralen LD50 mit dem beschriebenen Verfahren zu ziehen. Doch ein Befund gilt als sicher: Anders als zu erwarten war, fallen die Substanzen aus diesen "Problemklassen" für eine LD50-Vorhersage nicht völlig aus; für die Insektizide und metabolisch aktivierbaren Substanzen gilt, daß sich sogar noch für rund 50 % ihrer Vertreter eine akute orale LD50 mit einer für die Praxis ausreichenden Genauigkeit auf der Basis der IC50x-Werte schätzen läßt. Als günstiger erweisen sich die 26 Neurotropika, denn 21 (80,8 %) liegen innerhalb des in Abbildung 2 markierten F_G-Bereiches. Ein vergleichbar gutes Ergebnis wird mit der im RC von 1988 registrierten Substanzklasse der Antiseptika erzielt (182).

Die Regressionsgerade für die 26 Neurotropika-Wertepaare IC50x - LD50 p.o. ist mit a=0,215 und b=0,360 definiert und liegt innerhalb des F_G -Bereiches der Standardregressionsgeraden zur Vorhersage der LD50 p.o. in Abbildung 2 (183).

6.2 Multiple Regression mit physikalisch-chemischen Stoffeigenschaften und formalen Parametern (in Zusammenarbeit mit Dipl.-Math. Ingo Baeger, Forschungsinstitut für Molekulare Pharmakologie)

Im Abschnitt 6.1. konnte beim Vergleich der IC50x mit der LD50 p.o. in der Gruppe der 49 Substanzen, die als Negativ-Abweicher zu definieren ist, für 23 Substanzen (46,9 %) ihre Lage außerhalb des Bereiches $F_G \leq \log 5$ weitestgehend erklärt werden. Abschließend wird die Frage untersucht, ob durch Einbeziehung physikalisch-chemischer Stoffeigenschaften in die Berechnungen eine Verbesserung der Vorhersage der LD50 zu erreichen ist. Das Ziel der Untersuchungen soll vornehmlich darin bestehen, die Zahl der Substanzen innerhalb des durch den Faktor $F_G \leq \log 5$ definierten LD50-Bereiches zu erhöhen, bzw. den prozentualen Anteil der Negativ-Abweicher zu senken.

Für die multiple Regressionsanalyse sind als Regressoren (unabhängige Variable) die Zytotoxizität (IC50x), die Molmasse (Mm) und der Oktanol/Wasser-Verteilungskoeffizient (log P) allein und aus ihnen zusammengesetzte formale Größen vorgesehen.

Substanzen mit definierten log P-Werten, von denen anzunehmen ist, daß sie miteinander vergleichbar sind, konnten nur in relativ geringer Anzahl recherchiert werden (180, 181). Daher verringerte sich die Zahl der Substanzen, die für die folgenden Berechnungen herangezogen werden können, von 347 (**Tab. 2**, Nr. 4) auf 190.

Für die Berechnungen wurde das Software-Programm SPSS/PC+, v.4.0 genutzt (184).

<u>Einfache lineare Regression:</u> Für die durch log P-Werte charakterisierten 190 Wertepaare IC50x - LD50 p.o. wurden folgende Werte der einfachen linearen Regression nach der Gleichung in Abschnitt 5.2. ermittelt:

a = 0,613; b = 0,462 und r = 0,683, mit 133 Substanzen (70 %) im F_G -Bereich und dementsprechend 28 Positiv- und 29 Negativ-Abweicher, die also außerhalb des F_G -Bereiches liegen (**Tab. 10**, Nr. 2).

Von den verschiedenen formalen Parametern lassen sich nur für xy = log IC50x * log Mm und qxy = log IC50x/log Mm zu log LD50 p.o. Korrelationskoeffizienten mit Werten von r = 0,674 bzw. r = 0,678 berechnen, die mit dem oben angegebenen Wert r = 0,683 vergleichbar sind.

Der prozentuale Anteil der außerhalb des F_G -Bereiches liegenden Abweicher-Wertepaare bzw. der Negativ-Abweicher ändert sich nur unwesentlich (**Tab. 10**, Nr. 3, 4).

<u>Multiple Regression:</u> Verglichen mit den Werten in Tabelle 10, Nr. 2 verringert sich durch die multiple Regression mit allen gebildeten formalen Parametern (23 Regressoren) der prozentuale Anteil der Negativ-Abweicher nur um 1,6 Prozentpunkte (**Tab. 10**, Nr. 5).

Eine signifikante Verbesserung des Verfahrens der Vorhersage der LD50 p.o. ist durch die Einbeziehung der Werte physikalisch-chemischer Stoffeigenschaften in die multiple Regressionsanalyse demnach nicht zu erzielen.

Tabelle 10

Vergleich der 347 Wertepaare IC50x - LD50 p.o. (einfache lineare Regression) mit den 190 Wertepaaren IC50x - LD50 p.o., die für multiple Analysen zur Verfügung stehen. Die Werte in Klammern sind für die Negativ-Abweicher gültig.

Lfd. Nr.	Formale Parameter (unabhängige Variable)	Wertepaare n		gativ-Abweicher $F_G \le \log 5$
	und multiple Regression		n	%
1	-	347	95 (49)	27,4 (14,1)
2	-	190	57 (29)	30,0 (15,3)
3	log IC50x * log Mm	190	61 (30)	32,1 (15,8)
4	log IC50x / log Mm	190	54 (28)	28,4 (14,8)
5	multiple Regression ¹⁾	190	48 (26)	25,3 (13,7)

¹⁾ Regressionsansatz mit allen gebildeten formalen Parametern (23 Regressoren).

6.3 Schlußfolgerungen

Eine Analyse der 49 Negativ-Abweicher aus der Gruppe der 347 Wertepaare IC50x - LD50 p.o. führte zu wichtigen Kriterien, unter denen sich deren Lage außerhalb des F_{G} -Bereiches darstellt:

- Gehäuft in der Gruppe der Negativ-Abweicher treten größere Unterschiede zwischen den LD50-Einzelwerten einer Substanz auf. Die Frage, wie sich die Bildung einer mittleren LD50 (LD50x) auf die Abweicher-Substanzen auswirkt, könnte zumindest mit einer begrenzten Zahl von Substanzen geprüft werden. Untersuchungen dazu sind in Vorbereitung.
- Die Trennung der Wertepaare IC50x LD50 p.o. nach der Tierspezies Ratte oder Maus reduziert nicht wesentlich den Anteil der Abweicher-Substanzen. Die geringe Speziesdifferenz zwischen Ratte und Maus in bezug auf die Parameter der linearen Regression ist vielleicht damit zu erklären, daß von den 347 Wertepaaren für Ratte/Maus nur 65 zur Spezies Maus gehören.
- Von den 49 Negativ-Abweichern gehören 23 (46,9 %) zu den Substanzklassen der Insektizide, der in vivo metabolisch aktivierbaren Verbindungen und der Neurotropika. Die Vertreter dieser Klassen zeichnen sich durch organspezifische systemische In-vivo-Wirkungen aus; es ist nicht ohne weiteres zu erwarten, daß sich ihre akut toxischen Wirkungen mit unspezifischen Zytotoxizitätstests mit Zellkulturen erfassen lassen. Trotzdem kann die akute orale LD50 von 50 % der RC-Substanzen aus den beiden ersten Klassen und von 81 % der Neurotropika sicher, d.h. mit einer für die Praxis ausreichenden Genauigkeit, aus den IC50x-Werten geschätzt werden. Weitere biometrische Analysen der RC-Daten sowie Tiefenprüfungen von Substanzgruppen, wie sie bereits mit den Neurotropika vorgenommen wurden (Manuskript im Druck), müssen sich anschließen.

Durch Einbeziehung der Werte der physikalisch-chemischen Stoffeigenschaften Molmasse (Mm) und Oktanol/Wasser-Verteilungskoeffizient (log P) und der daraus gebildeten formalen Parameter als Regressoren (unabhängige Variable) in die multiple Regressionsanalyse läßt sich der prozentuale Anteil der Negativ-Abweicher nicht reduzieren. Die gute Übereinstimmung zwischen den Ergebnissen mit der einfachen linearen und mit der multiplen Regressionsanalyse bestätigt andererseits die Brauchbarkeit und den Wert des Verfahrens der Vorhersage der akuten oralen Toxizität auf der Grundlage der RC-Daten.

Als letzter Schritt, eine Verbesserung der LD50-Vorhersage zu erzielen, wird die biometrische Untersuchung aller RC-Daten mit der PLS-Analyse (partial least square modelling) durchgeführt. Diese Aufgabe wird unter Leitung der Zentralstelle zur Erfassung und Bewertung von Ersatz- und Ergänzungsmethoden zu Tierversuchen (ZEBET) zur Zeit bearbeitet.

7 Die Spannweite der IC50-Werte (F_S)

Der im Abschnitt 3.4. beschriebene Faktor F_S definiert die Spannweite ("Streubreite") der IC50-Einzelwerte einer Substanz.

Da man davon ausgehen kann, daß mit einer steigenden Zahl von IC50-Werten pro Substanz auch deren Spannweite zunehmen kann, sollte zum einen der Zusammenhang zwischen der Spannweite und der Zahl der IC50-Werte pro Substanz und zum anderen die Verteilung der Substanzen mit einem $F_S > 5$ in den einzelnen IC50x-Konzentrationsbereichen untersucht werden. Der empirisch gewählte Faktor $F_S \le 5$ als Grenzwert für eine Beurteilung der "Streubreite" zeigt an, daß ein mimimaler und maximaler IC50-Wert einer Substanz sich noch bis maximal um das 25fache unterscheiden können.

Für 280 der 361 Substanzen (77,6 %) errechnet sich ein $F_S \le 5$. Von den 361 Substanzen weisen also nur 81 (22,4 %) einen F_S -Wert > 5 auf. Die IC50-Werte einer Substanz weichen demnach in rund 78 % der Fälle höchstens um etwas mehr als eine Größenordnung voneinander ab. Mit einem solch günstigen Ergebnis konnte nicht gerechnet werden, wenn man die unterschiedlichsten Zelltypen, zytotoxischen Endpunkte, Kultivierungs-, Test- und Auswertungsverfahren, aus denen die einzelnen IC50-Werte resultieren, berücksichtigt.

Der erste Teil des erweiterten RC (RC-Substanz-Nr. 1 bis 131) enthält 1046 IC50-Einzelwerte, also im Durchschnitt rund acht IC50-Werte pro Substanz; im zweiten Teil des RC mit 866 IC50-Einzelwerten entfallen rund vier IC50-Werte auf eine Substanz. Mit diesem Verhältnis der höheren Zahl von IC50-Einzelwerten pro Substanz im ersten Teil des RC erhöht sich auch der prozentuale Anteil der Substanzen mit einem $F_{\rm S} > 5$ auf 49 Substanzen (37,4 %) verglichen mit den 32 Substanzen im zweiten Teil (13,9 %).

Wie zu erwarten war, zeigt das Ergebnis, daß mit steigender Zahl der IC50-Werte pro Substanz sich auch die Zahl der Substanzen mit einem $F_S > 5$ erhöht. Die **Tabelle 11** belegt dieses Ergebnis detailliert. Die Tabelle zeigt eine erstmals 1987 erstellte Skala der Zytotoxizitätsstärke (171); die Zahl der Substanzen mit einem $F_S > 5$ ist den einzelnen IC50x-Konzentrationsbereichen zugeordnet. In den beiden Bereichen $< 10^{-3}$ mM sind der prozentuale Anteil der Substanzen mit einem $F_S > 5$ und dem entsprechend auch die Zahl der IC50-Werte bezogen auf 100 Substanzen am höchsten (**Tab. 11**).

Die unterschiedliche Anzahl der IC50-Werte pro Substanz und der Substanzen mit einem $F_S > 5$ im ersten und zweiten Teil des RC ändert nichts an der Tatsache, daß alle Werte der Regressionsparameter beider RC-Teile sehr gut übereinstimmen. Damit ist bewiesen, daß die mittlere IC50 (IC50x) als repräsentative Größe für solche Regressionsrechnungen gültig ist. Die für die 361 Substanzen berechneten Werte zum Faktor F_S sind gut mit den im RC von 1988 angegebenen Werten vergleichbar.

Abschließend soll die Aufmerksamkeit noch einmal auf die Substanzen gerichtet werden, die im Abschnitt 6.1. als Negativ-Abweicher definiert sind. Zur Klärung der Frage, ob zwischen der Negativ-Abweichung und einer hohen Spannweite der IC50-Einzelwerte mit einem Fs > 5 ein Zusammenhang besteht, dient die **Tabelle 12**. Der prozentuale Anteil der Negativ-Abweicher mit F_S -Werten > 5 ist in allen Zytotoxizitätsklassen mit 12,5 % bis 27,3 % relativ gering, bezogen auf die Zahl der Substanzen mit einem F_S > 5 in der jeweiligen Zytotoxizitätsklasse.

Klasse	Zytotoxizität	IC50x-	Substanzen	Substanzen	IC50-Werte	IC50-Werte
		Bereich	des RC	mit einem	pro Klasse	bezogen
		mM	n	$F_S > 5$	n	auf 100
				n (%)		Substanzen
						n
1	Supertoxisch	< 10 ⁻⁴	9	5 (56)	70	778
2	Extrem toxisch	$\geq 10^{-4}$	18	11 (61)	122	678
3	Sehr toxisch	$\geq 10^{-3}$	24	8 (33)	141	588
4	Mäßig toxisch	$\geq 10^{-2}$	63	16 (25)	318	505
5	Leicht toxisch	$\geq 10^{-1}$	98	20 (20)	538	549
6	Sehr schwach toxisch	≥ 1	78	21 (27)	412	528
7	Untoxisch	≥ 10	71	0	311	438
			Σ 361	Σ 81	Σ 1912	

Zuordnung der 347 Substanzen mit oralen LD50-Werten aus Tabelle 2, Nr. 4 und dieser Substanzen mit einem $F_S > 5$ zu den sieben IC50x-Bereichen.

Tabelle 12

ZytotoxKlasse	Substanzen mit einer	Substanzen mit einem	Negativ-Abweicher
IC50x	LD50 p.o.	$F_S > 5$	mit einem $F_S > 5$
mM	n	nn	n (%)
1. < 10 ⁻⁴	5	3	0
$2. \geq 10^{-4}$	18	11	3 (27,3)
$3. \geq 10^{-3}$	23	8	1 (12,5)
4. $\geq 10^{-2}$	56	12	2 (16,7)
5. ≥ 10 ⁻¹	96	20	5 (25,0
6. ≥1	78	21	5 (23,8)
7. ≥ 10	71	0	0
	Σ 347	Σ 75	Σ 16

Demzufolge wird die Negativ-Abweichung nicht in einer hohen Spannweite der IC50-Einzelwerte einer Substanz zu suchen sein; von den 49 Negativ-Abweichern zeichnen sich auch nur 16 Substanzen (32,7%) durch hohe F_S -Werte > 5 aus.

8 Anwendung des Verfahrens zur Vorhersage der LD50

Das Verfahren ist bei der Neuentwicklung von Arzneimitteln zum Präscreening von chemischen Verbindungen während der Phase einer Substanzsynthese einsetzbar; es kann auch einem tierexperimentellen Toxizitätstest vorgeschaltet zur Vorhersage der akuten Toxizität (LD50) oder einer approximativen LD50 dienen. In Verbindung mit der ATC-Methode zur Einstufung von Industriechemikalien in Toxizitätsklassen trägt es zur Reduzierung der Versuchstierzahl um 47 % bei.

8.1 Die Bestimmung der Zytotoxizität

Voraussetzung für eine Nutzung des Verfahrens ist die Existenz eines Zytotoxizitätstests mit Mammalier-Zellkulturen, um eine mittlere IC50 (IC50x) bei Verwendung von mindestens zwei verschiedenen Mammalier-Zellinien oder mit einer Zellinie und zwei zytotoxischen Endpunkten (z.B. Zellzahlbestimmung und NR50-Test) berechnen zu können.

Wie mit der Beziehung zwischen der IC50x und LD50 p.o. gezeigt werden konnte, lassen die 347 Substanzen entsprechend den Ergebnissen in den Abschnitten 5.1. bis 5.4. den Trend einer normalverteilten Grundgesamtheit erkennen. Zur Prüfung der Sicherheit und Qualität des hier vorgestellten Verfahrens zur Vorhersage einer LD50 ist deshalb der Vergleich einer Zufallsstichprobe von etwa 10 nichtselektierten Substanzen, die nicht im erweiterten RC erfaßt sind, mit dieser Grundgesamtheit von besonderem Interesse.

Zur Zytotoxikologie liegt eine Reihe neuer Monographien vor (185 bis 190). Für die Untersuchungen zur Bestimmung der Zytotoxizität standen die in den Jahren 1976 und 1985 etablierten Aorten-Endothelzellinien BKEz-7 vom Kalb (191) und BSEz-3 vom Schwein (192) zur Verfügung. Beide Zellinien zeichnen sich durch eine Reihe gemeinsamer gewebsspezifischer, struktureller und funktioneller Merkmale aus, sie besitzen aber eine unterschiedliche Proliferationsaktivität. Im allgemeinen (unspezifischen) Zytotoxizitätstest (193) wurde die Aufnahme von Neutralrot (NR50-Test) als zytotoxischer Endpunkt geprüft.

Isolierte Endothelzellen beider Zellinien in der 12. bis 25. Subkultur (Passage) wurden in 96-well-Platten (Mikrotiterplatten-COSTAR) eingesät - Zelleinsaatdichte 7000 Zellen/0,1 ml Nährmedium/Kavität - und 24 h bei 37° C in einem CO₂-Brutschrank kultiviert. Anschließend wurde das Nährmedium-MEMPA plus 5 % fetales Kälberserum (192) bei BKEz-7-Zellen und Eagle-MEM plus 10 % fetales Kälberserum bei BSEz-3-Zellen entfernt und durch substanzhaltiges Medium (Versuchskulturen) oder durch substanzfreies Medium (Kontrollkulturen) ersetzt. Nach einer Inkubationszeit von 24 h bei 37° C im CO₂-Brutschrank wurde der Neutralrottest (32) durchgeführt. Der Testablauf ist im nachfolgenden Schema dargestellt. Die Auswertung und Berechnung der NR50-Werte aus den Absorptionswerten des Mikrotiterplattenreaders erfolgte mit dem von der Einrichtung ZEBET im BgVV zur Verfügung gestellten Software-Programm KOWIRA (194). Das Programm erlaubt eine Anpassung der gemessenen Readerwerte an 12 verschiedene Konzentrations-Wirkungs-Kurven. Benutzt wurden für die weiteren Berechnungen jeweils die vom KOWIRA-Programm extrapolierten NR50-Werte für die jeweilige optimale Anpassung.

Schema: Neutralrot-Test mit BKEz-7-Zellen

Zeit in h

0	Einsaat/Kavität 7000 Zellen/0,1 ml Nährmedium MEMPAS Inkubation bei 37° C (24h)
24	Medium enfernen Zugabe von 0,1 ml Versuchs- oder Kontrollmedium Inkubation bei 37°C (24h)
48	Entfernen der Testlösung einmal mit 0,1 ml PBS waschen Zugabe von 0,1 ml Neutralrot-Gebrauchslösung Inkubation bei 37° C (3h)
51	NR-Medium entfernen einmal mit 0,1 ml PBS waschen Zugabe von 0,15 ml essigsaurem Alkohol (Fixativ) 10 min schütteln
51,5	Neutralrot-Extinktionsmessung bei 540 nm Referenzwellenlänge 370 nm

Die NR50-Werte sind in der Regel arithmetische Mittelwerte aus drei bis vier auswertbaren Mikrotiterplatten.

In der **Tabelle 13** sind die aus den NR50-Werten berechneten IC50x-Werte von 11 Substanzen und die dazugehörigen oralen LD50-Werte Ratte/Maus aus dem NIOSH-Register (RTECS) verzeichnet.

Werden die 11 Substanzen isoliert untersucht, dann ist zwischen der IC50x und der LD50 p.o. eine signifikante Korrelation mit einem Korrelationskoeffizienten r = 0,616 festzustellen. Die Parameter der linearen Regression ergeben sich nach der bekannten Gleichung im Abschnitt 5.2. mit

a = 0.920 und b = 0.371.

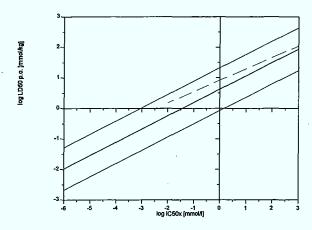
Nur zwei Substanzen (Oxalic acid und Metyrapone) liegen außerhalb des F_G-Bereiches.

Wenn die 11 Substanzen im Zusammenhang mit den 347 Wertepaaren IC50x - LD50 p.o. im Abschnitt 5.2. betrachtet werden, trifft zu, daß die Regressionsgerade für die 11 Substanzen im oberen Teil des F_G -Bereiches liegt, der in **Abbildung 2** gestrichelt markiert ist (**Abb. 5**). Im F_G -Bereich sind 9 der 11 Substanzen lokalisiert - ohne Glyoxal und Oxalic acid. Folglich kann für diese 9 Substanzen aus ihren IC50x-Werten mit Hilfe der Standardregressionsgeraden mit gleicher Sicherheit wie für die 347 Substanzen auf die LD50 p.o.

geschlossen werden. Eine Substanz - Oxalic acid - liegt weit außerhalb des F_{G} -Bereiches. Diese Besonderheit ist zu erklären und wird aus dem In-vitro-Test auch erwartet, da diese Substanz den pH-Wert des Nährmediums bereits bei Inkubationsbeginn stark verändert.

Die F_8 -Werte von 1,01 (Meclizine) bis maximal 1,71 (Glutathione) zeigen eine geringe "Streubreite" der NR50-Einzelwerte.

Tabelle 13


Vergleich der IC50x-Werte von 11 Substanzen, die mit dem Neutralrottest (NR50) an Zellen der Aorten-Endothelzellinien BKEz-7 und BSEz-3 getestet wurden, mit der LD50 p.o. aus dem NIOSH-Register; geordnet nach steigenden IC50x-Werten

Lfd. Nr.	Substanz	Mm	NIOSH-Code	IC50x	LD50 p.o.	Spezies
				mM	mmol	_
1	Meclizine	390,99	TL 1970000	0,039	4,48	R ¹⁾
2	Nitrofurazone	198,16	LT 7700000	0,45	2,98	R
3	Nitrofurantoin	238,18	MU 2800000	0,48	2,54	R
4	Cuprous chloride	98,99	GL 6990000	0,65	2,68	R
5	Glyoxal	58,04	MD 2625000	0,69	19,0	R
6	Oxalic acid	90,04	RO 2450000	0,85	83,3	R
7	Metyrapone	226,30	UC 3050000	4,24	2,30	R
8	Pyridoxine * HCl	205,66	UV 1350000	11,1	19,4	R
9	Glutathione (GSH)	307,36	MC 0556000	12,5	16,3	M
10	Thiamine * HCl	337,30	XI 7350000	13,8	24,4	M
11	Urea	60,07	YR 6250000	294,0	141,0	R

¹⁾ R = Ratte; M = Maus

Abbildung 5

Projektion der Regressionsgeraden für 11 Xenobiotika aus Tabelle 13 in die Graphik der Abbildung 2 für n = 347 Wertepaare IC50x - LD50 p.o.

Die Prüfung der Zytotoxizität als IC50x der 11 Substanzen in **Tabelle 13** wurde mit zwei Endothelzellinien und einem zytotoxischen Endpunkt (NR50-Test) durchgeführt. Dieses Ergebnis soll nun mit früheren Untersuchungen (67, 168) verglichen werden, in denen wir die Zytotoxizität als IC50, d.h. mit einem Zelltyp und einem zytotoxischen Endpunkt, prüften. Getestet wurden 41 Substanzen, von denen 21 codiert nicht im RC enthalten sind. Für diese Versuche wurden in einem serumreduzierten Nährmedium kultivierte BKEz-7-Zellen verwendet; zytotoxischer Endpunkt: Zellproliferation (Zellzahl). Die oralen LD50-Werte für Ratte/Maus wurden entweder dem NIOSH-Register entnommen oder in institutseigenen Einrichtungen bestimmt.

Die Parameter der linearen Regression für die Wertepaare IC50 - LD50 p.o. der 41 Substanzen mit a = 0,976 und b = 0,379 unterscheiden sich nur unwesentlich von den gleichen Parametern für die 11 Substanzen in **Tabelle 13**. Die Regressionsgerade für die 41 Substanzen liegt demnach auch innerhalb des F_G -Bereiches für die Standardgerade in **Abbildung 2**.

Die zwei Beispiele mit 11 (NR50-Test) und 41 Substanzen (Zellzahl-Test) belegen die gute Reproduzierbarkeit der Zytotoxizitätstestungen; denn die Parameter der linearen Regression differieren kaum, obwohl der Zellzahl-Test sieben Jahre zurückliegt (168). Genau wie die gute Reproduzierbarkeit der Regressionsparameter sowohl bei Ergänzung als auch bei Erweiterung des RC sind die Reproduzierbarkeit der Zellkultivierung und Zytotoxizitätsbestimmungen für die erfolgreiche praktische Verwertbarkeit ausschlaggebend.

Auf die Reproduzierbarkeit wird besonderer Wert gelegt.

An dieser Stelle soll ausdrücklich betont und eindringlich darauf hingewiesen werden, daß für die Aufgabenstellung der Entwicklung von Alternativmethoden zum Tierversuch strengstens der Grundsatz der Reproduzierbarkeit zu beachten ist. Wird dieser Grundsatz mißachtet, können entwickelte Alternativen nicht akzeptiert werden, auch wenn sie noch so bestechende Ergebnisse zeitigen.

Im Abschnitt 8.1. wurde einleitend darauf verwiesen, daß als Voraussetzung für die Nutzung des in der vorliegenden Arbeit vorgestellten Verfahrens eine mittlere IC50 (IC50x) bestimmt werden muß. Die Ergebnisse mit den Aorten-Endothelzellinien werfen allerdings die Frage auf, ob in jedem Falle eine IC50x vorliegen muß oder ob wie für die Testung der 41 Substanzen lediglich die IC50-Bestimmung (ein Zelltyp - ein zytotoxischer Endpunkt) für die Anpassung einer laboreigenen Eichgeraden an die Standardregressionsgerade so ausreichend zuverlässig ist, daß erstere über einen weiten Konzentrationsbereich innerhalb des F_{G} -Bereiches projiziert werden kann.

Mit den reproduzierbaren Kultivierungs- und Testbedingungen für die beiden Aorten-Endothelzellinien wird ein praktikabler Zytotoxizitätstest vorgestellt. Der Test führt zu einer Regressionsgeraden, die als laboreigene Eichgerade zur Vorhersage der Toxizitätsstärke von Xenobiotika geeignet ist. Die Erstellung einer solchen Eichgeraden und ihre Anpassung an die Standardregressionsgerade in der **Abbildung 2** ist ein weiterer für eine praktische Nutzung des Verfahrens wichtiger Aspekt. Dazu soll ein weiteres Beispiel angeführt werden. Aus der Arbeit von Shrivastava et al. (91) sind von 48 Substanzen aus dem MEIC-Programm die IC50-Werte für die zwei Zellinien "McCoy" und "MDBK" bekannt. Mit den daraus berechneten IC50x-Werten und den oralen LD50-Werten für Ratte/ Maus aus dem NIOSH-Register zeichnet sich mit a = 0,122 und b = 0,659 eine relativ steil verlaufende Regressionsgerade ab. Nur im Bereich IC50x > 0,13 mM liegt die Gerade ebenfalls innerhalb des F_G -Bereiches der Standardgeraden in **Abbildung 2**.

Es bedarf nur einfacher Überlegungen, eine Eichgerade so an die Standardregressionsgerade aus dem RC anzupassen, daß sie über einen weiten IC50x-Bereich hinweg innerhalb des F_G -Bereiches verläuft. In dem Falle dürfte garantiert sein, daß mit den im Labor bestimmten IC50x- oder IC50-Werten und den Parametern der Standardgeraden in **Tabelle 2** der LD50-Dosisbereich mit gleicher Trefferquote von rund 73% vorhergesagt werden kann.

Eine Eichgerade sollte im günstigsten Fall in einem Konzentrationsbereich von 10^6 bis 10^3 mmol/1 Nährmedium innerhalb des F_{G} -Bereiches in der **Abbildung 2** lokalisiert werden können. Das dürfte in keinem Falle schwierig sein wenn man davon ausgeht, daß die in vitro kultivierte Zelle als ein plastisches System auf Änderungen der extrazellulären Serumkonzentration mit Änderungen der Empfindlichkeit gegenüber Xenobiotika reagiert. Die Kultivierungs- und Testbedingungen, unter denen eine Eichgerade erstellt wird, müssen sich jedoch als Standardmethoden über Jahre als reproduzierbar erweisen. Diese Methoden können dann auch zur Testung noch unbekannter Substanzen eingesetzt werden.

8.2 Vergleich der RC-Daten mit der ATC-Methode

Zu diesem Abschnitt liegt inzwischen eine Publikation vor (201), in der wir über den letzten Stand eines neuen Verfahrens zur Einstufung von Stoffen in Toxizitätsklassen auf der Grundlage von IC50x-Werten berichten. Unabhängig davon soll nachfolgend eine kurze Übersicht zur Entwicklung des Verfahrens gegeben werden.

Für die akute orale Toxizitätsprüfung von Chemikalien ist die "Acute Toxic Class Method" entwickelt worden (195). Sie wurde international validiert und 1995 von der OECD als offizielle Prüfmethode (Richtlinie 423) akzeptiert.

Der ATC-Methode liegt ein Europäisches Klassifikationssystem zur Einstufung der akuten oralen Toxizität von Industriechemikalien in vorgegebene Toxizitätsklassen (TK) zugrunde:

TK	Toxizitätsbereich mg/kg Körpermasse (KM)			
1	≤ 25			
2	> 25 bis ≤ 200			
3	> 200 bis ≤ 2000			
4	> 2000			

Die Übereinstimmung der Klassifikation nach der ATC-Methode mit Einstufungen von LD50-Werten, die nach dem klassischen Verfahren bestimmt wurden, beträgt 86 %; die Zahl der Versuchstiere pro Substanz läßt sich von 25 auf durchschnittlich 7,7 Tiere reduzieren (195).

Ein Vergleich der RC-Daten mit der ATC-Methode beruht auf der Beibehaltung der Parameter der linearen Regression für die 347 Wertepaare IC50x - LD50 p.o. mit a=0,625 und b=0,435 (Tab. 2, Nr. 4) und des in Abbildung 2 markierten Dosisbereiches der

Vorhersage einer LD50 p.o., der mit dem Faktor $F_G \le \log 5$ definiert ist und eine minimale, mittlere und maximale Vorhersagedosis festlegt.

Im ersten Schritt werden die 95 als Positiv- und Negativ-Abweicher auffälligen Substanzen außerhalb des F_G -Bereiches und die 252 Substanzen innerhalb des F_G -Bereiches in der Abbildung 2 daraufhin untersucht, mit welchem Anteil sie sich den Toxizitätsklassen 1 bis 4 zuordnen lassen. Dazu wird der der Standardregressionsgeraden zugeordnete LD50-Wert auf molarer Basis aus der IC50x nach log LD50 = a + b * log IC50x geschätzt und anschließend in mg/kg KM umgerechnet. Nach Festlegung des Vorhersage-Dosisbereiches der LD50 p.o. (nach $FG \le \log 5$) wird die Einstufung in die entsprechende Toxizitätsklasse (TK) mit der TK-Einstufung der LD50 aus dem NIOSH-Register verglichen.

Fünf Beispiele für zwei Positiv- (RC-Nr. 11 und 120) und drei Negativ-Abweicher (RC-Nr. 13, 22 und 148) verdeutlichen das Vorgehen für Substanzen mit oralen LD50-Werten Ratte/Maus mit folgender tabellarischer Zusammenstellung:

RC	Substanz	LD50	TK	IC50x	LD50	TK
Nr.		NIOSH		mM	Vorhersage-	
		mg/kg			Dosisbereich	
ł		_			mg/kg	
11	Doxorubicin * HCl	698	3	0,00033	15-75-376	2-3
	Mm 580,03					
120	5-Aminosalicylic acid	7750	4	5,07	263-1314-6572	3-4
	Mm 153,15					
13	Cycloheximide	2	1	0,00059	9-47-234	1-2
	Mm 281,39					
22	Digoxin	18	1	0,0085	83-416-2079	2-3
	Mm 781,05					
148	Nitrogen mustard * HCl	10	1	0,0026	12-61-306	1-2
	Mm 192,53					

Für vier der fünf Substanzen wird demnach aus dem Vorhersage-Dosisbereich (Spalte 6) die Toxizitätsklasse erfaßt, die für den LD50-Wert aus dem NIOSH-Register (Spalte 3) zutrifft. Die Differenz ist nicht größer als eine TK, denn es wird jeweils von der mittleren LD50-Vorhersagedosis ausgegangen und die Letalität der Tiere dient dabei als Marker.

Bei 58 der 95 Abweicher-Substanzen (61 %) schließen ihre TK-Bereiche die TK der NIOSH-LD50 ein. Auch die 252 Substanzen innerhalb des F_G -Bereiches (Abb. 2) umfassen mit ihren TK-Bereichen die TK ihrer NIOSH-LD50-Werte. Damit ist gesichert, daß bei 310 von insgesamt 347 Substanzen - 89,3 % - die TK erfaßt wird, in die der entsprechende LD50-Wert aus dem NIOSH-Register eingestuft werden kann. Die Übereinstimmung der Einstufung in eine Toxizitätsklasse für die LD50-Vorhersagedosis und die NIOSH-LD50 für Ratte/Maus steht demnach mit 89,3 % fest.

Im zweiten Schritt soll das Verfahren der Einstufung in einen TK-Bereich für das Tierexperiment genutzt und an Beispielen veranschaulicht werden. Grundlage dafür ist eine sequentielle Prüfstrategie mit einzelnen Teststufen, die zur ATC-Methode von Schlede et al. (195) gehören.

Für die Testhierarchie werden 2 Tiere pro Vorhersagedosis vorgeschlagen und als ausreichend angesehen.

Zuerst wird die mittlere Dosis des Vorhersagebereiches 2 Tieren appliziert. Bleiben die Tiere ohne Schädigungen und am Leben, verabreicht man die maximale Vorhersagedosis. Zeigen andererseits diese beiden Tiere bereits toxische Reaktionen, dann wird die minimale Vorhersagedosis eingesetzt. Mit dieser Verfahrensweise wird von den innerhalb des F_G -Bereiches lokalisierten 252 Substanzen in der **Abbildung 2** in jedem Falle die TK der entsprechenden NIOSH-LD50 erreicht, d.h. am Ende wären mit nur 4 Tieren pro Substanz ein sicherer Letalitätsnachweis und eine sichere Einstufung in eine TK möglich.

Für die 252 Substanzen sind nicht 1008 Tiere sondern nur 944 Tiere zu veranschlagen. Diese Korrektur ist damit zu erklären, daß von 32 Substanzen sowohl die NIOSH-LD50 als auch die mittlere Vorhersagedosis innerhalb der TK 4, > 2000 mg/kg, liegen. Dieser Sachverhalt rechtfertigt einen einmaligen Test mit einer Dosis > 2000 mg/kg mit nur 2 Versuchstieren.

Eine Korrektur dieser Testhierarchie ist auch für die 95 Positiv- und Negativ-Abweicher notwendig.

Wie aus der tabellarischen Zusammenstellung für RC-NR. 11 ersichtlich ist, wird mit der maximalen Vorhersagedosis von 376 mg/kg nicht der annähernde NIOSH-LD50-Wert erreicht. Es müssen noch einmal 2 Tiere mit einer Dosis der nächst höheren TK - in dem Falle TK 4, >2000 mg/kg - getestet werden. Damit erhöht sich die Zahl von 4 auf 6 Versuchstiere.

In einem anderen Beispiel - RC-NR. 22 - ist der NIOSH-LD50-Wert mit 18 mg/kg angeführt, und der Vorhersage-Dosisbereich läßt sich mit 83, 416 und 2079 mg/kg festlegen. Wenn man für diesen Tierversuch wieder von der mittleren Vorhersagedosis ausgeht, müssen zunächst 416 und 83 mg/kg getestet werden, um zu erkennen, daß zusätzlich eine Dosis der nächst niedrigen TK, ≤ 25 mg/kg, einzusetzen ist. Dadurch erhöht sich auch in diesem Versuch die Zahl der Versuchstiere von 4 auf 6 pro Substanz.

Nach diesem Prinzip wurde die Tierzahl für die 347 Substanzen mit LD50 p.o.-Werten Ratte/Maus bestimmt. Nur zur Testung von 55 Abweicher-Substanzen wären demnach 6 Versuchstiere pro Substanz erforderlich. Die Treffsicherheit des Verfahrens wird für insgesamt 292 Substanzen (84 %) damit definiert, daß die LD50-Vorhersagedosis dann in etwa der NIOSH-LD50 entspricht, wenn nur 4 und in einigen Fällen nur 2 Versuchstiere pro Substanz für den Test eingesetzt werden müssen. Diese Aussage läßt erkennen, daß die Einstufung in eine Toxizitätsklasse nicht mit der Treffsicherheit gleichgesetzt werden kann.

Mit diesem neuen Verfahren auf der Grundlage der RC-Daten läßt sich also mit einer Treffsicherheit von 84 % die LD50-Vorhersagedosis mit der NIOSH-LD50 gleichsetzen, respektive sie kann der TK zugeordnet werden, in der die NIOSH-LD50 liegt.

Im nächsten Schritt ist die <u>durchschnittliche</u> Zahl der Versuchstiere zu bestimmen, die benötigt wird, um mit dem Wert der Vorhersagedosis annähernd die NIOSH-LD50 zu erreichen.

In der folgenden tabellarischen Übersicht ist der Gruppe der 252 Substanzen innerhalb des F_G -Bereiches und der Gruppe der 95 Substanzen außerhalb des F_G -Bereiches die veranschlagte Tierzahl zugeordnet.

Substanzlokalisierung	Substanzen	Tierzahl		
Graphik, Abb. 2		pro Substanz Gesar		
	n	n	n_	
Im F _G -Bereich	32	2	64	
	220	4	880	
Außerhalb des F _G -Bereichs	5	2	10	
	35	4	140	
	55	6	330	

Aus dieser Übersicht errechnen sich 1424 Versuchstiere für 347 Substanzen, also 4,1 Tiere pro Substanz.

Werden die gleichen Berechnungen nur für die Spezies Ratte mit den n = 282 Wertepaaren IC50x - LD50 p.o. Ratte (**Tab. 6**, Nr. 2) durchgeführt, verbessern sich die Werte nur unwesentlich:

- Übereinstimmung der Einstufung in eine TK: Für 253 von 282 Substanzen = 89,7 %
- Treffsicherheit: Für 239 von 282 Substanzen = 84,8 %
- Zahl der Versuchstiere: 1148 Tiere für 282 Substanzen = 4,1 Tiere pro Substanz

Die geringe Differenz zwischen Ratte und Ratte/Maus ist offenbar darauf zurückzuführen, daß von den 347 Wertepaaren für Ratte/Maus nur 65 zur Spezies Maus gehören (**Tab. 2**).

8.3 Schlußfolgerungen

Die zwei vorgestellten Verfahren zur Vorhersage einer im akuten Toxizitätstest zu bestimmenden LD50 setzen einen Zytotoxizitätstest mit zwei zytotoxischen Endpunkten zur Ermittlung einer IC50x voraus. Mit 10 bis 15 Eichsubstanzen aus dem RC mit LD50 p.o.-Werten ist eine Regressionsgerade (Eichgerade) zu erstellen, die innerhalb des mit $F_G \le \log 5$ definierten Bereiches liegt. Das Ziel läßt sich ohne weiteres erreichen. Die Zelle in vitro

stellt ein plastisches System dar. Durch Änderung der Nährmedium-Zusammensetzung - z.B. durch Änderung des Serumanteils - kann die Empfindlichkeit der Zellen so verändert werden, daß aus den Xenobiotika-Wirkungen IC50x-Werte berechnet werden können, die mit denen im RC vergleichbar sind.

Aus dem Vergleich der RC-Daten mit der ATC-Methode zur Testung von Chemikalien ist ein kombiniertes RC-ATC-Verfahren entwickelt worden. Seine Validierung und Anwendung zur Testung von Chemikalien kann empfohlen werden.

Das neue Verfahren zeichnet sich gegenüber der ATC-Methode durch folgende Vorteile aus:

- Eine Übereinstimmung von rund 90 % existiert für die Einstufungen der LD50-Vorhersagedosis in Toxizitätsklassen mit den Einstufungen der NIOSH-LD50-Werte für die Spezies Ratte. Diese Aussage kann getroffen werden, ohne daß Tierversuche notwendig sind.
- Bei einer Treffsicherheit von 85 % für die Ermittlung eines Toxizitätsbereiches in einer Toxizitätsklasse kann die Zahl der Versuchstiere (Ratte) um rund 47 % reduziert werden.
- Ein mit der LD50 vergleichbarer Dosisbereich läßt sich präziser eingrenzen als wenn er lediglich einer Toxizitätsklasse zugeordnet wird.

Das kombinierte RC-ATC-Verfahren kann damit auch für die Prüfung der akuten Toxizität von Arzneimitteln zur Reduzierung der Versuchstierzahl empfohlen werden.

In einem jetzt fertiggestellten Manuskript wird für eine quantitative Beurteilung der Einsparung von Versuchstieren nicht die durchschnittliche Zahl der Versuchstiere pro Substanz, sondern die Zahl der Tierversuche pro Substanz für eine sichere Einstufung in eine Toxizitätsklasse des Toxizitätsprofils zugrunde gelegt. Unter Beibehaltung des vorgestellten Einstufungsmodus in die Toxizitätsklassen kann beim Vergleich mit der ATC-Methode mit einer mindestens 20%igen Einsparung von Tierversuchen gerechnet werden. In diese Berechnung der Einsparung ist noch nicht der Anteil solcher Tierversuche einbezogen worden, der notwendig ist, um Informationen über die Startdosis für den Testbeginn einer Substanzprüfung mit der ATC-Methode zu erhalten.

9 Perspektiven für das RC

Die Weiterführung des RC ist vorgesehen. Die in der **Tabelle 13** verzeichneten 11 Substanzen bildeten den Grundstock für einen dritten Teil des erweiterten RC; von ihnen ist zusätzlich noch je ein IC50-Wert aus der Literatur bekannt.

Die Sammlung von IC50-Werten auf der bekannten Grundlage definierter Kriterien und die Registrierung der IC50x-Werte im RC kann über die eigentliche Aufgabe der Vorhersage der LD50 hinaus für vielfältige Fragestellungen auf den Gebieten der Zytotoxikologie und Zytopharmakologie genutzt werden. Das RC kann als Informationsquelle für die allgemeine Zytotoxizitätsstärke von Wirkstoffen dienen, die in unterschiedlichen Laborversuchen mit tierischen und menschlichen Zellen oder für Analysen der Struktur-Wirkungs-Beziehungen eingesetzt werden. Es sei nur an folgende, noch offene Fragen erinnert:

- Für Rückschlüsse auf die zellvermittelte Metabolisierungskapazität in vitro: In welchem Umfange sind von definierten Substanzen die IC50-Werte, die nach den bekannten Kriterien aus dem RC an Leberzellen (Hepatozyten, Hepatomzellen) bestimmt wurden, mit den IC50x-Werten des RC vergleichbar?
- Für einen Vergleich zwischen der Zytotoxizität von Fischzellen und Mammalierzellen: Wie groß ist die Übereinstimmung der IC50-Werte, die an Fischzellkulturen zur Einschränkung und für den Ersatz des Fischtests (196) bestimmt wurden, mit den IC50x-Werten des RC?

Erste Untersuchungen zu diesen beiden Punkten ergaben, daß zwischen den IC50x-Werten des RC und den IC50-Werten von entweder Hepatozyten aus einer Arbeit von Shrivastava et al. (91) oder von Hepatomzellen aus einer Arbeit von Dierickx (197) eine signifikante Beziehung mit Korrelationskoeffizienten r=0.964 für 48 Substanzen bzw. r=0.941 für 50 Substanzen existiert. Zwischen den IC50x-Werten von 25 Substanzen des RC plus 8 weiteren bisher im RC nicht erfaßten Substanzen und den IC50-Werten von Fischzellen, von der Arbeitsgruppe um Babich und Borenfreund für diese 33 Substanzen bestimmt (32, 170, 198, 199), konnte ein r=0.871 ermittelt werden (unveröffentliche Ergebnisse).

Mit diesen vorläufigen Befunden liegt ein zellbiologisch und für die Zytotoxikologie und Zytopharmakologie interessantes Phänomen vor, daß verallgemeinert formuliert als These zusammengefaßt werden kann:

Vergleichbare zytotoxische Faktoren rufen bei den meisten isolierten und in vitro kultivierten Vertebraten-Zelllinien, die von unterschiedlichen Tierklassen abstammen, vergleichbare zytotoxische Reaktionen hervor.

10 Zusammenfassende Schlußfolgerungen

Aus den Regressionsanalysen mit den Wertepaaren IC50x - LD50 der im erweiterten RC erfaßten Substanzen lassen sich sechs grundsätzliche und verallgemeinerungsfähige Schlußfolgerungen ableiten, die entscheidend zum Erkenntnisgewinn für den gesamten Themenkreis des Vergleiches von Zytotoxizitätsdaten mit der akuten Toxizität und zur Vorhersage der LD50 p.o. und i.v. für Ratte/Maus respektive einer approximativen LD50 beitragen und eine Aussage zur praktischen Verwertbarkeit des Verfahrens ermöglichen.

- Die nach definierten Kriterien erfaßten IC50-Einzelwerte pro Substanz und die daraus berechneten mittleren IC50-Werte (IC50x) können als Grundlage für ein Verfahren zur Vorhersage einer LD50 eingesetzt werden, und die IC50x-Werte stellen dafür eine repräsentative numerische Größe dar.
- 2. Mit der Einführung des Faktors $F_G \le \log 5$ zusätzlich zu den Werten der Regressionsparameter kann erstmalig mit der "Trefferquote" in Prozent getesteter Substanzen die Güte des Vorhersagebereiches einer LD50 definiert und für vergleichende Untersuchungen, z.B. mit Literaturdaten, quantifiziert werden.
- 3. Durch die nach Erweiterung des RC weitestgehend gleichbleibenden Werte der Parameter der einfachen linearen Regression und des prozentualen Anteils der Substanzen im Bereich $F_G \le \log 5$ für 347 Substanzen zur Vorhersage der LD50 p.o. konnte im biometrischen Sinne ein Stichprobenumfang ermittelt werden, der Tendenzen einer normal verteilten Grundgesamtheit aufweist und die Erstellung einer allgemeingültigen Standardregressionsgeraden ermöglicht. Die gleiche Aussage trifft auch für die 148 Substanzen zur Vorhersage der LD50 i.v. zu.
- 4. In den IC50x-Bereichen ≥ 1,0 mM sind 149 der 347 Substanzen lokalisiert (RC-Nr. 95 bis 131 und 250 bis 361), davon liegen 81,9 % im LD50 p.o.-Bereich, der durch F_G ≤ log 5 definiert ist. Die Sicherheit der Vorhersage der LD50 p.o.verbessert sich also ab IC50x ≥ 1,0 mM um rund 9 Prozentpunkte von 72,6 % auf 81,9 %. Eine so deutliche Erhöhung der Sicherheit der LD50-Vorhersage ist für die gleichmäßiger verteilten Wertepaare IC50x LD50 i.v. nicht nachweisbar.
- 5. Für die drei im RC vertretenen Substanzklassen Neurotropika, Insektizide und in vivo metabolisch aktivierbaren Verbindungen können grundsätzliche Aussagen über die Sicherheit und Qualität der Vorhersage der LD50 p.o. getroffen werden. Für die Neurotropika, von denen a priori nicht anzunehmen war, daß sie sich überhaupt mit dem hier vorgestellten Verfahren zur Vorhersage der LD50 erfassen und einordnen lassen, kann mit Nichtnervenzellkulturen die LD50 mit einer höheren "Trefferquote" vorhergesagt werden als für die übrigen Substanzen des RC, denn von 26 Substanzen liegen 21 (80,8 %) im F_G-Bereich der Standardregressionsgeraden für die 347 Wertepaare IC50x orale LD50. Damit ist der Beweis erbracht, daß auch für eine Gruppe von Substanzen mit spezifisch systemischen In-vivo-Wirkungen das Verfahren der Vorhersage einer LD50 angewendet werden kann.

Für die beiden letzten Substanzklassen gilt, daß sich sogar noch für rund 50 % ihrer Vertreter eine orale LD50 mit einer für die Praxis ausreichenden Genauigkeit auf der Basis der IC50x-Werte schätzen läßt.

6. Das Verfahren steht zur Validierung für eine Einbindung in die OECD-Richtlinien zur Reduzierung toxikologischer Tierversuche für die Bestimmung der akuten oralen Toxizität von chemischen Stoffen (OECD-Guidelines, Lit-Nr. 179) zur Verfügung. Verglichen mit der ATC-Methode zur Einstufung von Chemikalien in Toxizitätsklassen, bei der pro Substanz durchschnittlich 7,7 Versuchstiere benötigt werden, kann mit dem hier vorgestellten neuen kombinierten RC-ATC-Verfahren bei einer definierten Treffsicherheit von 85 % die Zahl der Versuchstiere um 47 % reduziert werden. Der gegenwärtige Entwicklungsstand des Verfahrens erlaubt seine Einbeziehung in behördlich regulierte Richtlinien zur Reduzierung toxikologischer Tierversuche für Chemikalienprüfungen und für die Qualitätssicherung von Arzneimitteln durch Bestimmung der akuten oralen und intravenösen Toxizität.

11 Zusammenfassung

Ein neues und weiterentwickeltes In-vitro-Verfahren zur signifikanten Reduzierung von Tierversuchen für Toxizitätsprüfungen unterschiedlichster Stoffe wird vorgestellt. Mit diesem Verfahren lassen sich die bei einer Neuentwicklung von Arzneimitteln oder Industrie- und Gebrauchschemikalien behördlich geforderten akuten oralen und intravenösen Toxizitätsdaten aus der in Mammalier-Zellkulturen bestimmten mittleren IC50 (IC50x) vorhersagen. Erstmalig in der internationalen Literatur über Alternativverfahren zur Vorhersage der akuten Toxizität aus Zytotoxizitätsdaten werden quantitative Angaben zur Qualität und Treffsicherheit der Vorhersagewerte vorgelegt. Das Verfahren wird einem Tierversuch vorgeschaltet und ist mit keinem Risiko für die Versuchstiere verbunden. Das Verfahren steht für eine breite praktische Nutzung, z.B. in der pharmazeutischen Industrie und Forschung, zur Verfügung. Eine Validierung und Einbindung des Verfahrens in OECD-Richtlinien zur Reduzierung von Tierversuchen für Toxizitätsprüfungen ist möglich.

Das Verfahren beruht auf einem Vergleich der IC50x mit der LD50 mit Hilfe der linearen Regressionsanalyse. Zwei praxisrelevante Ergebnisse kennzeichnen den Wert des Verfahrens:

Als erstes Ergebnis dieses Vergleiches läßt sich für 252 von 347 Stoffen die akute orale LD50 und für 115 von 148 Stoffen die akute intravenöse LD50 für Ratte/Maus innerhalb eines definierten Dosisbereiches vorhersagen. Mit diesem Ergebnis ist die "Trefferquote" der Vorhersage der akuten Toxizität mit 72,6 % bzw. 77,7 % belegt. Vergleichende Untersuchungen ergaben eine außerordentlich gute Reproduzierbarkeit dieses Ergebnisses.

Als zweites Ergebnis dieses Vergleiches der Wertepaare IC50x - LD50 p.o. lassen sich 361 Substanzen behördlich festgeschriebenen Toxizitätsklassen internationaler

Klassifikationssysteme zur Einstufung der akuten oralen Toxizität zuordnen. Zur Quantifizierung der Sicherheit der Einstufung in Toxizitätsklassen aus den IC50x-Werten wird die auf Tierversuchen beruhende ATC-Methode von E. Schlede et al. zur Einstufung von Substanzen in Toxizitätsklassen zugrundegelegt. Bei einer Treffsicherheit von 85 % der Einstufung in Toxizitätsklassen aus der IC50x kann durch die Vorhersage der Toxizitätsklasse die Zahl der Versuchstiere um 47 % reduziert werden. Bei Berücksichtigung der Zahl der Tierversuche kann, wie neue Berechnungen in einem zur Publikation vorgesehenen Manuskript belegen, bei einer Treffsicherheit von 80 % bis 90 % mit einer mindestens 20 %igen Einsparung von Tierversuchen gerechnet werden.

Aus diesen Ergebnissen läßt sich der eindeutige Schluß ziehen, daß das hier vorgestellte Verfahren zur signifikanten Einsparung von Versuchstieren beitragen kann. Damit ist die Relevanz des Verfahrens für den Tierschutz gegeben.

Die Grundlage des vorgestellten neuen Verfahrens bildet ein erweitertes Register der Zytotoxizität (RC). Das RC enthält zur Zeit 361 zufällig ausgewählte, also nichtselektierte Substanzen, für die zwei oder mehr IC50-Werte pro Substanz aus der Literatur recherchiert werden konnten. Es handelt sich allgemein definiert um Inhibitionskonzentrationen (IC) von Xenobiotika, die Zelleistungen um 50 % ändern. Die IC50-Werte resultieren zumeist aus unspezifischen Zytotoxizitätstests, in denen basale Zellfunktionen, wie beispielsweise Zellproliferation, DNS- und Proteinsynthese, oder die Aufnahme von Neutralrot als Marker zytotoxischer Endpunkte dienten.

Das RC besteht aus zwei Teilen. Der erste Teil enthält die 131 Substanzen des RC von 1988 und der zweite Teil 230 neu aufgenommene Substanzen. Für jede der 361 Substanzen wurde das geometrische Mittel aus den IC50-Einzelwerten einer Substanz als IC50x berechnet und in das RC aufgenommen. Dafür standen 1912 IC50-Werte zur Verfügung, die nach definierten Kriterien ausgewählt wurden und durch 157 Literaturzitate belegt sind. In beiden RC-Teilen sind die Substanzen jeweils nach steigenden IC50x-Werten geordnet. Auf den Datenblättern sind die IC50x-Werte und zusätzlich die oralen und intravenösen LD50-Werte für Ratte und/oder Maus und die Molmassen (Mm) aus dem NIOSH-Register (RTECS) sowie die Oktanol/Wasser-Verteilungskoeffizienten (log P) verzeichnet.

In einem Kommentar zum RC werden die Beziehung zwischen der IC50x und LD50 und Möglichkeiten und Grenzen einer Vorhersage der LD50 auf der Basis der als IC50x-Werte zur Verfügung stehenden Zytotoxizitätsdaten analysiert und detailliert Aussagen über die Sicherheit und Qualität des Verfahrens getroffen.

Die im folgenden Teil im einzelnen dargestellten Ergebnisse und Schlußfolgerungen belegen die Allgemeingültigkeit und Praxisrelevanz des Verfahrens zur Vorhersage einer akuten Toxizität aus den im RC erfaßten Zytotoxizitätsdaten:

Von den Wertepaaren IC50x - LD50 auf molarer Basis wurden mit dem einfachen linearen Regressionsmodell y = a + b * x nach log LD50 = a + b * log IC50x die Parameter ermittelt:

- für n = 347 Substanzen mit einer LD50 p.o. Ratte/Maus: a = 0.625; b = 0.435; r = 0.672
- für n = 148 Substanzen mit einer LD50 i.v. Ratte/Maus: a = -0,201; b = 0,480; r = 0,768.

Die Werte dieser Parameter definieren zwei nahezu parallel verlaufende Standardregressionsgeraden. Der Abstand der beiden Geraden zueinander widerspiegelt bekannte Ergebnisse aus dem Tierversuch: Bei einer Tierspezies differieren in den meisten Fällen die oralen LD50-Werte von den intravenösen LD50-Werten um den Faktor 5 bis 10.

Von den 347 Substanzen liegen 252 (72,6 %) und von den 148 Substanzen 115 (77,7 %) in einem Bereich um die Regressionsgeraden, der durch den empirischen Faktor $F_G \le \log 5$ definiert ist. Damit kann die LD50 mit einer "Trefferquote" um 72,6 % bzw. 77,7 % in einem Bereich von etwas mehr als einer Größenordnung einer Dosiseinheit mit einer für praktische Belange ausreichenden Genauigkeit vorhergesagt werden.

Mit der Einführung des Faktors $F_G \le \log 5$ können erstmalig die Güte des Vorhersagebereiches einer LD50 definiert und in vergleichenden Untersuchungen von Literaturdaten und eigenen Ergebnissen zur Beziehung zwischen der In-vitro- und In-vivo-Toxizität die "Trefferquote" der Vorhersage quantifiziert werden.

Die Werte der Parameter der linearen Regression und der prozentuale Anteil der Substanzen im definierten F_G -Bereich bleiben im Vergleich zu den Werten im RC von 1988 auch dann weitestgehend konstant, wenn das RC durch Aufnahme weiterer IC50-Werte ergänzt und/oder durch neu aufgenommene Substanzen erweitert wird. Mit diesem Ergebnis wird unsere 1992 publizierte These verifiziert, daß sich durch diese Erweiterung des RC die Werte der Parameter der linearen Regression nicht oder nur unwesentlich ändern. Auch dieses Ergebnis unterstreicht die Relevanz des hier dargestellten Verfahrens. Aus dem Ergebnis wird der Schluß gezogen, daß die erstellten Standardregressionsgeraden allgemeingültige Bedeutung für die Vorhersage der LD50 p.o. und i.v. aus der IC50x besitzen. Die Ergebnisse belegen auch die gute Reproduzierbarkeit des Verfahrens bei Ergänzung und/oder Erweiterung des RC.

Eine Analyse der Substanzen mit den Wertepaaren IC50x - LD50 p.o., die außerhalb des durch $F_G \leq \log 5$ definierten Bereiches liegen, wurde durchgeführt. Dabei ist zwischen den sogenannten Positiv-Abweichern und den Negativ-Abweichern zu unterscheiden. Letztere verdienen eine besondere Beachtung, da sie durch ihre falsch negativen IC50x-Werte höhere LD50-Werte anzeigen als zu erwarten sind respektive im Tierexperiment bestimmt wurden.

Zur Verbesserung der Vorhersage einer LD50 wurde versucht, die Lage der Negativ-Abweicher außerhalb des F_G-Bereiches zu erklären. Doch weder die Berücksichtigung der aus der Literatur bekannten Schwankungsbreite der LD50-Werte noch die Speziesspezifität Ratte - Maus konnten wesentlich zur Deutung des Phänomens der Negativ-Abweichung beitragen. Für rund 47 % der Negativ-Abweicher bietet sich jedoch eine Erklärung für ihre falsch negativen IC50x-Werte an, da sie den "Problemklassen" der Insektizide, Neurotropika und metabolisch aktivierbaren Verbindungen mit Giftung im Organismus zuzuordnen sind; denn für diese Substanzklassen ist a priori nicht zu erwarten, daß sich aus Zytotoxizitätsdaten mechanistisch Rückschlüsse auf die Stärke der In-vivo-Toxizität ziehen lassen. Für diese drei Substanzklassen konnten grundsätzliche Aussagen über die Sicherheit und Qualität der Vorhersage der LD50 p.o. getroffen werden.

Durch Einbeziehung der Werte der physikalisch-chemischen Stoffeigenschaften Molmasse (Mm) und Oktanol/Wasser-Verteilungskoeffizient (log P) als Regressoren (unabhängige Variable) in die Regressionsanalyse und durch Bildung formaler Parameter aus IC50x, Mm und log P läßt sich die Sicherheit und Qualität der Vorhersage der LD50 p.o. nicht verbessern.

Mit der Übereinstimmung zwischen den beiden Ergebnissen sowohl mit der einfachen linearen als auch mit der multiplen Regressionsanalyse wird andererseits die Brauchbarkeit und der Wert des Vorhersageverfahrens bestätigt.

Auf die Bedeutung des Faktors F_S wird eingegangen. Der Faktor definiert die Spannweite der IC50-Werte einer Substanz. Die empirisch gewählte Größe $F_S \le 5$ als Grenzwert zeigt an, daß ein minimaler und maximaler IC50-Wert einer Substanz sich noch bis um das 25fache unterscheiden können. Zwischen der Spannweite F_S und der Zahl der IC50-Werte einer Substanz ist ein Zusammenhang nachzuweisen: Mit steigender Zahl der IC50-Werte pro Substanz erhöht sich auch die Zahl der Substanzen mit einem $F_S > 5$.

Die unterschiedliche Anzahl der IC50-Werte pro Substanz und der Substanzen mit einem $F_S > 5$ im ersten Teil verglichen mit dem zweiten Teil des RC ändert nichts an der Tatsache, daß alle Werte der Regressionsparameter von beiden RC-Teilen sehr gut übereinstimmen. Damit ist bewiesen, daß die mittlere IC50 (IC50x) als repräsentative Größe für solche Regressionsrechnungen gültig ist.

Für die 361 Substanzen wurde auf der Grundlage der IC50x-Werte eine Skala der Zytotoxizitätsstärke erstellt, mit Zuordnung der Substanzen mit einem F_S -Wert > 5 zu den einzelnen Zytotoxizitätsklassen.

In der Gruppe der 49 Substanzen, die nach der Regressionsanalyse der 347 Wertepaare IC50x - LD50 p.o. als Negativ-Abweicher eingehend analysiert wurden, existiert kein Zusammenhang zwischen der Negativ-Abweichung und einem F_8 -Wert > 5. Demzufolge wird die Negativ-Abweichung nicht in einer hohen Spannweite der IC50-Einzelwerte einer Substanz zu suchen sein.

Die Verwendbarkeit des Verfahrens zur Vorhersage der LD50 wird an einem praktischen Beispiel mit der Testung von 11 nicht im RC enthaltenen Substanzen mit zwei Endothelzellinien und dem zytotoxischen Endpunkt Neutralrot-Aufnahme (NR 50-Test) demonstriert.

Die Ergebnisse werden zusammen mit der Bedeutung der Reproduzierbarkeit der Zellkultivierung und der Zytotoxizitätstestungen diskutiert.

Ein Vergleich der RC-Daten mit der ATC-Methode zur Einstufung von Chemikalien in Toxizitätsklassen führt zu einem neuen kombinierten RC-ATC-Verfahren. Signifikante Marker für dieses Verfahren wie "Einstufung in eine Toxizitätsklasse", "Treffsicherheit" und "Anzahl der Versuchstiere" werden definiert. Verglichen mit der ATC-Methode, bei der durchschnittlich 7,7 Versuchstiere pro Substanz benötigt werden, kann mit dem kombinierten Verfahren bei einer Treffsicherheit von 85 % die Zahl der Versuchstiere um 47 % - von 7,7 auf 4,1 pro Substanz - reduziert werden.

Zur Perspektive für das RC kann eingeschätzt werden, daß seine Weiterführung mit Aufbau einer umfassenden Datenbank von Bedeutung ist. Genau wie die LD50 ist die numerische IC50x keine biologische Konstante; doch der Beweis wurde erbracht, daß sie eine signifikante und repräsentative Größe darstellt zur Charakterisierung der Zytotoxizitätsstärke einer Substanz für vielfältige Fragestellungen auf den Gebieten der Zytotoxikologie und Zytopharmakologie.

Die Tatsache, daß nach vorläufigen Recherchen für eine Reihe von Substanzen zwischen den IC50x-Werten des RC und den IC50-Werten von entweder Hepatozyten, Hepatomzellen oder Fischzellen eine signifikante Korrelation existiert (mit r = 0,964, 0,941 bzw. 0,871), führt zu der These, daß vergleichbare zytotoxische Faktoren vergleichbare zelluläre Reaktionen bei in vitro kultivierten Vertebraten-Zelltypen, die von unterschiedlichen Spezies abstammen, hervorrufen können.

In einem letzten Abschnitt sind sechs verallgemeinerungsfähige Schlußfolgerungen zusammengefaßt, die entscheidend zum Erkenntnisgewinn für den gesamten Themenkreis des Vergleiches von Zytotoxizitätsdaten mit der akuten Toxizität zur Vorhersage der LD50 p.o. und i.v. für Ratte/Maus bzw. einer approximativen LD50 beitragen und Möglichkeiten für eine praktische Nutzung des Verfahrens aufzeigen.

Das RC schließt mit einem Literaturverzeichnis und einem alphabetisch geordneten Substanzverzeichnis.

12 Literaturverzeichnis

- 1. Staehr, W.G.v., K. Karzel: Bullet. Chim. thérapeut. No. 7, 444 (1966)
- 2. Schmid, I., K. Karzel: Arzneimittelforsch. 18, 1498 (1968)
- 3. Garry Jr., V.F., R.D. Moore: Oncology 29, 429 (1974)
- 4. Smith, C.G., J.E. Grady, J.I. Northam: Cancer Chemotherapy Reports No. 30, p. 9, July 1963
- 5. Eagle, H., G.E. Foley: Amer. J. Med. 21, 739 (1956)
- 6. Ekwall, B.: Toxicology 17, 273 (1980)
- 7. Shiratori, O.: GANN 58, 521 (1967)
- 8. Smith, C.G, W.L. Lummis, J.E. Grady: Cancer Res. 19, 847 (1959)
- 9. Mummery, C.L., Van den Brink, S., Van der Saag, P.T., De Laat, S.W.: Toxicol. Letters 18, 201 (1983)
- 10. Pratt, R.M., W.D. Willis: Proc. Natl. Acad. Sci. USA 82, 5791 (1985)
- 11. Balls, M., S.A. Horner: Food Chem. Toxicol.23, 209 (1985)
- 12. Hunt, S.M., C. Chrzanowska, C.R. Barnett, H.N. Brand, J.K. Fawell: ATLA 15, 20 (1987)
- 13. Karzel, K.: Arch. intern. Pharmacodyn. 169, 70 (1967)
- Riddell, R.J., D.S. Panacer, S.M. Wilde, R.H. Clothier, M. Balls: ATLA 14, 86 (1986)
- 15. Schoeffel, U., H. Maenner, J. Shiga, C. Mittermayer: Pathol. Res. Pract. 175, 348 (1982)
- 16. Wenzel, D.G., G.N. Cosma: Toxicology 33, 117 (1984)
- 17. Kalbhen, D.A., J. Lynen: Arzneimittelforsch. 18, 1506 (1968)
- 18. Sávoly, S.B., R. Loose: Unveröff. Ergebn. (1987)
- 19. Wenzel, D.G., G.N. Cosma: Toxicology 33, 103 (1984)
- 20. Knox, P., P.F. Uphill, J.R. Fry, J. Benford, M. Balls: Food Chem. Toxicol. 24, 457 (1986)

- 21. Penman, M.G., Macclesfield, England, persönl. Mitteil., 1988
- 22. Flint, O.P., T.C. Orton: Toxicol. appl. Pharmacol. 76, 383 (1984)
- 23. Flint, O.P.: J. Cell Sci. 61, 247 (1983)
- 24. Stark, D.M., C. Shopsis, E. Borenfreund, H. Babich: Food Chem. Toxicol. 24, 449 (1986)
- 25. Karzel, K., H. Aulepp, G. Hack: Pharmacology 10, 272 (1973)
- Spalding, J.W., E. Ford, D. Lane, M. Blois: Biochem. Pharmacol. 20, 3185 (1971)
- 27. Gabliks, J., L. Friedman: Ann. New York Acad. Sci. 160, 254 (1969)
- 28. Perlman, D., N.A. Giuffre, S.A. Brindle, S.C. Pan: Proc. Soc. Exp. Biol. Med. 111, 623 (1962)
- 29. Gabourel, J.D., L. Aronow: J. Pharmacol. exp. Therap. 136, 213 (1962)
- 30. Fischer, A.B.: Zbl. Bakt. Hyg., I. Abt. Orig. B 162, 77 (1976)
- 31. Shopsis, C., B. Eng: Toxicol. Letters 26, 1 (1985)
- 32. Babich, H., E. Borenfreund: Toxicol. in Vitro 1, 3 (1987)
- 33. Fischer, A.B., Y. Skreb: Zbl. Bakt. Hyg., I. Abt. Orig. B 171, 525 (1980)
- 34. Garle, M., A.H. Hammond, J.R. Fry: ATLA 15, 30 (1987)
- Gabliks, J., W. Schaeffer, L. Friedman, G. Wogan:
 J. Bacteriology 90, 720 (1965)
- 36. Scaife, J.F.: FEBS Letters 12, 143 (1971)
- 37. Walum, E., A. Peterson: Acta Pharmacol. Toxicol. 52, Suppl. II, 100 (1983)
- 38 Walum, E.: ATLA 14, 164 (1987)
- 39. Riddell, R.J., R.H. Clothier, M. Balls: Food Chem. Toxicol. 24, 469 (1986)
- 40. Ekwall, B., J. Selling, D. Johnels: ATLA 14, 178 (1987)
- 41. Lechat, P., M.C. Auclair, M. Adolphe: Toxicol. appl. Pharmacol. 27, 336 (1974)
- 42. Litterst, C.L., E.P. Lichtenstein, K. Kajiwara: J. Agr. Food Chem. 17, 1199 (1969)
- Dési, I., G. Dura, J. Szlobodnyik, I. Csuka: J. Toxicol. Environm. Health 2, 1053 (1977)

- 44. Litterst, C.L., E.P. Lichtenstein: Arch. Environm. Health 22, 454 (1971)
- 45. Whyatt, P.L., J.W. Cramer; Biochem. Pharmacol. 22, 229 (1973)
- 46. Shpirt, M.B.: Gig. Tr. Prof. Zabol. 17, 32 (1973)
- 47 Lozzio, C.B., P.W. Wigler: J. Cell. Physiol. 78, 25 (1971)
- Vasilos, A.F., V.D. Dmitrienko, I.G. Shroit: Buill. Eksp. Biol. Med. 73, No. 6, 91 (1972)
- 49. Skreb, Y., A.B. Fischer: Zbl. Bakt. Hyg., I. Abt. Orig. B 178, 432 (1984)
- 50. Brown, L.P., O.P. Flint, T.C. Orton, G.G. Gibson: Food Chem. Toxicol. 24, 737 (1986)
- 51. Müller, D., J. Wagner, F.F. Strasser: Naunyn-Schmiedeberg's Arch. Pharmacol. 273, 307 (1972)
- 52. Jentzsch, K.D., E. Karasek, K. Krieg, M. Hilgenfeld, W. Jakob: Unveröff. Ergebn. 1974
- 53. Ekwall, B., C. Nordensten, L. Albanus: Toxicology 24, 199 (1982)
- 54. Autian, J.: Environm. Health Perspect. Exp. Issue 4, 3 (1973)
- 55. Jones, A.E., R.H. Kahn, J.T. Groves, E.A. Napier, Jr.: Toxicol. appl. Pharmacol. 31, 283 (1975)
- Kolberg, J., K. Helgeland, J. Jonsen, O. Tjeltveit: Acta Pharmacol. Toxicol. 29, 81 (1971)
- 57. Sanchez, J.H., D.J. Abernethy, C.J. Boreiko: Toxicol. in Vitro 1, 49, (1987)
- 58. Bernson, V.S.M., B. Pettersson: Chem.-Biol. Interactions 46, 233 (1983)
- 59. Melzig, M., E. Teuscher: Pharmazie 42, 844 (1987)
- 60. Jakob, W., B. Mauersberger, K. Krieg, A. Minenko: Pharmazie 32, 798 (1977)
- 61. Carlson, J. R., J.W. Suttie: Exp. Cell Res. 45, 415 (1967)
- 62. Ekwall, B.: Acta Pharmacol. Toxicol. 52, Suppl. II, 80 (1983)
- 63. Flint, O.: Persönl. Mitteil., Syracuse, USA, 1989
- 64. Ekwall, B., D. Acosta: Drug Chem. Toxicol. 5, 219 (1982)

- Rosenbluth, S.A., W.L. Guess, J. Autian:
 J. Biomed. Materials Res. 1, 197 (1967)
- 66. Dillingham, E.O., R.W. Mast, G.E. Bass, J. Autian: J. Pharmaceut. Sci. 62, 22 (1973)
- 67. Halle, W., H. Spielmann: ATLA 20, 40 (1992)
- 68. Halle, W., E. Rohde: Unveröff. Ergebn., 1994
- 69. Dixon, G.J., F.M. Schabel Jr., H.E. Skipper, E.A. Dulmadge, B. Duncan: Cancer Res. 21, 535 (1961)
- 70. Yoshida, M., M. Onaka, T. Fujita, M. Nakajima: Pesticide Biochem. Physiol. 10, 313 (1979)
- 71. Borenfreund, E., H. Babich, N. Martin-Alguacil: Toxicol. in Vitro 2, 1 (1988)
- 72. Fry, J.R., M.J. Garle, A.H. Hammond, A. Hatfield: Toxicol. in Vitro 4, 175 (1990)
- 73. Atkinson, K., L. Hulme, R.H. Clothier, M. Balls: ATLA 17, 34 (1989)
- 74. Smith, L.M., R.H. Clothier, S. Hillidge, M. Balls: ATLA 20, 230 (1992)
- 75. Skaanild, M.T., J. Clausen: ATLA 16, 293 (1989)
- 76. Herzenberg, L.A.: J. Cell. Comp. Physiol. 60, Suppl. 1, 145 (1962)
- 77. Steele, V.E., R.E. Morrissey, E.L. Elmore: Fundam. appl. Toxicol. 11, 673 (1988)
- 78. Wilson, A.P., C.H.J. Ford, C.E. Newman, A. Howell: Brit. J. Cancer 49, 57 (1984)
- Mol, M.A.E., J. Van Genderen, O.L. Wolthuis: Food Chem. Toxicol. 24, 519 (1986)
- 80. Benford, D.J., S. Good: Molec. Toxicol. 1, 419 (1989)
- 81. Saotome, K., H. Morita, M. Umeda: Toxicol. in Vitro 3, 317 (1989)
- 82. Fortunati, E., V. Bianchi: ATLA 19, 18 (1991)
- 83. Echarti, C., H.R. Maurer: Tumor Diagn. Ther. 9, 100 (1988)
- 84 Tan, E.-L., M.W. Williams, R.L. Schenley, S.W. Perdue, T.L. Hayden, J.E. Turner, A.W. Hsie: Toxicol. appl. Pharmacol. 74, 330 (1984)
- 85. Clothier, R.H., L. Hulme, A.B. Ahmed, H.L. Reeves, M. Smith, M. Balls: ATLA 16, 84 (1988)

- 86. Scarino, M.L., G. Bises, L. Leomporra, F. Zucco: ATLA 16, 42 (1988)
- 87. Mazziotti, I., A.-L. Stammati, F. Zucco: ATLA. 17, 401 (1990)
- 88. Ponsoda, X., R. Jover, F.V. Castell, M.J. Gómez-Lechón: ATLA 17, 218 (1990)
- 89. Skaanild, M.T., J. Clausen: ATLA 19, 187 (1991)
- 90. Gülden, M., J. Finger: ATLA 20, 222 (1992)
- 91. Shrivastava, R., C. Delomenie, A. Chevalier, G. John, B. Ekwall, E. Walum, R. Massingham: Cell Biol. Toxicol. 8, 157 (1992)
- 92. Zanetti, C., I. de Angelis, A.-L. Stammati, F. Zucco: ATLA 20, 120 (1992)
- 93. Garza-Ocanas, L., O. Torres-Alanis, A. Pineyro-López: ATLA. 17, 246 (1990)
- 94. Fand, I.: Arch. intern. Pharmacodyn. 164, 294 (1966)
- 95. Freese, E., B.C. Levin, R. Pearce, T. Sreevalsan, J.J. Kaufman, W.S. Koski, N.M. Semo: Teratology 20, 413 (1979)
- 96. McCoy, B.J., G.C. Llewellyn: Bull. Environm. Contam. Toxicol. 25, 7 (1980)
- 97. Kurian, P., S. Nesnow, G.E. Milo: Cell Biol. Toxicol. 6, 171 (1990)
- Bartnik, F.G., K. Künstler, N.-P. Lüpke, W. Sterzel, S. Wallat:
 In: Sympos. Alternatives to Animal Experiments in Risk Assessment, Proceed.,
 Günzel, P., C. Reinhardt, D. Schiffmann (eds.), p.111.
 Schering AG West Germany, 1988
- 99. Kfir, R., O.W. Prozesky: Water Res. 15, 553 (1981)
- 100. Costa, M.: Life Sci. 24, 705 (1979)
- 101. Cova, D., P. Fumagalli, A. Santagostino: ATLA 19, 39 (1991)
- 102. Seibert, H., M. Gülden, M. Kolossa, G. Schepers: ATLA 20, 240 (1992)
- 103. Langenbach, R., R. Gingell: J. Nat. Cancer Inst. 54, 981 (1975)
- 104. Bearden, L.J., F.W. Cooke: J. Biomed. Materials Res. 14, 289 (1980)
- 105. Ferguson, T.F.M., C. Prottey: Food Cosmet. Toxicol. 14, 431 (1976)
- 106. Selling, J., B. Ekwall: Xenobiotica 15, 713 (1985)
- Künstler, K., F.G. Bartnik: Abschlußbericht Henkel KGaA Düsseldorf,
 Bundesministerium für Forschung und Technologie, Januar 1987

- 108. Bracher, M., C. Faller, J. Spengler, C.A. Reinhardt: Molec. Toxicol. 1, 561 (1989)
- 109. Gajjar, L., D.J. Benford: Molec. Toxicol. 1, 513 (1989)
- 110. Cornelis, M., C. Dupont, J. Wepierre: ATLA 19, 324 (1991)
- Spielmann, H., I. Gerner, S. Kalweit, R. Moog, T. Wirnsberger, K. Krauser,
 R. Kreiling, H. Kreuzer, N.-P. Lüpke, H.G. Miltenburger, N. Müller, P. Mürmann,
 W. Pape, B. Siegemund, J. Spengler, F.J. Wiebel: Toxicol. in Vitro 5, 539 (1991)
- 112. Boue-Grabot, M., B. Halaviat, J.-F. Pinon: ATLA 20, 445 (1992)
- 113. Costa, M., M.P. Abbracchio, J. Simmons-Hansen: Toxicol. appl. Pharmacol. 60, 313 (1981)
- 114. Harnett, P.B., S.H. Robison, D.E. Swartzendruber, M. Costa: Toxicol. appl. Pharmacol. 64, 20 (1982)
- 115. Hayashi, M., H. Tanii, K. Hashimoto: Toxicol. in Vitro 2, 69 (1988)
- 116. Walum, E., O. Flint: ATLA 15, 238 (1988)
- 117. Albright, J.A.: Nature 203, 976 (1964)
- 118. Holland, R.I.: Acta Pharmacol. Toxicol. 45, 96 (1979)
- 119. Phillips, B.J.: Biochem. Pharmacol. 23, 131 (1974)
- 120. Borenfreund, E., O. Borrero: Cell Biol. Toxicol. 1, 55 (1984)
- 121. Spielmann, H.: Unveröff, Ergebn., ZEBET, Bundesgesundheitsamt Berlin 1992
- 122. Koerker, R.L., A.J. Berlin, F.H. Schneider: Toxicol. appl. Pharmacol. 37, 281 (1976)
- Kramer, A., W. Halle, W. Weuffen, V. Adrian, M. Herrmann,
 J. Bremer, H. Fleck, E. Steiger: Z. ges. Hyg. Grenzgeb. 33, 610 (1987)
- 124. O'Brien, K.A.F., L.L. Smith, G.M. Cohen: Toxicol. in Vitro 1, 85 (1987)
- 125. Niwa, A., K. Kumaki, D.W. Nebert: Molec. Pharmacol. 11, 399 (1975)
- 126. Abernethy, D.J., W.F. Greenlee, F.C. Huband, C.J. Boreiko: Carcinogenesis 6, 651 (1985)
- 127. Osborne, R., W.F. Greenlee: Toxicol. appl. Pharmacol. 77, 434 (1985)
- 128. Reinhardt, C.A., H. Schawalder, G. Zbinden: Toxicology 25, 47 (1982)
- 129. Alexander, J., A.T. Hostmark, 0. Forre, M. v. Kraemer Bryn: Acta Pharmacol. Toxicol. 45, 379 (1979)

- 130. Prasad, K.N., E. Nobles, M. Ramanujam: Environm. Res. 19, 189 (1979)
- Bianchi, V., R.D. Toso, P. Debetto, A.G. Levis, S. Luciani, F. Majone,
 G. Tamino: Toxicology 17, 219 (1980)
- 132. Conconi, M.T., P.P. Parnigotto, A. Bonali, G. Zagotto: ATLA 20, 84 (1992)
- 133. Iselt, M., W. Holtei, P. Hilgard: Arzneim.-Forsch. 39, (II), 747 (1989)
- 134. Hodgson, J.R., Lee Cheng-Chun: Toxicol. appl. Pharmacol. 40, 19 (1977)
- 135. Carr, J.V., M.S. Legator: Proc. Soc. Exp. Biol. Med. 142, 564 (1973)
- 136. Borenfreund, E., J.A. Puerner: Toxicology 39, 121 (1986)
- 137. Fink, B.R., G.E. Kenny: Anesthesiology 29, 505 (1968)
- 138. Mahr, U., H.G. Miltenburger: Mutation Res. 40, 107 (1976)
- 139. Metcalfe, S.M.: J. Pharm. Pharmac, 23, 817 (1971)
- 140. Styles, J.A.: Brit. J. exp. Path. 55, 71 (1974)
- 141. Sheinman, R., S. Yannai: Toxicol. appl. Pharmacol. 30, 266 (1974)
- 142. Evenson, D.P., A.J. Fasbender: Toxicol. appl. Pharmacol. 93, 339 (1988)
- De Angelis, I., L. Giubilei, A. Stammati, F. Zampaglioni, F. Zucco, G. Bartolini,
 G. Salvatore: Food Chem. Toxicol. 24, 477 (1986)
- 144. Dragsnes, L., K. Helgeland, J. Jonsen: Acta Pharmacol. Toxicol. 36, 97 (1975)
- 145. Vassilev, G.N., S. Stoichev, K. Silyanovska, Tch. Nachev: Compt. Rend. Acad. Bulgare Sci. 22, 567 (1969)
- 146. Li, W., Y. Zhao, I.-N. Chou: Toxicol. appl. Pharmacol. 91, 96 (1987)
- 147. Martin, M.L., K.C. Breen, C.M. Regan: Toxicol. in Vitro 2, 43 (1988)
- 148. Voss, J.-U., H. Seibert: ATLA 20, 266 (1992)
- 149. Lindl, T., R. Pellkofer, K. Englert: Z. Lebensm. Unters. Forsch. 183, 1 (1986)
- 150. Ekwall, B., J. Bondesson, J.V. Castell et al.: ATLA 17, 83 (1989)
- 151. Iwig, M., D. Ngoli, D. Glaesser: Biomed. Biochim. Acta 48,121 (1989)
- 152. Tsuchiya, T., A. Ishida, N. Miyata, A. Takahashi, S. Kamiya: Toxicol. in Vitro 2, 291 (1988)

- 153. Combrier, E., P. Métézeau, X. Ronot, H. Kiefer-Gachelin, M. Adolphe: Toxicol, in Vitro 4, 751 (1990)
- 154. Thomson, M.A., L.A. Hearn, K.T. Smith, J.J. Teal, M.S. Dickens: Alternative Methods in Toxicology 7, 297 (1989)
- 155. Fry, J.R., A.H. Hammond, M.J. Garle, K. Lal: ATLA 21, 8 (1993)
- 156. Flint, O.P.: Food Chem. Toxicol. 24, 627 (1986)
- 157. Romert, L., T. Jansson, D. Jenssen: Toxicol. Letters 71, 39 (1994)
- 158. Fry, J.R., M.J. Garle, A. H. Hammond: ATLA 16, 175 (1988)
- Budavari, S. (ed.): The Merck Index, 11 th Edition. Rahway,
 N.J., USA: Merck & Co., Inc., 1989
- Balls, M., J. Bridges: In: Alternative Methods in Toxicology, Vol. 2: Acute toxicity testing: Alternative approaches, A.M. Goldberg (ed.), p. 61. New York: Mary Ann Liebert Inc. Publ., 1984
- Windholz, M. (ed.): The Merck Index, 9 th Edition. Rahway, N.J., USA: Merck & Co., Inc., 1976
- 162. Clothier, R.H., L.M. Hulme, M. Smith, M. Balls: Molec. Toxicol. 1, 571 (1989)
- 163. Pfleger, K.: Toxikologische Daten. In: Biochemisches Taschenbuch, Teil II, H.M. Rauen (Hrsg.), S. 654. Berlin, Göttingen, Heidelberg, New York: Springer, 1964
 - Lewis, R.J., R.L. Tatken (eds.): Registry of toxic effects of chemical substances.
 1978 Edition, US Department of Health, Education, and Welfare, NIOSH,
 Cincinnati, Ohio 45226, January 1979
- 164. Halle, W.: Grundlagen der Zytotoxizität in vitro. In: Handbuch der Antiseptik, Teilband I/5: Toxische und allergische Nebenwirkungen von Antiseptika, A. Kramer u. Mitarb. (Hrsg.), S. 84. Stuttgart, New York: Fischer, 1985
- 165. Lewis, R.J., R.L. Tatken (eds.): Registry of toxic effects of chemical substances. 1980 Edition: Volume 1 and 2, US Department of Health and Human Services, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 81 - 116, 1982
- 166. Tatken, R.L., R.J. Lewis (eds.): Registry of toxic effects of chemical substances. 1981 - 82 Edition: Volume 1 - 3, 1983, and 1983 Supplement: Volume 1 and 2, 1984, US Department of Health and Human Services, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226
- 167. Halle, W., E. Göres, I. Baeger: Pharmazie 42, 848 (1987)

- 168. Halle, W., E. Göres: Register der Zytotoxizität (IC50) in der Zellkultur und Möglichkeiten zur Abschätzung der akuten Toxizität (LD50). In: Beiträge zur Wirkstofforschung, P. Oehme, H. Löwe, E. Göres (Hrsg.), Heft 32, 108 S.; Berlin: Institut für Wirkstofforschung, 1988
- Halle, W., H. Spielmann: In: Möglichkeiten und Grenzen der Reduktion von Tierversuchen, H. Schöffl, R. Schulte-Hermann, H.A. Tritthart (Hrsg.), S. 151, Wien, New York: Springer, 1992
- 170. Babich, H., E. Borenfreund: ATLA 18, 129 (1990)
- 171. Halle, W., E. Göres: Pharmazie 42, 245 (1987)
- Acosta, D., E.M.B. Sorensen, D.C. Anuforo, D.B. Mitchell, K. Ramos, K.S. Santone,
 M.A. Smith: In Vitro Cell. Developm. Biol. 21, 495 (1985)
- 173. Boyd, E.M., F.I. Taylor: Toxicol. appl. Pharmacol. 18, 158 (1971)
- 174. Walden, R., C.M. Schiller: Toxicol. appl. Pharmacol. 77, 490 (1985)
- 175. Sachs, L.: Angewandte Statistik, 7. Aufl., 846 S., Berlin, Heidelberg, New York et al.: Springer, 1992
- Lowe, D.A., A.R. Stiles: Pesticides. Bull. Org. mond. Santé,
 Bull. Wld. Hlth. Org. 49, 169 (1973)
- Walum, E., M. Balls, V. Bianchi, B. Blaauboer, G. Bolcsfoldi, A. Guillouzo,
 G.A. Moore, L. Odland, C. Reinhardt, H. Spielmann: ATLA 20, 406 (1992)
- Schuppan, D., A.D. Dayan, F.A. Charlesworth (eds.): The contribution of acute toxicity testing to the evaluation of pharmaceuticals. Berlin, Heidelberg, New York et al.: Springer, 1986
- Anon.: OECD guidelines for testing of chemicals; Acute oral toxicity. Volume 2,
 Section 4, p. 1 7. Paris: OECD Publications Service, 1993
- Hansch, C., A. Leo: Substituent constants for correlation analysis in chemistry and biology. New York: John Wiley and Sons, 1979
- Hansch, C., P.G. Sammes, J.B. Taylor (eds.): Comprehensive medical chemistry,
 Vol. 6: Cumulative subject index and drug compendium. C.J. Drayton (ed.) Oxford et al.: Pergamon Press, 1990
- 182. Halle, W.: Hyg. Med. 18, 209 (1993)
- 183. Halle, W., H. Spielmann: Alternativen zu Tierexperimenten (ALTEX) 11, 148 (1994)
- Norusis, M.J.: SPSS/PC + Advance statistics 4.0 SPSS Inc.,
 p. B-193, p.c.-73, Chicago, 1990

- Frazier, J.M. (ed.): In vitro toxicity testing, 299 pp. New York, Basel, Hong Kong: Marcel Dekker, Inc., 1992
- 186. Gad, S.C. (ed.): In vitro toxicology. 290 pp., New York: Raven Press, 1994
- Rogiers, V., W. Sonck, E. Shephard, A. Vercruysse (eds.): Human cells in in vitro pharmaco-toxicology: Present status within Europe. 328 pp. Brussels: VUBPRESS, 1993
- 188. Walum, E., K. Stenberg, D. Jenssen: Understanding cell toxicology: Principles and practice. 206 pp. New York, London, Toronto et al.: Ellis Horwood, 1990
- 189. Watson, R.R. (ed.): In vitro methods of toxicology. 298 pp. Boca Raton, Ann Arbor, London, Tokyo: CRC Press, 1992
- Yolles, G., A. Cordier (eds.): In vitro methods in toxicology. London: Academic Press, 1992
- 191. Halle, W., W.-E. Siems, K.D. Jentzsch, E. Teuscher, E. Göres: Pharmazie 39, 77 (1984)
- 192. Halle, W., M. Melzig, W. Schössler, W.-E. Siems, V. Weidlich, E. Teuscher: Biomed. Biochim. Acta 45, 1315 (1986)
- 193. Halle, W., E. Göres: Testung der Zytotoxizität an Mammalier-Zellkulturen. In: Aktuelle Probleme der Toxikologie, Band 3/2: Toxikologische Untersuchungsmethodik, H.-P. Klöcking, J. Güttner, W.D. Wiezorek (Hrsg.), S. 215, Berlin: Volk und Gesundheit, 1989
- Nürnberg, G., D. Rasch, E. Schönfelder, R. Vilbrandt:
 KOWIRA Version 2.2. Handbuch, BIORAT GmbH, Rostock, 1991
- Schlede, E., U. Mischke, R. Roll, D. Kayser: Arch. Toxicol. 66, 455 (1992)
- 196. Ahne, W.: Zbl. Bakt. Hyg. I. Abt. Orig. B 180, 480 (1985)
- 197. Dierickx, P.J.: Toxicol. in Vitro. 3, 189 (1989)
- 198. Babich, H., E. Borenfreund: Fundam. Appl. Toxicol. 10, 295 (1988)
- 199. Babich, H., E. Borenfreund: ATLA 15, 116 (1987)
- 200. Henkel KGaA, unveröffentlichte Daten, 1981
- 201. Halle, W., M. Liebsch, D. Traue, H. Spielmann: Alternativen zu Tierexperimenten (ALTEX) 14, 8 (1997)
- 202. Spielmann, H. et al.: ATLA 24, 741, (1996)

13 Alphabetisches Substanzverzeichnis

/ 	1	12		
RC-Nr.		Substanzname		
263	AB 1925000	Acetaldehyde		
113	AE 4200000	Acetaminophen		
124	AC 8225000	Acetazolamide		
321	AF 1225000	Acetic acid		
359	AL 3150000	Acetone		
358	AL 7700000	Acetonitrile		
107	VO 0700000	Acetylsalicylic acid		
179	AS 1050000	Acrolein		
102	AS 3325000	Acrylamide		
110	AT 5250000	Acrylonitrile		
13	MA 4375000	Actidione		
2	AU 1575000	Actinomycin D		
11	AV 9800000	Adriamycin		
37	GY 1925000	Aflatoxin B ₁		
28	01 1020000	Aldosterone		
43	IO 2100000	Aldrin		
52	VH 6475000	all-trans-Retinoic acid		
292	BA 5075000	Allylalcohol		
174	MF 5550000	Ambazone		
276	XH 4375000	Ambuphylline		
9	MA 1225000	Amethopterin		
121	CD 2625000	Aminophenazone		
248				
	SJ 4900000	m-Aminophenol		
42	SJ 5075000	p-Aminophenol		
3	MA 1050000	Aminopterin		
120	VO 1400000	5-Aminosalicylic acid		
183	HO 9275000	Amitriptyline		
284	BP 4550000	Ammonium chloride		
213	SE 0350000	Ammonium persulfate		
225	BS 4900000	Ammonium sulfide		
84	CQ 5075000	Amobarbital		
262	SI 1750000	Amphetamine sulfate		
217	DW 2500000	Amrinone		
291	BW 6650000	Aniline		
243_	BZ 5450000	p-Anisidine		
306	BZ 8050000	Anisole		
189	DJ 2275000	Antimycin		
300	CD 2450000	Antipyrine		
153	CG 3325000	Arsenic III trioxide		
100	CI 7650000	L-Ascorbic acid		
107	VO 0700000	Aspirin		
70	CK 2450000	Atropine sulfate		
193	XZ 3017500	5-Azacytidine		
15	XZ 6157000	8-Azaguanine		
16	VT 9625000	Azaserine		
204	UO 8925000	Azathioprine		
				

RC-Nr.	NIOSH	Substanzname			
317	CQ 3850000	Barbital sodium			
246	CQ 9625000	Barium II nitrate			
64	FC 1140000	Bendiocarb			
155	BO 3150000	Benzalkonium chloride			
312	DG 0875000	Benzoic acid			
287	DN 3150000	Benzylalcohol			
286	XH 9800000	Benzylpenicillin sodium			
237	DS 4800000	Beryllium II sulfate			
192	YS 2625000	1,3-Bis(2-chloroethyl)-1-			
	}	nitrosourea			
273	CY 9000000	Bromobenzene			
254	EL 9885000	Buflomedil			
177	EK 1750000	Busulphan			
305	ES 2275000	n-Butanal			
338	EO 1400000	1-Butanol			
349	EL 6475000	2-Butanone			
324	KJ 8575000	2-Butoxyethanol			
224	DG 4925000	n-Butyl benzoate			
188	MX 4375000	t-Butyl hydroquinone			
72	SL 1945000	Butylated hydoxyanisole			
184	GO 7875000	Butylated hydroxytoluene			
20	EV 0175000	Cadmium II chloride			
112	EV 6475000	Caffeine			
285	EV 6640000	Caffeine sodium benzoate			
304	EV 9800000	Calcium II chloride			
18	GW 5075000	Captan			
73	FC 5950000	Carbaryl			
67	WM 8400000	Carbofos			
125	FG 4900000	Carbon tetrachloride			
211	UX 1050000	Catechol			
159	BQ 7875000	Cetyltrimethylammonium			
		bromide			
163	ML 9145000	Cetyltrimethylammonium			
		chloride			
249		Chemical 122			
264	FM 8750000	Chloral hydrate			
190	ES 7525000	Chlorambucil			
91	AB 6825000	Chloramphenicol			
40	PB 9800000	Chlordan			
162	DU 1925000	Chlorhexidine			
308	FS 9100000	Chloroform			
33	OV 8050000	p-Chloromercuribenzoic acid			
31	VB 2450000	Chloroquine diphosphate			
41		Chloroquine sulfate			
215	QI 7750000	Chlorotetracycline			
27	SN 8925000	Chlorpromazine			
149	GB 6650000	Chromium VI trioxide			

RC-Nr.	NIOSH	Substanzname		
77	GD 4025000	Cinchophen		
186	ZH 3325000	Cineb		
150	TP 2450000	Cis-platinum		
111	UE 9455000	Clofibric acid		
62	GF 9800000	Cobalt II chloride		
6		Colchicine		
66	GH 0700000 GM 9020000			
		Cortisone		
260	GN 4200000	Coumarin		
239	GO 6125000	m-Cresol		
232	GO 6300000	o-Cresol		
212	GO 6475000	p-Cresol		
199	GL 7000000	Cupric chloride		
81	GL 8900000	Cupric sulfate * 5 H₂O		
249		3-Cyano-2-morpholino-5-		
		(pyrid-4-yl)-pyridine		
		(Chemical 122)		
325	GV 7875000	Cyclohexanol		
13	MA 4375000	Cycloheximide		
116	RP 5950000	Cyclophosphamide * H ₂ O		
96	TE 1750000	Cygon		
274	HA 1600000	L-Cysteine		
19	RO 0205000	Cytochalasin B		
133	GZ 4850000	Cytochalasin D		
141	HA 5425000	Cytosine arabinoside		
23	UV 8140000	Daraprim		
195	ĀF 5475000	p,p'-DDA		
167	KI 0700000	p,p'-DDD		
197	KV 9450000	p,p'-DDE		
61	KJ 3325000	p,p'-DDT		
229	EL 3000000	Dextropropoxyphene * HCI		
117	AU 9700000	Di(2-ethylhexyl)adipate		
92	TI 0350000	Di(2-ethylhexyl)phthalate		
63	DF 1575000	Diazepam		
281	PA 7350000	1,2-Dibromomethane		
88	TI 0875000	Dibutyl phthalate		
298	AG 6125000	Dichloroacetic acid		
328	PA 8050000	Dichloromethane		
158	SM 0175000	Dichlorophene		
39	SK 8575000	2,4-Dichlorophenol		
89	AG 6825000	2,4-Dichlorophenoxyacetic acid		
26	DC 8400000	Dicofol		
168	GN 7875000	Dicoumarol		
207	IO 1750000	Dieldrin		
136	EZ 6550000	Diethyldithiocarbamate sodium		
340	ID 5950000	Diethylene glycol		
122	TI 1050000	Diethyl phthalate		
258	VS 1180000	Diethyl sebacate		

RC-Nr.	NIOSH	Substanzname			
34	WJ 5600000	Diethylstilbestrol			
8	IH 2275000	Digitoxin			
22	IH 6125000	Digoxin			
58	TH 8880000	Dihydralazine sulfate			
293	AG 6475000	Diisopropylamine			
200	1.000	dichloroacetate			
191	XH 5082000	Dimenhydrinate			
96	TE 1750000	Dimethoate			
320	AB 7700000	N,N-Dimethylacetamide			
200	OZ 4200000	Dimethylaminoethyl			
	200000	methacrylate (polymer)			
351	LQ 2100000	Dimethylformamide			
127	TI 1575000	Dimethyl phthalate			
129	PV 6210000	Dimethyl sulfoxide			
220	CZ 7350000	m-Dinitrobenzene			
68	SL 2800000	2,4-Dinitrophenol			
332	JG 8225000	1,4-Dioxane			
71	KR 7000000	Diphenhydramine * HCI			
82	MU 1050000	Diphenylhydantoin			
75	TA 0700000	Dipterex			
85	PB 1300000	Dipyrone			
206	JM 5690000	Diquat dibromide			
293	AG 6475000	Disotat			
51	TD 9275000	Disulfoton			
51	TD 9275000	Disyston			
226	DB 6825000	Dodecylbenzene sodium			
220	DB 0023000	sulfonate			
57	AY 5600000	L-Dopa			
11	AV 9800000	Doxorubicin * HCl			
244	US 9275000	Doxylamine succinate			
49	TF 4550000	E 605			
10	DK 1750000	Emetine			
169	DO 3500000	Epinephrine bitartrate			
130	KQ 6300000	Ethanol			
353	AH 5425000	Ethyl acetate			
307	ES 2625000	2-Ethylbutanal			
24	AH 4025000	Ethylenediaminetetraacetic acid			
360	KW 2975000	Ethylene glycol			
349	EL 6475000	Ethyl methyl ketone			
261	NO 8500000	Ferrous sulfate			
35	CB 4375000				
17	YR 0350000	Flufenamic acid 5-Fluorouracil			
202	LP 8925000	Formaldehyde			
109	CB 2625000	Frusemide			
171	HE 1750000	Fumagillin			
108	LY 8990000	Gibberellic acid			
222	YS 4725200	Glibenclamide			
222	13 4120200	Gilbeliciallilide			

					
RC-Nr.		Substanzname			
355	LZ 6600000	D-Glucose			
101	MA 4725000	Glutethimide			
131	MA 8050000	Glycerol			
326	KH 6550000	Halothane			
185	PC 0700000	Heptachlor			
288	MK 0350000	1-Heptanol			
151	GY 1225000	Hexachlorocyclopentadiene			
157	SM 0700000	Hexachlorophene			
159	BQ 7875000	Hexadecyltrimethylammonium			
L	<u> </u>	bromide			
163	ML 9145000	Hexadecyltrimethylammonium			
	_	chloride			
295	MO 3150000	2,5-Hexanedione			
352	MO 4650000	1,2,6-Hexanetriol			
311	MQ 4025000	1-Hexanol			
187	VH 1575000	4-Hexylresorcinol			
296	MS 9000000	Homatropine methylbromide			
219	TH 8925000	Hydralazine			
32	GM 8925000	Hydrocortisone			
236	MX 0900000	Hydrogen peroxide 90%			
267	DH 1925000	p-Hydroxybenzoic acid			
152	VC 4200000	8-Hydroxyquinoline			
44	KK 2350000	Hydroxyzine * HCI			
233	MU 6640000	Ibuprofen			
299	NI 3325000	Imidazole			
238	YS 2717000	Imidazolidinyl urea			
38	HO 1925000	Imipramine * HCI			
60	NL 3500000	Indomethacin			
198	DI 4025000	loxynil			
90	NS 1925000	Iproniazid			
315	TI 3150000	Isobenzoic furano dione			
309	NQ 4025000	Isobutanal			
334	NP 9625000	Isobutanol			
123	NS 1750000	Isoniazid			
257	MN 7820000	Isononylaldehyde			
128	NT 8050000	Isopropanol			
165	DO 1925000	Isoproterenol * HCI			
253	HQ 4110000	Isoxepac			
26	DC 8400000	Kelthane			
341	OD 2800000	Lactic acid			
46	OF 9450000	Lead II chloride			
223	GV 4900000	Lindane			
333	OJ 5950000	Lithium I chloride			
327	OJ 6419000	Lithium I sulfate			
343	OM 2975000	Magnesium II chloride * 6 H ₂ O			
67	WM 8400000	Malathion			
154	OP 0700000	Maneb			

RC-Nr.	NIOSH	Substanzname			
56	OO 9650000	Manganese II chloride * 4 H ₂ O			
222	YS 4725200	Maninil			
48	CB 4550000	Mefenamic acid			
94	OT 0350000	Menthol			
21	UO 9800000	6-Mercaptopurine			
29	OV 9100000	Mercury II chloride			
85	PB 1300000	Metamizol			
361	PC 1400000	Methanol			
9	MA 1225000	Methotrexate			
356	KL 5775000	2-Methoxyethanol			
356	KL 5775000	Methylcellosolve			
78	GN 7792000	6-Methylcoumarin			
356	KL 5775000	Methylglycol			
142	OW 1225000	Methylmercury chloride			
160	MF 4200000	N-Methyl-N'-nitro-N-			
1		nitrosoguanidine			
98	DH 2450000	Methylparaben			
319	SC 4900000	Methylpentinol			
259	VO 4725000	Methyl salicylate			
283	DW 1762000	Milrinone			
14	CN 0700000	Mitomycin C			
147	CB 5748500	Mitoxantrone			
177	EK 1750000	Myleran			
172	FA 6825000	Nabam			
47	QJ 0700000	Naftipramide			
99	QN 2885000	Nalidixic acid			
114	XS 4725000	Natulan * HCl			
87	CQ 6125000	Nembutal			
74	QR 6475000	Nickel II chloride			
336	QS 3675000	Nicotinamide			
103	QS 5250000	Nicotine			
275	AJ 0175000	Nitrilotriacetic acid			
302	DA 6475000	Nitrobenzene			
148	IA 2100000	Nitrogen mustard * HCl			
210	SM 2275000	p-Nitrophenol			
221	ST 3000000	2-Nitro-p-phenylenediamine			
339	TZ 5075000	1-Nitropropane			
175	DN 5950000	Norepinephrine			
43	IO 2100000	Octalene			
207	IO 1750000	Octalox			
268	RH 6550000	1-Octanol			
230	KR 6300000	Orphenadrine * HCl			
18	GW 5075000	Orthocide			
7	RN 3675000	Ouabain			
164	DE 2276000	Oxatomide			
65	UQ 8400000	Oxyphenbutazone			
176	NW 8450000	Papaverine			
113	AE 4200000	Paracetamol			

RC-Nr.	NIOSH	Substanzname		
	DW 2275000			
235	DH 2450000	Paraquat		
98		Parasept		
	TF 4550000	Parathion		
173	SM 6300000	Pentachlorophenol		
322	SB 9800000	1-Pentanol		
87	CQ 6125000	Pentobarbital sodium		
240	XH 2475000	Pentoxifylline		
97	AM 4375000	Phenacetin		
118	CQ 6825000	Phenobarbital		
115	SJ 3325000	Phenol		
79	UQ 8225000	Phenylbutazone		
218	SS 7875000	o-Phenylenediamine		
180	SS 8050000	p-Phenylenediamine		
282	DO 7175000	(-)-Phenylephrine		
278	DO 7525000	Phenylephrine * HCl		
234	YU 1400000	Phenylthiourea		
82	MU 1050000	Phenytoin		
342	TK 7800000	Piperazine		
146	HX 7680000	Potassium bichromate VI		
346	TS 8050000	Potassium I chloride		
145	GB 2940000	Potassium chromate VI		
277	GS 6825000	Potassium cyanate		
252	TS 8750000	Potassium cyanide		
269	TT 0700000	Potassium I fluoride		
335	LJ 8219000	Potassium hexacyanoferrate II		
266	LJ 8225000	Potassium hexacyanoferrate III		
36	TW 0175000	Progesterone		
357	TY 2000000	1,2-Propanediol		
348	UH 8225000	1-Propanol		
128	NT 8050000	2-Propanol		
270	UE 0350000	Propionaldehyde		
54	UB 7525000	Propranolol * HCl		
357	TY 2000000	Propylene glycol		
209	DH 2800000	Propylparaben		
12	AU 7350000	Puromycin		
337	UR 8400000	Pyridine		
23	UV 8140000	Pyrimethamine		
53	VA 5950000	Quinidine sulfate		
45	VA 7700000	Quinine * HCl		
216		Refortan		
111	UE 9455000	Regadrin		
245	VG 9625000	Resorcinol		
52	VH 6475000	Retinoic acid, all-trans-,		
201	VH 6440000	Retinoic acid, 13-cis-,		
139	VH 6750000	Retinol		
134	DJ 2800000	Rotenone		
314	DE 4200000	Saccharin		
_ J 17	DE 720000	Caconain		

RC-Nr.	NIOSH	Substanzname		
95	VN 6475000	Salicylamide		
178	VN 7850000	Salicylanilide		
272	VO 0525000	Salicylic acid		
251	YM 4550000	Scopolamine * HBr		
69	CP 9800000	Secobarbital sodium		
73	FC 5950000	Sevin		
161	VW 4725000	Silver I nitrate		
30	CG 0875000	Sodium arsenate, dibasic		
241	VY 8050000	Sodium azide		
144	HX 7700000	Sodium bichromate VI		
345	VZ 3150000	Sodium I bromide		
344	VZ 4725000	Sodium chloride		
329	GV 7350000	Sodium cyclamate		
76	WT 1050000	Sodium dodecyl sulfate		
106	WB 0350000	Sodium I fluoride		
76	WT 1050000	Sodium lauryl sulfate		
255	AG 1400000	Sodium monochloroacetate		
227	KI 1750000	Sodium oxalate		
119	VO 5075000	Sodium salicylate		
290	WE 2150000	Sodium sulfite		
156	BT 1750000	Stearyl trimethylammonium		
		chloride		
265	WK 4990000	Streptomycin sulfate		
331	WK 8400000	Strontium II chloride		
5	WL 1180000	K-Strophanthin		
271	WL 3675000	Styrene		
93	WO 9100000	Sulfisoxazole		
330	WS 5600000	Sulfuric acid		
135	HP 3500000	2,3,7,8-Tetrachlorodibenzo-p-		
		dioxin		
289	KX 3850000	Tetrachloroethene		
59	QI 9100000	Tetracycline * HCl		
350_	LU 2450000	Tetrahydrofurfuryl alcohol		
247	TI 4910000	(+)-Thalidomide		
203	AJ 5425000	Thallium I acetate		
181	XG 6800000	Thallium I sulfate		
105	XH 3850000	Theophylline		
303	XH 6700000	Theophylline sodium		
280	AJ 4550000	Theophylline sodium acetate		
279	AC 8925000	Thioacetamide		
140	UP 0740000	6-Thioguanine		
83	CQ 6300000	Thiopental		
170	SP 2275000	Thioridazine * HCI		
25	SZ 2975000	Thio-TEPA		
80	YR 1575000	2-Thiouracil		
347	YU 2800000	Thiourea		

RC-Nr.	NIOSH	Substanzname			
214	XP 2275000	Thymol			
256	XP 8700000	Tin II chloride			
104	YS 4550000	Tolbutamide			
316	XS 5250000	Toluene			
194	XS 9700000	p-Toluylenediamine			
40	PB 9800000	Toxichlor			
1	DK 7175000	Trenimon			
310	YA 0350000	Tributylamine			
138	WH 6820000	Tributyltin chloride			
75	TA 0700000	Trichlorfon			
294	AJ 7875000	Trichloroacetic acid			
242	DC 2100000	1,2,4-Trichlorobenzene			
	KJ 2975000	1,1,1-Trichloroethane			
297	AJ 8400000				
228	AJ 8400000	2,4,5-Trichlorophenoxyacetic			
126	GE 8050000	Triethyl citrate			
143	XZ 2100000	Triethylene melamine			
137	WH 6840000				
318	AJ 9625000	Triethyltin chloride			
166	YF 7175000	Trifluoroacetic acid			
354	YK 0400000	Triisooctylamine 1,3,5-Trioxane			
	WH 8575000				
132	HE 0785000	Triphenyltin hydroxide Triton X-100			
182					
50	QJ 6475000 WG 2932500	Trypan blue			
231		Tween 80			
208	YQ 2975000	Undecylenic acid			
323	FA 8400000	Urethan			
250	YV 7876000	Valproate sodium			
196	YV 8320000	Verapamil * HCl			
205	AL 3031000	Versalide			
4	OH 6340000	Vincristine sulfate			
139	VH 6750000	Vitamin A			
86	GN 4550000	Warfarin			
313	QT 1500000	Xanthinol nicotinate			
301	ZE 2100000	Xylene			
55	ZH 1400000	Zinc II chloride			
186	ZH 3325000	Zineb			
133	GZ 4850000	Zygosporin A			

14 Toxicity tests in cell cultures for the purpose of predicting acute toxicity (LD50) and reducing the number of animal experiments.

Summary

In this study cytotoxicity data from in vitro cultivated mammalian cell lines were used to predict the degree of acute toxicity effects of xenobiotics in laboratory animals. The use of such an alternative method prior to toxicity tests could help to significantly reduce the number of laboratory animals necessary for estimating the acute toxicity. In connection with our concept of comparing the data of cytotoxicity with acute toxicity, we developed a registry of cytotoxicity (RC) in 1988. At present, the enlarged RC, with part 1 (RC1) and part 2 (RC2), contains cytotoxicity data, calculated as mean IC50 values (IC50x), from 361 non-selected chemicals and drugs. Additionally, the acute oral and intravenous LD50 values (LD50 p.o. and LD50 i.v.) from rats and mice were registered. All the data, including the defined values of physical-chemical characteristics of the chemicals, are presented in a tabulated form.

To compare all IC50x with all LD50 values on a molar basis the simple linear regression model was used based on the equation $\log LD50 = a + b * \log IC50x$. For the estimation of the stochastic variable we preferred LD50 values from rats to those from mice. The latter were only taken when rat values were missing. Altogether, the RC1 and RC2 contain 347 pairs IC50x - LD50 p.o. mixed for rats (n = 282 substances) and mice (n = 65 substances).

Paragraph 3.8 contains the English version of the abbreviations and selected definitions applied in this study. Details of defined criteria for the selection of single IC50 values per substance were published in 1992 (reference No. 67).

The following results have been obtained:

For the 347 substances collected in the RC1 plus RC2 and sorted according to their IC50x - LD50 p.o. pairs, the linear regression parameters were estimated to be as follows: correlation coefficient r = 0.672, intercept a = 0.625, and slope b = 0.435 (Table 2, Fig. 2). For the 148 IC50x - LD50 i.v. pairs, the same parameters were estimated to be as follows: r = 0.768, a = -0.201, and b = 0.480 (Table 3, Fig. 3).

The 1992 finding of the nearly parallel course of the standard regression lines IC50x - LD50 p.o. and IC50x - LD50 i.v. in the log/log coordinate system was confirmed for n = 347 and n = 148 substances (Fig. 4).

Approximately 73 per cent of the p.o. values and 78 per cent of the i.v. values are localised in the LD50 dosage range around the regression lines defined by an empirical factor FG $\leq \log 5$. This percentage factor characterises the dosage range of LD50 deviating from the regression line by the minimum and maximum residuals $\leq \pm 0.699$.

After estimating the mean LD50 (i.e. LD50 localised on the regression line) on the basis of the IC50x values and taking factor FG into account it is possible to predict the minimum, mean, and maximum LD50 doses for each of the IC50x - LD50 pairs.

In the processes of updating, the RC was supplemented by further IC50 values of already registered substances (RC1, Table 2, No. 1 and No. 2; Table 3, No. 1 and No. 2). Beyond that, the RC was enlarged by 230 substances (RC2, Table 2, No. 3), with 77 of them having both p.o. and i.v. values (RC 2, Table 3, No. 3). Despite all these modifications, the regression parameters do not change significantly. These results confirm the excellent reproducibility of the initially discovered parameters of the standard regression line published in 1988. Furthermore, the parameters demonstrate that the standard regression lines are of general validity and that both the LD50 p.o. line and the LD50 i.v. line can be used to predict acute toxicity in laboratory animals.

The reliability of the predictive procedure was secured by using different biometrical methods and also by comparisons of literature results with the data pool in the RC.

To optimize the predictive procedure it was tried to increase the percentage of the IC50x - LD50 pairs in the FG dosage ranges. Therefore, the regression parameters were calculated separately for rats and for mice. In this way, the percentage of the substances localised in the FG - dosage ranges cannot be enlarged significantly (Table 6). However, the same negative result was achieved by the multiple linear regression analysis including the molecular weight and the octanol/water partition coefficient.

For a group of 26 neurotropic agents documented in the RC1 and RC2 and characterised by organ-specific effects in in vivo systems the prediction of LD50 values from IC50x data was surprisingly good. From these 26 agents we found 171 IC50 values in original papers. For inclusion of these IC50 values in the RC, only nonspecific cell markers were considered as cytotoxic endpoints, e.g. cell proliferation, DNA- and protein synthesis, neutral red uptake. Altogether 16 IC50 values (9.4 per cent) are derived only from neural or glial systems. More than 80 per cent of these neurotropic agents are localised in the FG - dosage range of both standard regression lines (Table 8, reference No. 183). This result demonstrates that even by using cell lines not derived from nerval or glial systems there exists a sufficient and significant positive correlation between in vitro and in vivo toxicity data. The result is also a strong support of the concept that acute toxicity in vivo can sufficiently be predicted from the data of the updated RC.

In a further step, we examined the possibility of reliably allocating chemicals into the four toxicity classes of acute oral toxicity defined by EU regulations (OECD Guideline 423). The mean LD50 as numerical values localised on the standard regression line were compared with the corresponding LD50 values published in the NIOSH registry (RTECS). The accuracy in predicting the toxicity classes of the 347 substances registered in the RC1 and RC2 in comparison to the toxicity classes of the corresponding NIOSH LD50 values, amounts to around 85 per cent. Attempts were made to show how a testing strategy for the classification of chemicals into the four toxicity classes

can be developed on the basis of the predicted mean LD50 and in connection with the protocol steps as described in the Acute Toxic Class (ATC) method by Schlede et al., 1992. Compared with the ATC method the new combined RC - ATC procedure will allow the reduction of animal numbers for allocating chemicals to the EU toxicity classes by about 30 per cent (reference No. 201).

If the two parts of this new and improved prediction procedure described in this study will be employed prior to acute toxicity testing in laboratory animals, dosage ranges for toxicity tests can be predicted with a high degree of precision. The relevance of this procedure for animal protection purposes is evident.

Finally, the perspectives of the RC are discussed, and possibilities are shown for the use of the IC50x values documented in the RC in general and comparative examinations of cytotoxicological properties of chemicals in different biological systems.

In a last paragraph the substance names have been listed alphabetically.

Schriften des Forschungszentrums Jülich. Reihe Lebenswissenschaften/Life Sciences:

 Toxizitätsprüfungen in Zellkulturen für eine Vorhersage der akuten Toxizität (LD50) zur Einsparung von Tierversuchen von W. Halle (1998), 92 Seiten ISBN 3-89336-221-5

		}

Zytotoxische Wirkungen von Papaverin (Formel) auf in vitro kultivierte Kälberaorten-Endothelzellen. Charakteristische Zellschäden sind eine uneinheitliche Zellmorphologie mit stark geschrumpften und geschwollenen Zellen mit verdickten Zellrändern (Zellinie BKEz-7, Phasenkontrast-Aufnahme).

Forschungszentrum Jülich

1 1