001     811397
005     20240712084459.0
024 7 _ |a 10.1002/pssa.201533024
|2 doi
024 7 _ |a 0031-8965
|2 ISSN
024 7 _ |a 1521-396X
|2 ISSN
024 7 _ |a 1862-6300
|2 ISSN
024 7 _ |a 1862-6319
|2 ISSN
024 7 _ |a WOS:000385222900049
|2 WOS
037 _ _ |a FZJ-2016-03881
082 _ _ |a 530
100 1 _ |a Richter, Alexei
|0 P:(DE-Juel1)162140
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Light management in planar silicon heterojunction solar cells via nanocrystalline silicon oxide films and nano-imprint textures
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1468502303_13215
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to increase the efficiency of high performance silicon heterojunction solar cells even further, it is paramount to increase the photoelectric current by enhancing the amount of light being captured within the absorber. Therefore, to reduce the parasitic absorption in the other layers, optoelectronically favorable hydrogenated nanocrystalline silicon oxide films can substitute the commonly used hydrogenated amorphous silicon layers. In this work, we systematically investigate the combination of hydrogenated nanocrystalline silicon oxide and front side nano-imprint textures as anti-reflection layers in silicon heterojunction solar cells. Ultimately, we were able to tune the parasitic absorption via variation of the front surface field layer and enhance the short-circuit current of the planar solar cells by about 2 mA cm−2 due to a random silicon pyramid textured imprint layer. A maximum active area efficiency of 20.4% was achieved with a short-circuit current of 37.7 mA cm−2.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lentz, Florian
|0 P:(DE-Juel1)130795
|b 1
|u fzj
700 1 _ |a Meier, Matthias
|0 P:(DE-Juel1)130830
|b 2
|u fzj
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 3
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 4
|u fzj
773 _ _ |a 10.1002/pssa.201533024
|g Vol. 213, no. 7, p. 1976 - 1982
|0 PERI:(DE-600)1481091-8
|n 7
|p 1976 - 1982
|t Physica status solidi / A
|v 213
|y 2016
|x 0031-8965
856 4 _ |u https://juser.fz-juelich.de/record/811397/files/Richter_et_al-2016-physica_status_solidi_%28a%29.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/811397/files/Richter_et_al-2016-physica_status_solidi_%28a%29.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/811397/files/Richter_et_al-2016-physica_status_solidi_%28a%29.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/811397/files/Richter_et_al-2016-physica_status_solidi_%28a%29.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/811397/files/Richter_et_al-2016-physica_status_solidi_%28a%29.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/811397/files/Richter_et_al-2016-physica_status_solidi_%28a%29.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:811397
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162140
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130795
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130830
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI A : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21