000811450 001__ 811450
000811450 005__ 20210129223845.0
000811450 0247_ $$2doi$$a10.1021/acs.nanolett.6b01840
000811450 0247_ $$2ISSN$$a1530-6984
000811450 0247_ $$2ISSN$$a1530-6992
000811450 0247_ $$2WOS$$aWOS:000379794200086
000811450 0247_ $$2altmetric$$aaltmetric:9251797
000811450 0247_ $$2pmid$$apmid:27347816
000811450 037__ $$aFZJ-2016-03922
000811450 082__ $$a540
000811450 1001_ $$0P:(DE-Juel1)140272$$aHeedt, S.$$b0$$eCorresponding author$$ufzj
000811450 245__ $$aAdiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register
000811450 260__ $$aWashington, DC$$bACS Publ.$$c2016
000811450 3367_ $$2DRIVER$$aarticle
000811450 3367_ $$2DataCite$$aOutput Types/Journal article
000811450 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1468841261_23337
000811450 3367_ $$2BibTeX$$aARTICLE
000811450 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811450 3367_ $$00$$2EndNote$$aJournal Article
000811450 520__ $$aWe report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov−Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov−de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization.
000811450 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000811450 588__ $$aDataset connected to CrossRef
000811450 7001_ $$0P:(DE-HGF)0$$aManolescu, A.$$b1
000811450 7001_ $$0P:(DE-HGF)0$$aNemnes, G. A.$$b2
000811450 7001_ $$0P:(DE-HGF)0$$aProst, W.$$b3
000811450 7001_ $$0P:(DE-Juel1)128631$$aSchubert, J.$$b4$$ufzj
000811450 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b5$$ufzj
000811450 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th.$$b6$$eCorresponding author$$ufzj
000811450 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.6b01840$$gVol. 16, no. 7, p. 4569 - 4575$$n7$$p4569 - 4575$$tNano letters$$v16$$x1530-6992$$y2016
000811450 8564_ $$uhttps://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.pdf$$yRestricted
000811450 8564_ $$uhttps://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.gif?subformat=icon$$xicon$$yRestricted
000811450 8564_ $$uhttps://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000811450 8564_ $$uhttps://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.jpg?subformat=icon-180$$xicon-180$$yRestricted
000811450 8564_ $$uhttps://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.jpg?subformat=icon-640$$xicon-640$$yRestricted
000811450 8564_ $$uhttps://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.pdf?subformat=pdfa$$xpdfa$$yRestricted
000811450 909CO $$ooai:juser.fz-juelich.de:811450$$pVDB
000811450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140272$$aForschungszentrum Jülich$$b0$$kFZJ
000811450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b4$$kFZJ
000811450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b5$$kFZJ
000811450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b6$$kFZJ
000811450 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000811450 9141_ $$y2016
000811450 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811450 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2014
000811450 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2014
000811450 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811450 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811450 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811450 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811450 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000811450 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811450 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811450 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811450 920__ $$lyes
000811450 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000811450 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000811450 980__ $$ajournal
000811450 980__ $$aVDB
000811450 980__ $$aUNRESTRICTED
000811450 980__ $$aI:(DE-Juel1)PGI-9-20110106
000811450 980__ $$aI:(DE-82)080009_20140620