001     811450
005     20210129223845.0
024 7 _ |a 10.1021/acs.nanolett.6b01840
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a WOS:000379794200086
|2 WOS
024 7 _ |a altmetric:9251797
|2 altmetric
024 7 _ |a pmid:27347816
|2 pmid
037 _ _ |a FZJ-2016-03922
082 _ _ |a 540
100 1 _ |a Heedt, S.
|0 P:(DE-Juel1)140272
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register
260 _ _ |a Washington, DC
|c 2016
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1468841261_23337
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov−Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov−de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Manolescu, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nemnes, G. A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Prost, W.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schubert, J.
|0 P:(DE-Juel1)128631
|b 4
|u fzj
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 5
|u fzj
700 1 _ |a Schäpers, Th.
|0 P:(DE-Juel1)128634
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.nanolett.6b01840
|g Vol. 16, no. 7, p. 4569 - 4575
|0 PERI:(DE-600)2048866-X
|n 7
|p 4569 - 4575
|t Nano letters
|v 16
|y 2016
|x 1530-6992
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.pdf
856 4 _ |y Restricted
|x icon
|u https://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.gif?subformat=icon
856 4 _ |y Restricted
|x icon-1440
|u https://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.jpg?subformat=icon-1440
856 4 _ |y Restricted
|x icon-180
|u https://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.jpg?subformat=icon-180
856 4 _ |y Restricted
|x icon-640
|u https://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.jpg?subformat=icon-640
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/811450/files/Heedt_adiabatic%20edge-NW-QPC_nanoletters.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:811450
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140272
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2014
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21