000811503 001__ 811503
000811503 005__ 20250129094230.0
000811503 0247_ $$2doi$$a10.1039/C6DT01298A
000811503 0247_ $$2ISSN$$a0300-9246
000811503 0247_ $$2ISSN$$a1364-5447
000811503 0247_ $$2ISSN$$a1470-479X
000811503 0247_ $$2ISSN$$a1472-7773
000811503 0247_ $$2ISSN$$a1477-9226
000811503 0247_ $$2ISSN$$a1477-9234
000811503 0247_ $$2WOS$$aWOS:000379593800025
000811503 0247_ $$2altmetric$$aaltmetric:8950451
000811503 0247_ $$2pmid$$apmid:27328131
000811503 037__ $$aFZJ-2016-03960
000811503 082__ $$a540
000811503 1001_ $$0P:(DE-HGF)0$$aPaschinger, W.$$b0$$eCorresponding author
000811503 245__ $$aBa-filled Ni–Sb–Sn based skutterudites with anomalously high lattice thermal conductivity
000811503 260__ $$aLondon$$bSoc.$$c2016
000811503 3367_ $$2DRIVER$$aarticle
000811503 3367_ $$2DataCite$$aOutput Types/Journal article
000811503 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1468929827_23340
000811503 3367_ $$2BibTeX$$aARTICLE
000811503 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811503 3367_ $$00$$2EndNote$$aJournal Article
000811503 520__ $$aNovel filled skutterudites BayNi4Sb12−xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni–Sn–Sb and in the quaternary Ba–Ni–Sb–Sn systems. Phase equilibria in the Ni–Sn–Sb system at 450 °C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba–Ni–Sn–Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the “rattling behaviour” consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10−6 K−1 for Ni4Sb8.2Sn3.8 and 13.8 × 10−6 K−1 for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers hardness values vary within the range from 2.6 GPa to 4.7 GPa. Severe plastic deformation via high-pressure torsion was used to introduce nanostructuring; however, the physical properties before and after HPT showed no significant effect on the materials thermoelectric behaviour.
000811503 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000811503 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000811503 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000811503 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000811503 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000811503 588__ $$aDataset connected to CrossRef
000811503 7001_ $$0P:(DE-HGF)0$$aRogl, G.$$b1
000811503 7001_ $$0P:(DE-HGF)0$$aGrytsiv, A.$$b2
000811503 7001_ $$0P:(DE-HGF)0$$aMichor, H.$$b3
000811503 7001_ $$0P:(DE-HGF)0$$aHeinrich, P. R.$$b4
000811503 7001_ $$0P:(DE-HGF)0$$aPuchegger, S.$$b5
000811503 7001_ $$0P:(DE-Juel1)144500$$aKlobes, B.$$b6
000811503 7001_ $$0P:(DE-HGF)0$$aReinecker, M.$$b7
000811503 7001_ $$0P:(DE-HGF)0$$aEisenmenger-Sitter, Ch.$$b8
000811503 7001_ $$0P:(DE-HGF)0$$aBroz, P.$$b9
000811503 7001_ $$0P:(DE-HGF)0$$aGiester, G.$$b10
000811503 7001_ $$0P:(DE-HGF)0$$aZehetbauer, M.$$b11
000811503 7001_ $$0P:(DE-HGF)0$$aRogl, P. F.$$b12
000811503 7001_ $$0P:(DE-HGF)0$$aMüller, H.$$b13
000811503 7001_ $$0P:(DE-HGF)0$$aBauer, E.$$b14
000811503 7001_ $$0P:(DE-Juel1)130706$$aHermann, Raphael$$b15
000811503 773__ $$0PERI:(DE-600)1472887-4$$a10.1039/C6DT01298A$$gVol. 45, no. 27, p. 11071 - 11100$$n27$$p11071 - 11100$$tDalton transactions$$v45$$x1477-9234$$y2016
000811503 8564_ $$uhttps://juser.fz-juelich.de/record/811503/files/c6dt01298a.pdf$$yRestricted
000811503 8564_ $$uhttps://juser.fz-juelich.de/record/811503/files/c6dt01298a.gif?subformat=icon$$xicon$$yRestricted
000811503 8564_ $$uhttps://juser.fz-juelich.de/record/811503/files/c6dt01298a.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000811503 8564_ $$uhttps://juser.fz-juelich.de/record/811503/files/c6dt01298a.jpg?subformat=icon-180$$xicon-180$$yRestricted
000811503 8564_ $$uhttps://juser.fz-juelich.de/record/811503/files/c6dt01298a.jpg?subformat=icon-640$$xicon-640$$yRestricted
000811503 8564_ $$uhttps://juser.fz-juelich.de/record/811503/files/c6dt01298a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000811503 909CO $$ooai:juser.fz-juelich.de:811503$$pVDB
000811503 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130706$$aForschungszentrum Jülich$$b15$$kFZJ
000811503 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000811503 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000811503 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000811503 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000811503 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000811503 9141_ $$y2016
000811503 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811503 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDALTON T : 2014
000811503 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811503 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811503 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811503 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811503 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000811503 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811503 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811503 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000811503 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811503 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000811503 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811503 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000811503 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000811503 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000811503 980__ $$ajournal
000811503 980__ $$aVDB
000811503 980__ $$aUNRESTRICTED
000811503 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000811503 980__ $$aI:(DE-Juel1)PGI-4-20110106
000811503 980__ $$aI:(DE-82)080009_20140620
000811503 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000811503 981__ $$aI:(DE-Juel1)PGI-4-20110106