001     811522
005     20210129223855.0
024 7 _ |a 10.1016/j.ymben.2016.06.003
|2 doi
024 7 _ |a 1096-7176
|2 ISSN
024 7 _ |a 1096-7184
|2 ISSN
024 7 _ |a WOS:000387984600006
|2 WOS
024 7 _ |a altmetric:9163319
|2 altmetric
024 7 _ |a pmid:27288926
|2 pmid
037 _ _ |a FZJ-2016-03979
082 _ _ |a 610
100 1 _ |a Kallscheuer, Nicolai
|0 P:(DE-Juel1)157678
|b 0
245 _ _ |a Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones
260 _ _ |a Orlando, Fla.
|c 2016
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1485259875_15336
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Biotechnologie 1
520 _ _ |a Corynebacterium glutamicum is an important organism in industrial biotechnology for the microbial production of bulk chemicals, in particular amino acids. However, until now activity of a complex catabolic network for the degradation of aromatic compounds averted application of C. glutamicum as production host for aromatic compounds of pharmaceutical or biotechnological interest. In the course of the construction of a suitable C. glutamicum platform strain for plant polyphenol production, four gene clusters comprising 21 genes involved in the catabolism of aromatic compounds were deleted. Expression of plant-derived and codon-optimized genes coding for a chalcone synthase (CHS) and a chalcone isomerase (CHI) in this strain background enabled formation of 35 mg/L naringenin and 37 mg/L eriodictyol from the supplemented phenylpropanoids p-coumaric acid and caffeic acid, respectively. Furthermore, expression of genes coding for a 4-coumarate: CoA-ligase (4CL) and a stilbene synthase (STS) led to the production of the stilbenes pinosylvin, resveratrol and piceatannol starting from supplemented phenylpropanoids cinnamic acid, p-coumaric acid and caffeic acid, respectively. Stilbene concentrations of up to 158 mg/L could be achieved. Additional engineering of the amino acid metabolism for an optimal connection to the synthetic plant polyphenol pathways enabled resveratrol production directly from glucose. The construction of these C. glutamicum platform strains for the synthesis of plant polyphenols opens the door towards the microbial production of high-value aromatic compounds from cheap carbon sources with this microorganism.
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vogt, Michael
|0 P:(DE-Juel1)143618
|b 1
700 1 _ |a Stenzel, Anton
|0 P:(DE-Juel1)166418
|b 2
700 1 _ |a Gätgens, Jochem
|0 P:(DE-Juel1)129023
|b 3
700 1 _ |a Bott, Michael
|0 P:(DE-Juel1)128943
|b 4
|u fzj
700 1 _ |a Marienhagen, Jan
|0 P:(DE-Juel1)144031
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.ymben.2016.06.003
|g Vol. 38, p. 47 - 55
|0 PERI:(DE-600)1471017-1
|p 47 - 55
|t Metabolic engineering
|v 38
|y 2016
|x 1096-7176
856 4 _ |u https://juser.fz-juelich.de/record/811522/files/1-s2.0-S1096717616300477-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811522/files/1-s2.0-S1096717616300477-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811522/files/1-s2.0-S1096717616300477-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811522/files/1-s2.0-S1096717616300477-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811522/files/1-s2.0-S1096717616300477-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811522/files/1-s2.0-S1096717616300477-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:811522
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143618
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166418
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129023
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128943
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144031
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|2 G:(DE-HGF)POF3-500
|v Innovative Synergisms
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METAB ENG : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b METAB ENG : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21