000811524 001__ 811524
000811524 005__ 20210129223856.0
000811524 0247_ $$2doi$$a10.1016/j.str.2016.04.007
000811524 0247_ $$2ISSN$$a0969-2126
000811524 0247_ $$2ISSN$$a1878-4186
000811524 0247_ $$2Handle$$a2128/11948
000811524 0247_ $$2WOS$$aWOS:000377782200020
000811524 0247_ $$2altmetric$$aaltmetric:8173985
000811524 0247_ $$2pmid$$apmid:27210286
000811524 037__ $$aFZJ-2016-03981
000811524 082__ $$a570
000811524 1001_ $$0P:(DE-HGF)0$$aVickery, Owen N.$$b0
000811524 245__ $$aStructural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors
000811524 260__ $$aLondon [u.a.]$$bElsevier Science$$c2016
000811524 3367_ $$2DRIVER$$aarticle
000811524 3367_ $$2DataCite$$aOutput Types/Journal article
000811524 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580997418_22019
000811524 3367_ $$2BibTeX$$aARTICLE
000811524 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811524 3367_ $$00$$2EndNote$$aJournal Article
000811524 520__ $$aG-protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins and one-third of all drug targets in humans. A number of recent studies have reported evidence for substantial voltage regulation of GPCRs. However, the structural basis of GPCR voltage sensing has remained enigmatic. Here, we present atomistic simulations on the δ-opioid and M2 muscarinic receptors, which suggest a structural and mechanistic explanation for the observed voltage-induced functional effects. The simulations reveal that the position of an internal Na+ ion, recently detected to bind to a highly conserved aqueous pocket in receptor crystal structures, strongly responds to voltage changes. The movements give rise to gating charges in excellent agreement with previous experimental recordings. Furthermore, free energy calculations show that these rearrangements of Na+ can be induced by physiological membrane voltages. Due to its role in receptor function and signal bias, the repositioning of Na+ has important general implications for signal transduction in GPCRs.
000811524 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000811524 536__ $$0G:(DE-Juel1)jics40_20130501$$aMOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20130501)$$cjics40_20130501$$fMOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS$$x1
000811524 588__ $$aDataset connected to CrossRef
000811524 7001_ $$0P:(DE-Juel1)156429$$aMachtens, Jan-Philipp$$b1$$ufzj
000811524 7001_ $$0P:(DE-HGF)0$$aTamburrino, Giulia$$b2
000811524 7001_ $$0P:(DE-HGF)0$$aSeeliger, Daniel$$b3
000811524 7001_ $$0P:(DE-HGF)0$$aZachariae, Ulrich$$b4$$eCorresponding author
000811524 773__ $$0PERI:(DE-600)2031189-8$$a10.1016/j.str.2016.04.007$$gVol. 24, no. 6, p. 997 - 1007$$n6$$p997 - 1007$$tStructure$$v24$$x0969-2126$$y2016
000811524 8564_ $$uhttps://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.pdf$$yOpenAccess
000811524 8564_ $$uhttps://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.gif?subformat=icon$$xicon$$yOpenAccess
000811524 8564_ $$uhttps://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811524 8564_ $$uhttps://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811524 8564_ $$uhttps://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811524 8564_ $$uhttps://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811524 909CO $$ooai:juser.fz-juelich.de:811524$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000811524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156429$$aForschungszentrum Jülich$$b1$$kFZJ
000811524 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000811524 9141_ $$y2016
000811524 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811524 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000811524 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000811524 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811524 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811524 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811524 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811524 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000811524 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000811524 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811524 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000811524 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811524 920__ $$lyes
000811524 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000811524 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000811524 9801_ $$aFullTexts
000811524 980__ $$ajournal
000811524 980__ $$aVDB
000811524 980__ $$aI:(DE-Juel1)ICS-4-20110106
000811524 980__ $$aI:(DE-82)080012_20140620
000811524 980__ $$aUNRESTRICTED
000811524 981__ $$aI:(DE-Juel1)IBI-1-20200312