Home > Publications database > Structural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors > print |
001 | 811524 | ||
005 | 20210129223856.0 | ||
024 | 7 | _ | |a 10.1016/j.str.2016.04.007 |2 doi |
024 | 7 | _ | |a 0969-2126 |2 ISSN |
024 | 7 | _ | |a 1878-4186 |2 ISSN |
024 | 7 | _ | |a 2128/11948 |2 Handle |
024 | 7 | _ | |a WOS:000377782200020 |2 WOS |
024 | 7 | _ | |a altmetric:8173985 |2 altmetric |
024 | 7 | _ | |a pmid:27210286 |2 pmid |
037 | _ | _ | |a FZJ-2016-03981 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Vickery, Owen N. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Structural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors |
260 | _ | _ | |a London [u.a.] |c 2016 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1580997418_22019 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a G-protein-coupled receptors (GPCRs) form the largest superfamily of membrane proteins and one-third of all drug targets in humans. A number of recent studies have reported evidence for substantial voltage regulation of GPCRs. However, the structural basis of GPCR voltage sensing has remained enigmatic. Here, we present atomistic simulations on the δ-opioid and M2 muscarinic receptors, which suggest a structural and mechanistic explanation for the observed voltage-induced functional effects. The simulations reveal that the position of an internal Na+ ion, recently detected to bind to a highly conserved aqueous pocket in receptor crystal structures, strongly responds to voltage changes. The movements give rise to gating charges in excellent agreement with previous experimental recordings. Furthermore, free energy calculations show that these rearrangements of Na+ can be induced by physiological membrane voltages. Due to its role in receptor function and signal bias, the repositioning of Na+ has important general implications for signal transduction in GPCRs. |
536 | _ | _ | |a 552 - Engineering Cell Function (POF3-552) |0 G:(DE-HGF)POF3-552 |c POF3-552 |f POF III |x 0 |
536 | _ | _ | |a MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS (jics40_20130501) |0 G:(DE-Juel1)jics40_20130501 |c jics40_20130501 |f MOLECULAR MODELLING OF BIFUNCTIONAL MEMBRANE TRANSPORT PROTEINS |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Machtens, Jan-Philipp |0 P:(DE-Juel1)156429 |b 1 |u fzj |
700 | 1 | _ | |a Tamburrino, Giulia |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Seeliger, Daniel |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Zachariae, Ulrich |0 P:(DE-HGF)0 |b 4 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.str.2016.04.007 |g Vol. 24, no. 6, p. 997 - 1007 |0 PERI:(DE-600)2031189-8 |n 6 |p 997 - 1007 |t Structure |v 24 |y 2016 |x 0969-2126 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/811524/files/1-s2.0-S0969212616300454-main.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:811524 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)156429 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-552 |2 G:(DE-HGF)POF3-500 |v Engineering Cell Function |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-4-20110106 |k ICS-4 |l Zelluläre Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ICS-4-20110106 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-1-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|