000811554 001__ 811554
000811554 005__ 20210129223900.0
000811554 0247_ $$2doi$$a10.1155/2016/2715196
000811554 0247_ $$2Handle$$a2128/11951
000811554 0247_ $$2WOS$$aWOS:000378771000001
000811554 0247_ $$2altmetric$$aaltmetric:9652728
000811554 0247_ $$2pmid$$apmid:27403166
000811554 037__ $$aFZJ-2016-03998
000811554 082__ $$a610
000811554 1001_ $$0P:(DE-HGF)0$$aPikhovych, Anton$$b0$$eCorresponding author
000811554 245__ $$aTranscranial Direct Current Stimulation Modulates Neurogenesis and Microglia Activation in the Mouse Brain
000811554 260__ $$aLondon [u.a.]$$bSage-Hindawi$$c2016
000811554 3367_ $$2DRIVER$$aarticle
000811554 3367_ $$2DataCite$$aOutput Types/Journal article
000811554 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1469105757_4121
000811554 3367_ $$2BibTeX$$aARTICLE
000811554 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811554 3367_ $$00$$2EndNote$$aJournal Article
000811554 520__ $$aTranscranial direct current stimulation (tDCS) has been suggested as an adjuvant tool to promote recovery of function after stroke, but the mechanisms of its action to date remain poorly understood. Moreover, studies aimed at unraveling those mechanisms have essentially been limited to the rat, where tDCS activates resident microglia as well as endogenous neural stem cells. Here we studied the effects of tDCS on microglia activation and neurogenesis in the mouse brain. Male wild-type mice were subjected to multisession tDCS of either anodal or cathodal polarity; sham-stimulated mice served as control. Activated microglia in the cerebral cortex and neuroblasts generated in the subventricular zone as the major neural stem cell niche were assessed immunohistochemically. Multisession tDCS at a sublesional charge density led to a polarity-dependent downregulation of the constitutive expression of Iba1 by microglia in the mouse cortex. In contrast, both anodal and, to an even greater extent, cathodal tDCS induced neurogenesis from the subventricular zone. Data suggest that tDCS elicits its action through multifacetted mechanisms, including immunomodulation and neurogenesis, and thus support the idea of using tDCS to induce regeneration and to promote recovery of function. Furthermore, data suggest that the effects of tDCS may be animal- and polarity-specific.
000811554 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000811554 588__ $$aDataset connected to CrossRef
000811554 7001_ $$0P:(DE-HGF)0$$aStolberg, Nina Paloma$$b1
000811554 7001_ $$0P:(DE-HGF)0$$aJessica Flitsch, Lea$$b2
000811554 7001_ $$0P:(DE-HGF)0$$aWalter, Helene Luise$$b3
000811554 7001_ $$0P:(DE-HGF)0$$aGraf, Rudolf$$b4
000811554 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b5$$ufzj
000811554 7001_ $$0P:(DE-HGF)0$$aSchroeter, Michael$$b6
000811554 7001_ $$00000-0001-8036-395X$$aRueger, Maria Adele$$b7
000811554 773__ $$0PERI:(DE-600)2573856-2$$a10.1155/2016/2715196$$gVol. 2016, p. 1 - 9$$pArticle ID 2715196$$tStem cells international$$v2016$$x1687-9678$$y2016
000811554 8564_ $$uhttps://juser.fz-juelich.de/record/811554/files/2715196.pdf$$yOpenAccess
000811554 8564_ $$uhttps://juser.fz-juelich.de/record/811554/files/2715196.gif?subformat=icon$$xicon$$yOpenAccess
000811554 8564_ $$uhttps://juser.fz-juelich.de/record/811554/files/2715196.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811554 8564_ $$uhttps://juser.fz-juelich.de/record/811554/files/2715196.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811554 8564_ $$uhttps://juser.fz-juelich.de/record/811554/files/2715196.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811554 8564_ $$uhttps://juser.fz-juelich.de/record/811554/files/2715196.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811554 909CO $$ooai:juser.fz-juelich.de:811554$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000811554 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000811554 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811554 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811554 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000811554 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000811554 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aClarivate Analytics Master Journal List
000811554 9141_ $$y2016
000811554 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ
000811554 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000811554 920__ $$lyes
000811554 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000811554 980__ $$ajournal
000811554 980__ $$aVDB
000811554 980__ $$aUNRESTRICTED
000811554 980__ $$aI:(DE-Juel1)INM-3-20090406
000811554 9801_ $$aFullTexts