000811602 001__ 811602
000811602 005__ 20210129223905.0
000811602 0247_ $$2Handle$$a2128/11961
000811602 037__ $$aFZJ-2016-04021
000811602 041__ $$aEnglish
000811602 1001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b0$$eCorresponding author$$ufzj
000811602 1112_ $$aNIC Symposium 2016$$cJülich$$d2016-02-11 - 2016-02-12$$wGermany
000811602 245__ $$aApproximate Validity of the Jarzynski Relation for Non-Gibbsian Initial States in Isolated Systems
000811602 260__ $$c2016
000811602 3367_ $$033$$2EndNote$$aConference Paper
000811602 3367_ $$2BibTeX$$aINPROCEEDINGS
000811602 3367_ $$2DRIVER$$aconferenceObject
000811602 3367_ $$2ORCID$$aCONFERENCE_POSTER
000811602 3367_ $$2DataCite$$aOutput Types/Conference Poster
000811602 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1469531487_12094$$xOther
000811602 520__ $$aSince the first suggestion of the Jarzynski equality many derivations of this equality have been presented in both, the classical and the quantum context. While the approaches and settings greatly differ from one toanother, they all appear to rely on the initial state being a thermal Gibbs state. Here, we present an investigation of work distributions in driven isolated quantum systems, starting off from pure states that are close to energy eigenstates of the initial Hamiltonian. We find that, for the nonintegrable system in quest, the Jarzynski equality is fulfilled to good accuracy.
000811602 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000811602 7001_ $$0P:(DE-HGF)0$$aSteinigeweg, Robin$$b1
000811602 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b2
000811602 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj
000811602 7001_ $$0P:(DE-HGF)0$$aCampisi, Michele$$b4
000811602 7001_ $$0P:(DE-HGF)0$$aGemmer, Jochen$$b5
000811602 8564_ $$uhttps://juser.fz-juelich.de/record/811602/files/KM_4.pdf$$yOpenAccess
000811602 8564_ $$uhttps://juser.fz-juelich.de/record/811602/files/KM_4.gif?subformat=icon$$xicon$$yOpenAccess
000811602 8564_ $$uhttps://juser.fz-juelich.de/record/811602/files/KM_4.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811602 8564_ $$uhttps://juser.fz-juelich.de/record/811602/files/KM_4.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811602 8564_ $$uhttps://juser.fz-juelich.de/record/811602/files/KM_4.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811602 8564_ $$uhttps://juser.fz-juelich.de/record/811602/files/KM_4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811602 909CO $$ooai:juser.fz-juelich.de:811602$$pVDB$$pdriver$$popen_access$$popenaire
000811602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b0$$kFZJ
000811602 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000811602 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000811602 9141_ $$y2016
000811602 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811602 920__ $$lyes
000811602 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000811602 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000811602 9801_ $$aFullTexts
000811602 980__ $$aposter
000811602 980__ $$aVDB
000811602 980__ $$aUNRESTRICTED
000811602 980__ $$aI:(DE-Juel1)JSC-20090406
000811602 980__ $$aI:(DE-82)080012_20140620