| Home > Publications database > Approximate Validity of the Jarzynski Relation for Non-Gibbsian Initial States in Isolated Systems > print |
| 001 | 811602 | ||
| 005 | 20210129223905.0 | ||
| 024 | 7 | _ | |a 2128/11961 |2 Handle |
| 037 | _ | _ | |a FZJ-2016-04021 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Jin, Fengping |0 P:(DE-Juel1)144355 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a NIC Symposium 2016 |c Jülich |d 2016-02-11 - 2016-02-12 |w Germany |
| 245 | _ | _ | |a Approximate Validity of the Jarzynski Relation for Non-Gibbsian Initial States in Isolated Systems |
| 260 | _ | _ | |c 2016 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
| 336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
| 336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1469531487_12094 |2 PUB:(DE-HGF) |x Other |
| 520 | _ | _ | |a Since the first suggestion of the Jarzynski equality many derivations of this equality have been presented in both, the classical and the quantum context. While the approaches and settings greatly differ from one toanother, they all appear to rely on the initial state being a thermal Gibbs state. Here, we present an investigation of work distributions in driven isolated quantum systems, starting off from pure states that are close to energy eigenstates of the initial Hamiltonian. We find that, for the nonintegrable system in quest, the Jarzynski equality is fulfilled to good accuracy. |
| 536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
| 700 | 1 | _ | |a Steinigeweg, Robin |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a De Raedt, Hans |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Michielsen, Kristel |0 P:(DE-Juel1)138295 |b 3 |u fzj |
| 700 | 1 | _ | |a Campisi, Michele |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Gemmer, Jochen |0 P:(DE-HGF)0 |b 5 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/811602/files/KM_4.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/811602/files/KM_4.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/811602/files/KM_4.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/811602/files/KM_4.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/811602/files/KM_4.jpg?subformat=icon-640 |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/811602/files/KM_4.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:811602 |p openaire |p open_access |p driver |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)144355 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)138295 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
| 914 | 1 | _ | |y 2016 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a poster |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a I:(DE-82)080012_20140620 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|