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Quantum Jarzynski relation for a Gibbsian initial state
The generalization of the Jarzynski relation (JR) (Jarzynski, PRL 78, 2690, 1997) for quantum systems must follow a proper “two-measurement scheme”
(campisi et al., RMP 83, 771, 2011). |f the system has initially an energy E;,,; before undergoing a force process A(t), then there is a conditional
probability P(Efi,|Ein;, A(t)) for the system to have an energy E;,, after the process. Let W = E¢;,, — E};,; denote the work associated with this

process and P(W) = P(Efm\Eim-,A(t))Pl-m-(Emi) the work probability. The average of the exponential of the work then reads

(e FW) =¥, e FW P(W), where S is the inverse temperature.

If the initial state is a Gibbsian state, i.e., P;,;(E;,;) = e PFini /7. . (Where Z;,,; = DiE, e~ BEini) the quantum JR follows immediately (Mukamel, PRL
90, 170604, 2003)
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where AF is the difference of the free energies of the initial and final state at the same inverse temperature 5. A special property of the

conditional probability is used in the derivation, namely ZEﬂnP(EfmlEmi,ﬂ(t)) =2k, P(Efin|Eini, A(t)) = 1.

Quantum Jarzynski relation for a non-Gibbsian initial state

A natural question arises whether or not the JR still holds if the initial state is a non-Gibbsian state, such as a state narrowly centered at energy
E; .? Obviously, a direct theoretical analysis is not feasible as it depends on the details of the work probability P(W). Therefore, we resort to the
numerical simulation on a quantum spin-1/2 ladder system to see if the JR still holds for non-Gibbsian states.
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LDOS Py, (E) for further analysis. We will investigate the case with a non-cyclic force process in the future.
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