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Quantum Jarzynski relation for a Gibbsian initial state
The generalization of the Jarzynski relation (JR) (Jarzynski, PRL 78, 2690, 1997) for quantum systems must follow a proper “two-measurement scheme”
(campisi et al., RMP 83, 771, 2011). If the system has initially an energy E;,,; before undergoing a force process A(t), then there is a conditional
probability P(Efi,|Ein;, A(t)) for the system to have an energy E;,, after the process. Let W = E¢;,, — E};,; denote the work associated with this

process and P(W) = P(Efm\Emi,A(t))Pmi(Emi) the work probability. The average of the exponential of the work then reads

(e FW) =¥, e FW P(W), where f is the inverse temperature.
If the initial state is a Gibbsian state, i.e., P;,;(E;,;) = e PFini /7. . (Where Z;,,; = DiE,: e ~BEini) the quantum JR follows immediately (Mukamel, PRL

90, 170604, 2003)

(e—ﬁw> — Z e_.B(Efin_Eini)P(Efin‘Eini’)[(t))e_ﬁEini/Zini —

EfinEini
where AF is the difference of the free energies of the initial and final state at the same inverse temperature 5. A special property of the
conditional probability is used in the derivation, namely ZEme(Efin|Eini,A(t)) =2k, P(Efin|Eini, A(t)) = 1.
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Quantum Jarzynski relation for a non-Gibbsian initial state

A natural question arises whether or not the JR still holds if the initial state is a non-Gibbsian state, such as a state narrowly centered at energy
E;. .? Obviously, a direct theoretical analysis is not feasible as it depends on the details of the work probability P(W). Therefore, we resort to the
numerical simulation on a quantum spin-1/2 ladder system to see if the JR still holds for non-Gibbsian states.

The Hamiltonian and force process
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The Initial state

The initial state is obtained by a Gaussian
projection on a random state |®) drawn
according to the Haar measure from the total
Hilbert space of the system,
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The corresponding inverse temperature for this
state is obtained from
- dS dlnn(E)
P=3E= a8
where n(E) is the density of states (DOS) for H.

Numerical procedure

0. Calculate the DOS n(E) for the initial
Hamiltonian H (Hams et al., PRE 67, 056702, 2003);
1. Generate the initial state |W(a, E;,,;,t = 0)) by

the Chebyshev polynomial algorithm (Tal-Ezer et
al., JCP 81, 3967, 1984);

2. Calculate the local density of states (LDOS)
P;,,; (E) for the initial state |W(a, E;,,;,t = 0));

3. Solve the time-dependent Schrodinger
equation for the Hamiltonian H + h(t) by a

second-order product formula algorithm (pe
Raedt, CPR 7, 1, 1987);

4. Calculate the LDOS Py, (E) for the final state
W(a,E/ ., t =2T));

int’
5. Repeat from step 3 for different process rates
Y = 1/2T (y, denotes the slowest rate used in the

simulation).

After the whole procedure, we collect the data
sets of DOS n(E), initial average energy (E);,;,
LDOS P;,,;(E), final average energy (E)¢;,, and

LDOS P, (E) for further analysis.
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Estimation of (e ") and e =AW’

As the simulation result for P;,,; (E) is not a 0-
function (this would require a = «), we need
to make an extra assumption to determine
the work probability. The assumption is to
relate Pr;, (E) and Py,;(E') by a simple
convolution rule

Prin(Efin) = | Pini(Eini)Pw(Efin — Eini )dEin;-
Then we have
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The simulation results of all the quantities
are shown in the figures.

Conclusions
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As our used force process is cyclic, which leads to AF = 0, we actually test
the equality (e PW) = 1. Extensive tests on the ladder system with size

2L ranging from 18 to 30 spins are performed. We find that, for the
nonintegrable system in quest, the Jarzynski relation is still fulfilled to
good accuracy even If the initial state is beyond the Gibbsian state.

We will investigate the case with a non-cyclic force process in the future.
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