000811603 001__ 811603
000811603 005__ 20210129223905.0
000811603 0247_ $$2Handle$$a2128/11962
000811603 037__ $$aFZJ-2016-04022
000811603 041__ $$aEnglish
000811603 1001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b0$$eCorresponding author$$ufzj
000811603 1112_ $$a26th IUPAP International Conference on Statistical Physics$$cLyon$$d2016-07-18 - 2016-07-22$$gSTATPHYS'26$$wFrance
000811603 245__ $$aSimulations for testing the validity of the Jarzynski relation for non-Gibbsian initial states in isolated quantum spin systems
000811603 260__ $$c2016
000811603 3367_ $$033$$2EndNote$$aConference Paper
000811603 3367_ $$2BibTeX$$aINPROCEEDINGS
000811603 3367_ $$2DRIVER$$aconferenceObject
000811603 3367_ $$2ORCID$$aCONFERENCE_POSTER
000811603 3367_ $$2DataCite$$aOutput Types/Conference Poster
000811603 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1470221019_15476$$xOther
000811603 520__ $$aQuantum spin systems provide rich opportunities to study properties of collective quantum behavior. There exist various numerical algorithms to simulate the real- and imaginary-time evolution of quantum spin systems, such as the second-order product formula and Chebyshev polynomial algorithms. These algorithms can easily simulate systems with up to 36 spins on current supercomputers. The system size is much larger than the size one can simulate with the exact diagonalization approach. We present large-scale simulation results for a spin ladder system to test the validity of the Jarzynski relation for non-Gibbsian initial states . Since the introduction of the Jarzynski equality many derivations of this equality have been presented in both, the classical and the quantum context. While the approaches and settings greatly differ from one to another, they all appear to rely on the initial state being a thermal Gibbs state. Here, we present an investigation of work distributions in driven isolated quantum systems, starting off from pure states that are close to energy eigenstates of the initial Hamiltonian. We find that, for the nonintegrable system in quest, the Jarzynski equality is fulfilled to good accuracy.
000811603 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000811603 7001_ $$0P:(DE-HGF)0$$aSteinigeweg, Robin$$b1
000811603 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b2
000811603 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3
000811603 7001_ $$0P:(DE-HGF)0$$aCampisi, Michele$$b4
000811603 7001_ $$0P:(DE-HGF)0$$aGemmer, Jochen$$b5
000811603 8564_ $$uhttps://juser.fz-juelich.de/record/811603/files/StatPhysposter.pdf$$yOpenAccess
000811603 8564_ $$uhttps://juser.fz-juelich.de/record/811603/files/StatPhysposter.gif?subformat=icon$$xicon$$yOpenAccess
000811603 8564_ $$uhttps://juser.fz-juelich.de/record/811603/files/StatPhysposter.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811603 8564_ $$uhttps://juser.fz-juelich.de/record/811603/files/StatPhysposter.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811603 8564_ $$uhttps://juser.fz-juelich.de/record/811603/files/StatPhysposter.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811603 8564_ $$uhttps://juser.fz-juelich.de/record/811603/files/StatPhysposter.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811603 909CO $$ooai:juser.fz-juelich.de:811603$$pVDB$$pdriver$$popen_access$$popenaire
000811603 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000811603 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000811603 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000811603 9141_ $$y2016
000811603 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811603 920__ $$lyes
000811603 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000811603 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000811603 980__ $$aposter
000811603 980__ $$aVDB
000811603 980__ $$aI:(DE-Juel1)JSC-20090406
000811603 980__ $$aI:(DE-82)080012_20140620
000811603 980__ $$aUNRESTRICTED
000811603 9801_ $$aFullTexts