001     811603
005     20210129223905.0
024 7 _ |a 2128/11962
|2 Handle
037 _ _ |a FZJ-2016-04022
041 _ _ |a English
100 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 26th IUPAP International Conference on Statistical Physics
|g STATPHYS'26
|c Lyon
|d 2016-07-18 - 2016-07-22
|w France
245 _ _ |a Simulations for testing the validity of the Jarzynski relation for non-Gibbsian initial states in isolated quantum spin systems
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1470221019_15476
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Quantum spin systems provide rich opportunities to study properties of collective quantum behavior. There exist various numerical algorithms to simulate the real- and imaginary-time evolution of quantum spin systems, such as the second-order product formula and Chebyshev polynomial algorithms. These algorithms can easily simulate systems with up to 36 spins on current supercomputers. The system size is much larger than the size one can simulate with the exact diagonalization approach. We present large-scale simulation results for a spin ladder system to test the validity of the Jarzynski relation for non-Gibbsian initial states . Since the introduction of the Jarzynski equality many derivations of this equality have been presented in both, the classical and the quantum context. While the approaches and settings greatly differ from one to another, they all appear to rely on the initial state being a thermal Gibbs state. Here, we present an investigation of work distributions in driven isolated quantum systems, starting off from pure states that are close to energy eigenstates of the initial Hamiltonian. We find that, for the nonintegrable system in quest, the Jarzynski equality is fulfilled to good accuracy.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Steinigeweg, Robin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
700 1 _ |a Campisi, Michele
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gemmer, Jochen
|0 P:(DE-HGF)0
|b 5
856 4 _ |u https://juser.fz-juelich.de/record/811603/files/StatPhysposter.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811603/files/StatPhysposter.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811603/files/StatPhysposter.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811603/files/StatPhysposter.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811603/files/StatPhysposter.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811603/files/StatPhysposter.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:811603
|p openaire
|p open_access
|p driver
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21