000811604 001__ 811604
000811604 005__ 20210129223905.0
000811604 0247_ $$2Handle$$a2128/11963
000811604 037__ $$aFZJ-2016-04023
000811604 041__ $$aEnglish
000811604 1001_ $$0P:(DE-HGF)0$$aNovotny, Mark$$b0$$eCorresponding author
000811604 1112_ $$a26th IUPAP International conference on Statistical Physics$$cLyon$$d2016-07-18 - 2016-07-22$$gSTATPHYS'26$$wFrance
000811604 245__ $$aDecoherence and Thermalization at Finite Temperatures for Quantum Systems
000811604 260__ $$c2016
000811604 3367_ $$033$$2EndNote$$aConference Paper
000811604 3367_ $$2BibTeX$$aINPROCEEDINGS
000811604 3367_ $$2DRIVER$$aconferenceObject
000811604 3367_ $$2ORCID$$aCONFERENCE_POSTER
000811604 3367_ $$2DataCite$$aOutput Types/Conference Poster
000811604 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1469531792_12098$$xOther
000811604 520__ $$aWe consider a quantum system $S$ with Hamiltonian ${\cal H}_S$ coupled via a Hamiltonian ${\cal H}_{SE}$ to a quantum environment $E$ with Hamiltonian ${\cal H}_E$. We assume the entirety $S+E$ is in a canonical-thermal state at an inverse temperature $\beta$. The entirety is a closed quantum system which evolves via the time-dependent Schr{\”o}dinger equation with Hamiltonian ${\cal H}={\cal H}_S+{\cal H}_E+\lambda{\cal H}_{SE}$ where $\lambda$ is the overall strength of the system-environment coupling. Using both large-scale simulations and perturbation theory calculations in $\lambda$, we have studied a measure $\sigma(t)$ for decoherence and $\delta(t)$ for thermalization of $S$. We performed large-scale parallel calculations on spin systems with up to $N=40$ spins in the entirety, with both real-time and imaginary-time quantum calculations. We performed perturbation theory calculations about $\lambda=0$ and fluctuations about the average for the canonical-thermal ensemble, for both $\sigma$ and $\delta$. We obtained closed form expressions for both $\sigma$ and $\delta$, in terms of the free energies of $S$ and $E$. Our perturbation theory calculations agree very well with our numerical calculations, at least as long as $\beta\lambda$ is small.
000811604 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000811604 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
000811604 7001_ $$0P:(DE-HGF)0$$aYuan, Shengjun$$b2
000811604 7001_ $$0P:(DE-HGF)0$$aMiyashita, Seiji$$b3
000811604 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b4
000811604 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b5$$ufzj
000811604 8564_ $$uhttps://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.pdf$$yOpenAccess
000811604 8564_ $$uhttps://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.gif?subformat=icon$$xicon$$yOpenAccess
000811604 8564_ $$uhttps://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811604 8564_ $$uhttps://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811604 8564_ $$uhttps://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811604 8564_ $$uhttps://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811604 909CO $$ooai:juser.fz-juelich.de:811604$$pdriver$$pVDB$$popen_access$$popenaire
000811604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000811604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b5$$kFZJ
000811604 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000811604 9141_ $$y2016
000811604 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811604 920__ $$lyes
000811604 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000811604 980__ $$aposter
000811604 980__ $$aVDB
000811604 980__ $$aUNRESTRICTED
000811604 980__ $$aI:(DE-Juel1)JSC-20090406
000811604 9801_ $$aFullTexts