001     811604
005     20210129223905.0
024 7 _ |a 2128/11963
|2 Handle
037 _ _ |a FZJ-2016-04023
041 _ _ |a English
100 1 _ |a Novotny, Mark
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 26th IUPAP International conference on Statistical Physics
|g STATPHYS'26
|c Lyon
|d 2016-07-18 - 2016-07-22
|w France
245 _ _ |a Decoherence and Thermalization at Finite Temperatures for Quantum Systems
260 _ _ |c 2016
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1469531792_12098
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a We consider a quantum system $S$ with Hamiltonian ${\cal H}_S$ coupled via a Hamiltonian ${\cal H}_{SE}$ to a quantum environment $E$ with Hamiltonian ${\cal H}_E$. We assume the entirety $S+E$ is in a canonical-thermal state at an inverse temperature $\beta$. The entirety is a closed quantum system which evolves via the time-dependent Schr{\”o}dinger equation with Hamiltonian ${\cal H}={\cal H}_S+{\cal H}_E+\lambda{\cal H}_{SE}$ where $\lambda$ is the overall strength of the system-environment coupling. Using both large-scale simulations and perturbation theory calculations in $\lambda$, we have studied a measure $\sigma(t)$ for decoherence and $\delta(t)$ for thermalization of $S$. We performed large-scale parallel calculations on spin systems with up to $N=40$ spins in the entirety, with both real-time and imaginary-time quantum calculations. We performed perturbation theory calculations about $\lambda=0$ and fluctuations about the average for the canonical-thermal ensemble, for both $\sigma$ and $\delta$. We obtained closed form expressions for both $\sigma$ and $\delta$, in terms of the free energies of $S$ and $E$. Our perturbation theory calculations agree very well with our numerical calculations, at least as long as $\beta\lambda$ is small.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 1
|u fzj
700 1 _ |a Yuan, Shengjun
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Miyashita, Seiji
|0 P:(DE-HGF)0
|b 3
700 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 5
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/811604/files/StatPhys16_v06.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:811604
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21