Decoherence and Thermalization at Finite Temperatures for Quantum Systems

Mark A. Novotny¹, Fenping Jin², Shengjun Yuan³, Seiji Miyashita⁴, Hans De Raedt⁵, and Kristel Michielsen^{2,6}

¹ Mississippi State University, ² Jülich Supercomputing Centre, ³ Radboud University, ⁴ University of Tokyo, ⁵ University of Groningen, ⁶ RWTH Aachen University

Introduction and Motivation

We study a general closed quantum entirety, considered to be a subsystem with Hamiltonian H_S , an environment or bath with Hamiltonian H_E , and a Hamiltonian with overall strength λ which couples S and E. The entirety S+E evolves via the time-dependent Schrödinger equation with Hamiltonian $H=H_0+\lambda H_{SB}=H_S+H_E+\lambda H_{SB}$. The dimension of the entirety is $D=D_SD_E$. We assume that the entirety is in the canonical-thermal-state ensemble at inverse temperature $\beta=1/T$ (with $k_B=\hbar=1$).

Methods

The reduced density matrix for S is $\tilde{\varrho}_S = Tr_E \, \varrho$, with elements given by Eq.(1). Our measure of decoherence $\sigma(t)$ is given by a function of the off-diagonal elements of $\tilde{\varrho}_S$ (in the basis where H_S is diagonal) as in Eq.(2), while our measure of thermalization $\delta(t)$ is given by a function of the diagonal elements as in Eq.(3). In Eq.(3) b(t) is a fitting parameter, and the superscripts on the energies stand for S or E.

The state $|\Psi_0\rangle$, given by Eq.(5), is a random infinite-temperature (β =0) state of the entirety S+E. The coefficients $d_{i,p}$ are complex Gaussian random numbers, and the normalization is given by Eq.(6). The canonical-thermal state is given by Eq.(7), and is a normalized pure state at a finite temperature, T=1/ β . All such states $|\Psi_{\beta}\rangle$ form the canonical-thermal-state ensemble.

The free energies for the entirety, S, and E are, respectively, $F(\beta)$, $F_S(\beta)$, and $F_E(\beta)$; ground-state degeneracies are g, g_S , g_E .

Perturbation Results

We have performed perturbation theory calculations for a general entirety, for small λ . The calculations use Eq.(4), and are performed over the entire canonical-thermal-state ensemble. The lowest order term has $\lambda H_{SE}=0$, an uncoupled but entangled entirety. After lengthy calculations, general expressions at long times for σ are obtained, Eq.(8), to be a function of the free energies at particular temperatures. The limit for σ for infinite temperature is in Eq.(9), and for very low temperatures in Eq.(10). A similar expression for the thermalization is presented as Eq.(11).

Computational Results

We have performed large-scale calculations with a ring of spin ½ particles, with the number of such particles $N=N_S+N_E$. Random interactions are chosen for H_E ($\Omega_{ij}\epsilon[-4/3,4/3]$) and H_{SE} ($\Delta_{ij}\epsilon[-4/3,4/3]$), and ferro- or antiferromagnetic (|J|=1) for H_S . Relaxation in time is shown in Fig.1, and time-or-disorder averages in Fig.2. Dependences on different N_E , N_S , λ , and β are shown in Figs.3-5. Comparisons with no adjustable parameters to Eq.(8) are in Figs.6,7, note different g_S values.

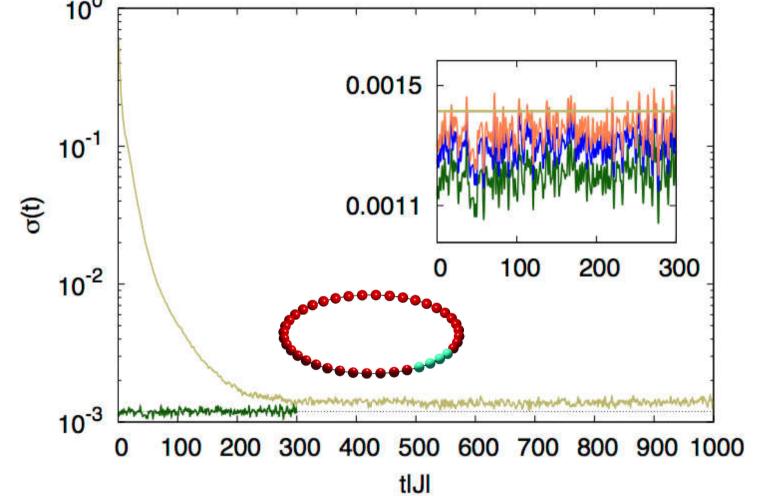


Fig. 1. N_S =4, N_E =22, $\beta |J|$ =0.9, λ =1 with initial states of **UDUDY** or **X**, with **X** and **Y** states from the appropriate

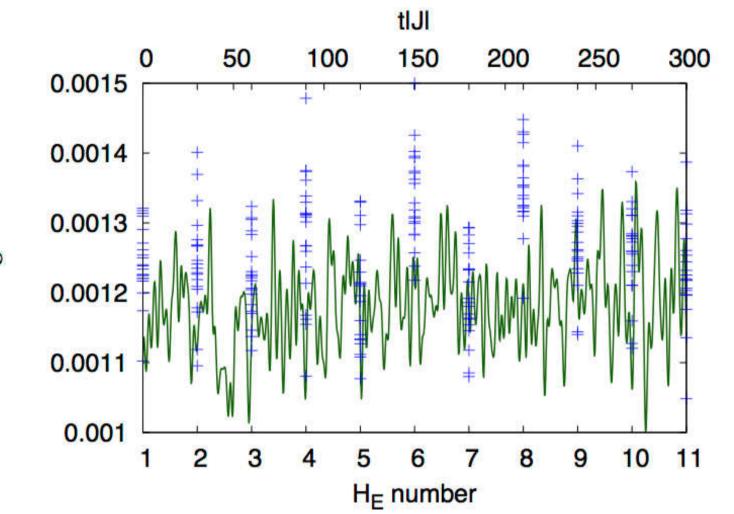


Fig. 2. N_S =4, N_E =22, $\beta |J|$ =0.9, λ =1 with an initial state X, showing results of averaging over time, H_E , and initial states from X.

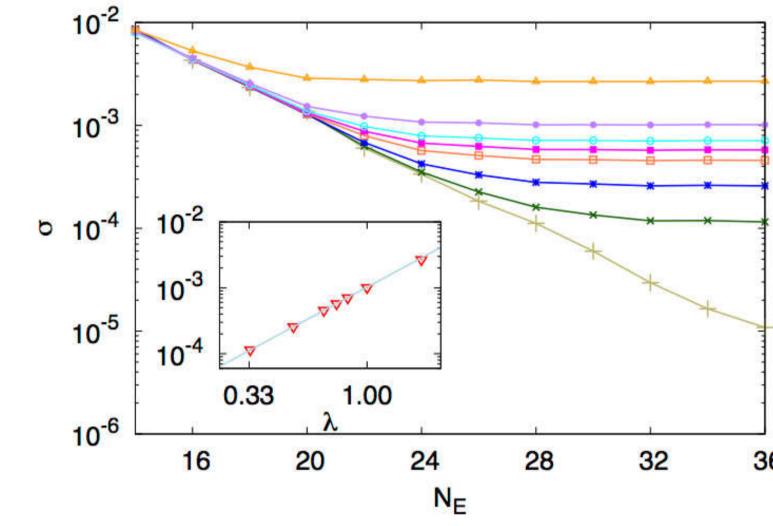


Fig. 3. N_S =4, $\beta |J|$ =0.9, with different values of N_E and λ . Inset has N_E =36 results.

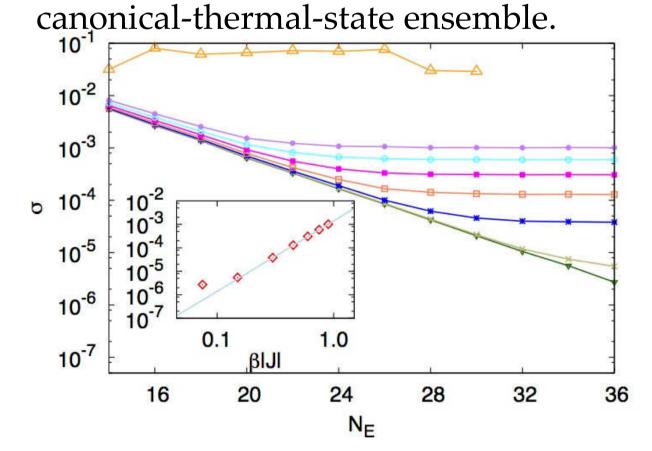


Fig. 4. N_S =4, λ =1 for different values for $\beta |J|$ and N_E . Inset are N_E =36 results.

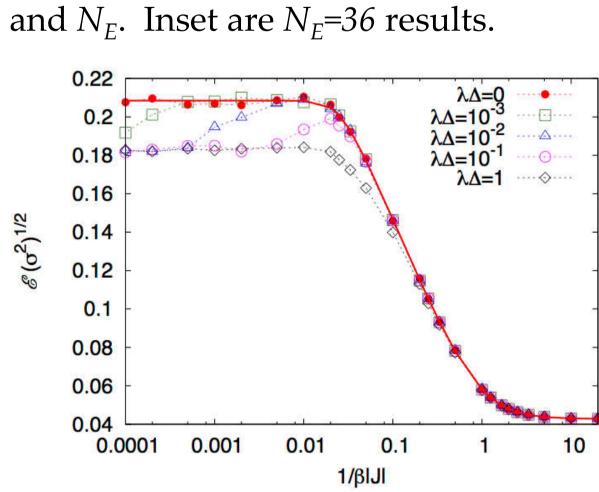


Fig. 6. N_E =8 (g_E =9), Ω=1, N_E =4 (ferro, J=1, g_S =5). Solid red line is from Eq.(8).

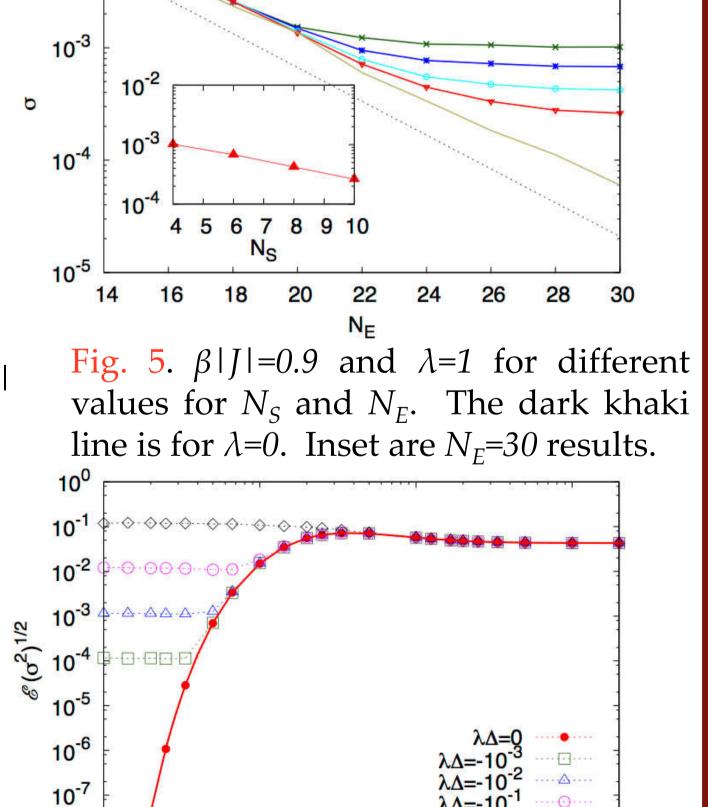
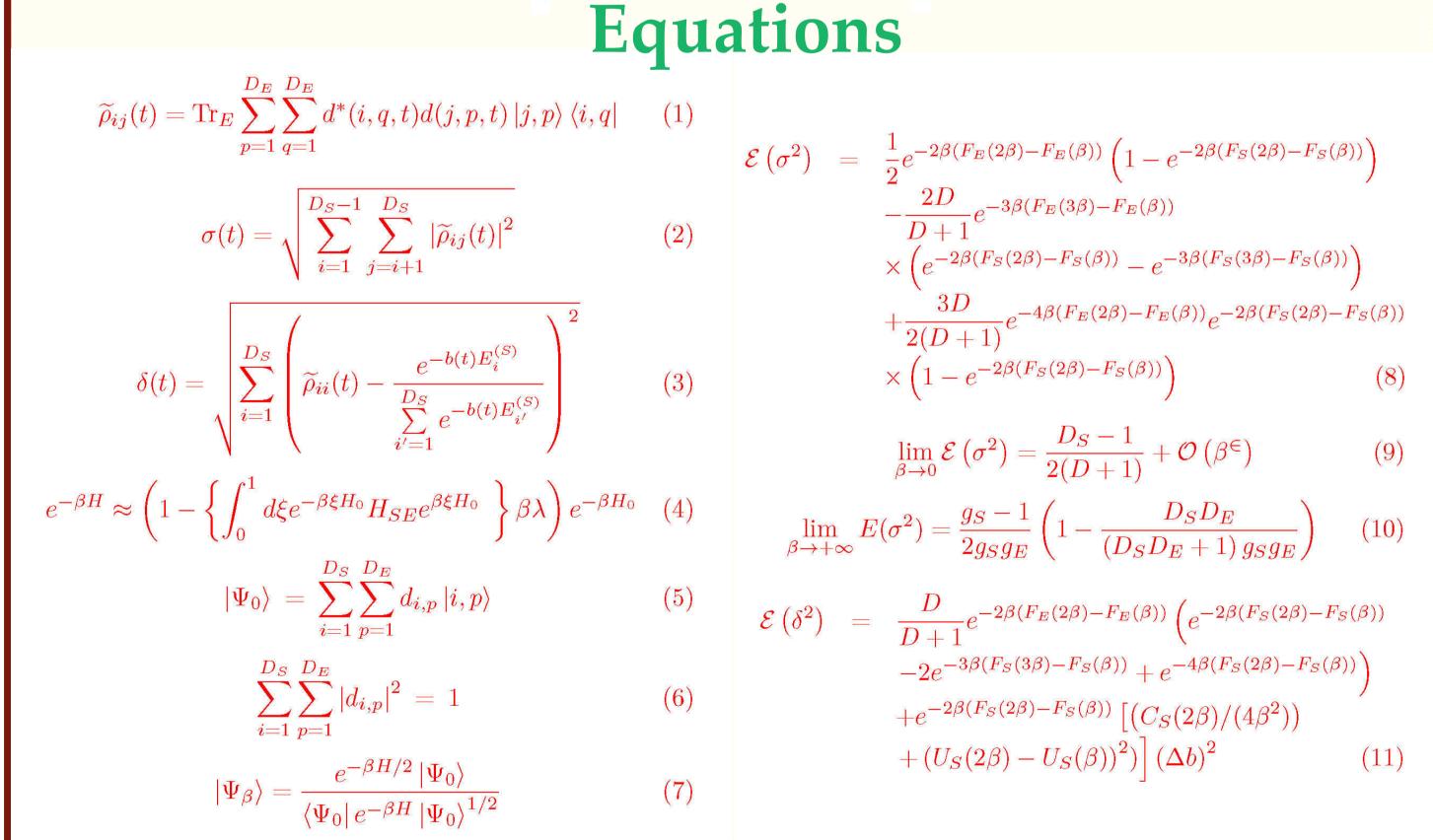


Fig. 7. N_E =8 (g_E =9), Ω =1, N_E =4 (antiferro, J=-1, g_S =1). Solid red line is from Eq.(8).

0.1

0.01



Conclusions

We have obtained analytical results for a decoherence measure σ and thermalization measure δ , within the canonical-thermal state ensemble [1]. With minimal, reasonable assumptions we obtain Eq.(8) and Eq.(11) for σ and δ , respectively. We performed large-scale real-time and imaginary-time Schrödinger equation simulations, elucidating and testing our results. Extremely good agreement between the analytical and computational calculation results were obtained, for example in Figs. 6,7.

Reference and Acknowledgements

[1] M.A. Novotny, F. Jin, S. Yuan, S. Miyashita, H. De Raedt, and K. Michielsen, Physical Review A, vol. 92, article 032110 [46 pages] (2016). The authors gratefully acknowledge the computing time granted by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition part of the supercomputer JUQUEEN at Forschungszentrum Jülich. MAN is supported in part by US National Science Foundation grant DMR-1206233.