000811677 001__ 811677
000811677 005__ 20220930130102.0
000811677 0247_ $$2doi$$a10.5194/acp-16-9381-2016
000811677 0247_ $$2ISSN$$a1680-7316
000811677 0247_ $$2ISSN$$a1680-7324
000811677 0247_ $$2Handle$$a2128/11979
000811677 0247_ $$2WOS$$aWOS:000381213300034
000811677 037__ $$aFZJ-2016-04063
000811677 082__ $$a550
000811677 1001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b0$$eCorresponding author
000811677 245__ $$aStratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations
000811677 260__ $$aKatlenburg-Lindau$$bEGU$$c2016
000811677 3367_ $$2DRIVER$$aarticle
000811677 3367_ $$2DataCite$$aOutput Types/Journal article
000811677 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1469794642_12553
000811677 3367_ $$2BibTeX$$aARTICLE
000811677 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811677 3367_ $$00$$2EndNote$$aJournal Article
000811677 520__ $$aStratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behavior of the Southern Hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003–2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA) Aqua satellite. We introduce a simple and effective approach, referred to as the “two-box method”, to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid-fall to mid-spring (April–October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90 %), followed by the Antarctic Peninsula (76 %), Kerguelen Islands (73 %), Tasmania (70 %), New Zealand (67 %), Heard Island (60 %), and other hotspots (24–54 %). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid-stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60 % with mean absolute errors of 4–5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low-level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation.
000811677 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000811677 588__ $$aDataset connected to CrossRef
000811677 7001_ $$0P:(DE-HGF)0$$aGrimsdell, Alison W.$$b1
000811677 7001_ $$0P:(DE-HGF)0$$aAlexander, M. Joan$$b2
000811677 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-16-9381-2016$$gVol. 16, no. 14, p. 9381 - 9397$$n14$$p9381 - 9397$$tAtmospheric chemistry and physics$$v16$$x1680-7324$$y2016
000811677 8564_ $$uhttps://juser.fz-juelich.de/record/811677/files/acp-16-9381-2016.pdf$$yOpenAccess
000811677 8564_ $$uhttps://juser.fz-juelich.de/record/811677/files/acp-16-9381-2016.gif?subformat=icon$$xicon$$yOpenAccess
000811677 8564_ $$uhttps://juser.fz-juelich.de/record/811677/files/acp-16-9381-2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811677 8564_ $$uhttps://juser.fz-juelich.de/record/811677/files/acp-16-9381-2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811677 8564_ $$uhttps://juser.fz-juelich.de/record/811677/files/acp-16-9381-2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811677 8564_ $$uhttps://juser.fz-juelich.de/record/811677/files/acp-16-9381-2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811677 8767_ $$92016-10-19$$d2016-10-19$$eAPC$$jZahlung erfolgt$$pacp-2016-341
000811677 909CO $$ooai:juser.fz-juelich.de:811677$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000811677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b0$$kFZJ
000811677 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000811677 9141_ $$y2016
000811677 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000811677 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811677 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811677 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2014
000811677 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000811677 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811677 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811677 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811677 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811677 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2014
000811677 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000811677 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811677 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811677 920__ $$lyes
000811677 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000811677 980__ $$ajournal
000811677 980__ $$aVDB
000811677 980__ $$aUNRESTRICTED
000811677 980__ $$aI:(DE-Juel1)JSC-20090406
000811677 9801_ $$aFullTexts
000811677 980__ $$aAPC