001     811701
005     20210129223917.0
024 7 _ |a 10.1021/nl502598s
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a WOS:000345723800038
|2 WOS
037 _ _ |a FZJ-2016-04085
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Gül, Ö.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Giant Magnetoconductance Oscillations in Hybrid Superconductor−Semiconductor Core/Shell Nanowire Devices
260 _ _ |a Washington, DC
|c 2014
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1470912131_13979
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance oscillations with an amplitude in the order of e2/h are observed. The oscillation amplitude is found to be larger by 2 orders of magnitude compared to the measurements of a reference sample with normal metal contacts. For the Nb-contacted core/shell nanowire the oscillation period corresponds to half a flux quantum Φ0/2 = h/2e in contrast to the period of Φ0 of the reference sample. The strongly enhanced magnetoconductance oscillations are explained by phase-coherent resonant Andreev reflections at the Nb-core/shell nanowire interface.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Günel, H. Y.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lüth, H.
|0 P:(DE-Juel1)128608
|b 2
700 1 _ |a Rieger, T.
|0 P:(DE-Juel1)141766
|b 3
700 1 _ |a Wenz, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Haas, F.
|0 P:(DE-Juel1)140174
|b 5
700 1 _ |a Lepsa, M.
|0 P:(DE-Juel1)128603
|b 6
700 1 _ |a Panaitov, G.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Grützmacher, D.
|0 P:(DE-Juel1)125588
|b 8
700 1 _ |a Schäpers, Th.
|0 P:(DE-Juel1)128634
|b 9
|e Corresponding author
773 _ _ |a 10.1021/nl502598s
|g Vol. 14, no. 11, p. 6269 - 6274
|0 PERI:(DE-600)2048866-X
|n 11
|p 6269 - 6274
|t Nano letters
|v 14
|y 2014
|x 1530-6992
856 4 _ |u http://pubs.acs.org/doi/abs/10.1021/nl502598s
856 4 _ |u https://juser.fz-juelich.de/record/811701/files/nl502598s.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811701/files/nl502598s.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811701/files/nl502598s.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811701/files/nl502598s.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811701/files/nl502598s.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811701/files/nl502598s.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:811701
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)141766
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156192
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)140174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128603
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128634
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2014
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)PGI-8-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21