001     811707
005     20210129223918.0
024 7 _ |a 10.1016/j.rse.2015.10.033
|2 doi
024 7 _ |a 0034-4257
|2 ISSN
024 7 _ |a 1879-0704
|2 ISSN
024 7 _ |a WOS:000376801000023
|2 WOS
037 _ _ |a FZJ-2016-04091
082 _ _ |a 050
100 1 _ |a Lievens, H.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Assimilation of SMOS soil moisture and brightness temperature products into a land surface model
260 _ _ |a Amsterdam [u.a.]
|c 2016
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1470059196_28380
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Soil Moisture and Ocean Salinity (SMOS) mission has the potential to improve the predictive skill of land surface models through the assimilation of its observations. Several alternate products can be distinguished: the observed brightness temperature (TB) data at coarse scale, indirect estimates of soil moisture (SM) through the inversion of the coarse-scale TB observations, and fine-scale soil moisture through the a priori downscaling of coarse-scale soil moisture. The SMOS TB products include observations over a large range of incidence angles at both H- and V-polarizations, which allows the merit of assimilating the full set of multi-angular/polarization observations, as opposed to specific sub-sets of observations, to be assessed. This study investigates the performance of various observation scenarios with respect to soil moisture and streamflow predictions in the Murray Darling Basin. The observations are assimilated into the Variable Infiltration Capacity (VIC) model, coupled to the Community Microwave Emission Modeling (CMEM) platform, using the Ensemble Kalman filter. The assimilation of these various observation products is assessed under similar realistic assimilation settings, without optimization, and validated by comparison of the modeled soil moisture and streamflow to in situ measurements across the basin. The best results are achieved from assimilation of the coarse-scale SM observations. The reduced improvement using downscaled SM is probably due to a lower number of observations, as a result of cloud cover effects on the downscaling method. The assimilation of TB was found to be a promising alternative, which led to improvements in soil moisture prediction approaching those of the coarse-scale SM assimilation
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a De Lannoy, G. J. M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Al Bitar, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Drusch, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dumedah, G.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hendricks-Franssen, Harrie-Jan
|0 P:(DE-Juel1)138662
|b 5
700 1 _ |a Kerr, Y. H.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tomer, S. K.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Martens, B.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Merlin, O.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Pan, M.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Roundy, J. K.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 12
700 1 _ |a Walker, J. P.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Wood, E. F.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Verhoest, N. E. C.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Pauwels, V. R. N.
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.1016/j.rse.2015.10.033
|g Vol. 180, p. 292 - 304
|0 PERI:(DE-600)1498713-2
|p 292 - 304
|t Remote sensing of environment
|v 180
|y 2016
|x 0034-4257
856 4 _ |u https://juser.fz-juelich.de/record/811707/files/1-s2.0-S003442571530184X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811707/files/1-s2.0-S003442571530184X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811707/files/1-s2.0-S003442571530184X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811707/files/1-s2.0-S003442571530184X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811707/files/1-s2.0-S003442571530184X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811707/files/1-s2.0-S003442571530184X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:811707
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REMOTE SENS ENVIRON : 2014
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b REMOTE SENS ENVIRON : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21