000811710 001__ 811710
000811710 005__ 20210129223920.0
000811710 0247_ $$2doi$$a10.2136/vzj2015.11.0144
000811710 0247_ $$2Handle$$a2128/11995
000811710 0247_ $$2WOS$$aWOS:000378332500004
000811710 0247_ $$2altmetric$$aaltmetric:9076253
000811710 037__ $$aFZJ-2016-04094
000811710 082__ $$a550
000811710 1001_ $$0P:(DE-HGF)0$$aCremer, Clemens J. M.$$b0$$eCorresponding author
000811710 245__ $$aSolute Transport in Heterogeneous Soil with Time-Dependent Boundary Conditions
000811710 260__ $$aMadison, Wis.$$bSSSA$$c2016
000811710 3367_ $$2DRIVER$$aarticle
000811710 3367_ $$2DataCite$$aOutput Types/Journal article
000811710 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1470059408_28385
000811710 3367_ $$2BibTeX$$aARTICLE
000811710 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811710 3367_ $$00$$2EndNote$$aJournal Article
000811710 520__ $$aWe investigate the effect of dynamic boundary conditions on solute transport in unsaturated, heterogeneous, bimodal porous media. Solute transport is studied with two-dimensional numerical flow and transport models for scenarios where either (i) solely infiltration or (ii) more realistic dynamic (infiltration–evaporation) boundary conditions are imposed at the soil surface. Travel times of solute are affected by duration and intensity of infiltration and evaporation events even when cycle-averaged inflow rates of the scenarios are identical. Three main transport mechanisms could be identified based on a criterion for the infiltration rate that is related to the hydraulic conductivity curves of the media. If, based on this criterion, infiltration rates are low, the transport paths for upward and downward transport do not differ significantly, and the breakthrough curves of solute are similar to the one obtained under stationary infiltration. If infiltration rates are moderate, travel paths deviate between upward and downward flow, leading to a trapping of solute and strong tailing of the breakthrough curves. If infiltration and evaporation rates are very high, lateral advective–diffusive transport can lead to very efficient and fast downward transport. Thus, solute breakthrough depends strongly on lateral flow paths enforced by the boundary conditions at the soil surface. If heterogeneity of the materials is not strong and the structure is tortuous, dynamic boundary conditions mainly lead to increased macrodispersion. We test simplified upscaled transport models based on stationary flow rates to estimate breakthrough curves and demonstrate how the transport mechanisms are captured in the model parameters
000811710 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000811710 588__ $$aDataset connected to CrossRef
000811710 7001_ $$0P:(DE-HGF)0$$aNeuweiler, Insa$$b1
000811710 7001_ $$0P:(DE-Juel1)129436$$aBechtold, Michel$$b2
000811710 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b3
000811710 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2015.11.0144$$gVol. 15, no. 6, p. 0 -$$n6$$p0 -$$tVadose zone journal$$v15$$x1539-1663$$y2016
000811710 8564_ $$uhttps://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.pdf$$yOpenAccess
000811710 8564_ $$uhttps://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.gif?subformat=icon$$xicon$$yOpenAccess
000811710 8564_ $$uhttps://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811710 8564_ $$uhttps://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811710 8564_ $$uhttps://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811710 8564_ $$uhttps://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811710 909CO $$ooai:juser.fz-juelich.de:811710$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000811710 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811710 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000811710 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2014
000811710 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811710 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811710 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811710 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811710 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000811710 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811710 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811710 9141_ $$y2016
000811710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129436$$aForschungszentrum Jülich$$b2$$kFZJ
000811710 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b3$$kFZJ
000811710 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000811710 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000811710 980__ $$ajournal
000811710 980__ $$aVDB
000811710 980__ $$aUNRESTRICTED
000811710 980__ $$aI:(DE-Juel1)IBG-3-20101118
000811710 9801_ $$aFullTexts