001     811710
005     20210129223920.0
024 7 _ |2 doi
|a 10.2136/vzj2015.11.0144
024 7 _ |2 Handle
|a 2128/11995
024 7 _ |2 WOS
|a WOS:000378332500004
024 7 _ |a altmetric:9076253
|2 altmetric
037 _ _ |a FZJ-2016-04094
082 _ _ |a 550
100 1 _ |0 P:(DE-HGF)0
|a Cremer, Clemens J. M.
|b 0
|e Corresponding author
245 _ _ |a Solute Transport in Heterogeneous Soil with Time-Dependent Boundary Conditions
260 _ _ |a Madison, Wis.
|b SSSA
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1470059408_28385
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a We investigate the effect of dynamic boundary conditions on solute transport in unsaturated, heterogeneous, bimodal porous media. Solute transport is studied with two-dimensional numerical flow and transport models for scenarios where either (i) solely infiltration or (ii) more realistic dynamic (infiltration–evaporation) boundary conditions are imposed at the soil surface. Travel times of solute are affected by duration and intensity of infiltration and evaporation events even when cycle-averaged inflow rates of the scenarios are identical. Three main transport mechanisms could be identified based on a criterion for the infiltration rate that is related to the hydraulic conductivity curves of the media. If, based on this criterion, infiltration rates are low, the transport paths for upward and downward transport do not differ significantly, and the breakthrough curves of solute are similar to the one obtained under stationary infiltration. If infiltration rates are moderate, travel paths deviate between upward and downward flow, leading to a trapping of solute and strong tailing of the breakthrough curves. If infiltration and evaporation rates are very high, lateral advective–diffusive transport can lead to very efficient and fast downward transport. Thus, solute breakthrough depends strongly on lateral flow paths enforced by the boundary conditions at the soil surface. If heterogeneity of the materials is not strong and the structure is tortuous, dynamic boundary conditions mainly lead to increased macrodispersion. We test simplified upscaled transport models based on stationary flow rates to estimate breakthrough curves and demonstrate how the transport mechanisms are captured in the model parameters
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Neuweiler, Insa
|b 1
700 1 _ |0 P:(DE-Juel1)129436
|a Bechtold, Michel
|b 2
700 1 _ |0 P:(DE-Juel1)129548
|a Vanderborght, Jan
|b 3
773 _ _ |0 PERI:(DE-600)2088189-7
|a 10.2136/vzj2015.11.0144
|g Vol. 15, no. 6, p. 0 -
|n 6
|p 0 -
|t Vadose zone journal
|v 15
|x 1539-1663
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/811710/files/vzj-15-6-vzj2015.11.0144.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:811710
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129436
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129548
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
|a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b VADOSE ZONE J : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21