000811743 001__ 811743
000811743 005__ 20240711085601.0
000811743 0247_ $$2Handle$$a2128/12027
000811743 0247_ $$2ISSN$$a1866-1793
000811743 020__ $$a978-3-95806-157-6
000811743 037__ $$aFZJ-2016-04110
000811743 041__ $$aGerman
000811743 1001_ $$0P:(DE-Juel1)136885$$aWillberg, Malte$$b0$$eCorresponding author$$gmale$$ufzj
000811743 245__ $$aGlaslotfügen von Festoxid-Brennstoffzellen durch Laseraufschmelzung$$f2012-05-21 - 2015-05-20
000811743 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016
000811743 300__ $$a99 S.
000811743 3367_ $$2DataCite$$aOutput Types/Dissertation
000811743 3367_ $$2ORCID$$aDISSERTATION
000811743 3367_ $$2BibTeX$$aPHDTHESIS
000811743 3367_ $$02$$2EndNote$$aThesis
000811743 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1470136766_3434
000811743 3367_ $$2DRIVER$$adoctoralThesis
000811743 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v329
000811743 502__ $$aUniversität Bochum, Diss., 2015$$bDr.$$cUniversität Bochum$$d2015
000811743 520__ $$aPlanar Solid Oxide Fuel Cells (SOFCs) are usually sealed and joined using glass solder. The sealing material needs to be electrically isolating, mechanically stable at working temperature and during thermal-cycling, and the thermal expansion coefficient needs to be adapted to the materials connected. Glass solder has evolved as the primary sealing material, since it serves the demands best. The sealing of SOFCs is done in a furnace. The sealing and joining temperature must not be significantly higher than the working temperature of the SOFC, otherwise it would get damaged. The choice of glass solders is therefore limited. Furthermore, furnace joining takes a lot of time. Aiming at an economical production, the application of a laser as a heat source for successful joining was examined. This was done to industrialize the SOFC, in the scope of an EU-project for the development of MMLCR=SOFCs (Working towards Mass Manufactured, Low Cost and Robust Solid Oxide Fuel Cell stacks). Without preparation, laser joining can theoretically be done in a few minutes, which bears the potential of cheaper joining. Within this thesis, it was examined how joining with a laser could be done with the same quality of bonds as in furnace joining. The glass solders for laser joining do not need to be the same as those for furnace joining. Thus, higher joining temperatures can be reached with a laser without damaging the SOFC. In this way, glass solders with higher transformation temperatures can be used. Such glass solders can have better properties regarding other demands. Joining of glass solder and steel with a laser was successfully done. The geometry of the steel frames of an SOFC is a big challenge for laser joining, since wetting by glass solder is hardly possible. Successful sealing with a laser also requires thicker steel sheets than those used in mass production.
000811743 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000811743 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000811743 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000811743 650_7 $$xDiss.
000811743 8564_ $$uhttps://juser.fz-juelich.de/record/811743/files/Energie_Umwelt_329.pdf$$yOpenAccess
000811743 8564_ $$uhttps://juser.fz-juelich.de/record/811743/files/Energie_Umwelt_329.gif?subformat=icon$$xicon$$yOpenAccess
000811743 8564_ $$uhttps://juser.fz-juelich.de/record/811743/files/Energie_Umwelt_329.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000811743 8564_ $$uhttps://juser.fz-juelich.de/record/811743/files/Energie_Umwelt_329.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000811743 8564_ $$uhttps://juser.fz-juelich.de/record/811743/files/Energie_Umwelt_329.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000811743 8564_ $$uhttps://juser.fz-juelich.de/record/811743/files/Energie_Umwelt_329.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000811743 909CO $$ooai:juser.fz-juelich.de:811743$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000811743 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000811743 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000811743 9141_ $$y2016
000811743 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136885$$aForschungszentrum Jülich$$b0$$kFZJ
000811743 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000811743 920__ $$lyes
000811743 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000811743 9801_ $$aFullTexts
000811743 980__ $$aphd
000811743 980__ $$aVDB
000811743 980__ $$aUNRESTRICTED
000811743 980__ $$aI:(DE-Juel1)IEK-1-20101013
000811743 981__ $$aI:(DE-Juel1)IMD-2-20101013