000811750 001__ 811750
000811750 005__ 20210129223925.0
000811750 0247_ $$2doi$$a10.1142/S1230161216500104
000811750 0247_ $$2ISSN$$a1230-1612
000811750 0247_ $$2ISSN$$a1573-1324
000811750 0247_ $$2ISSN$$a1793-7191
000811750 0247_ $$2WOS$$aWOS:000382850400003
000811750 037__ $$aFZJ-2016-04117
000811750 082__ $$a500
000811750 1001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b0$$eCorresponding author
000811750 245__ $$aComputer Simulation of Einstein-Podolsky-Rosen-Bohm Experiments
000811750 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2016
000811750 3367_ $$2DRIVER$$aarticle
000811750 3367_ $$2DataCite$$aOutput Types/Journal article
000811750 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1470209654_15477
000811750 3367_ $$2BibTeX$$aARTICLE
000811750 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811750 3367_ $$00$$2EndNote$$aJournal Article
000811750 520__ $$aWe review an event-based simulation approach which reproduces the statistical distributions of quantum physics experiments by generating detection events one-by-one according to an unknown distribution and without solving a wave equation. Einstein-Podolsky-Rosen-Bohm laboratory experiments are used as an example to illustrate the applicability of this approach. It is shown that computer experiments that employ the same post-selection procedure as the one used in laboratory experiments produce data that is in excellent agreement with quantum theory.
000811750 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000811750 588__ $$aDataset connected to CrossRef
000811750 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b1$$ufzj
000811750 773__ $$0PERI:(DE-600)2008114-5$$a10.1142/S1230161216500104$$gVol. 23, no. 02, p. 1650010 -$$n02$$p1650010 -$$tOpen systems & information dynamics$$v23$$x1793-7191$$y2016
000811750 909CO $$ooai:juser.fz-juelich.de:811750$$pVDB
000811750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b1$$kFZJ
000811750 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000811750 9141_ $$y2016
000811750 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811750 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPEN SYST INF DYN : 2014
000811750 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811750 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811750 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811750 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811750 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811750 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000811750 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811750 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000811750 980__ $$ajournal
000811750 980__ $$aVDB
000811750 980__ $$aUNRESTRICTED
000811750 980__ $$aI:(DE-Juel1)JSC-20090406