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Abstract: An array of analytical methods including surface area determination by gas adsorption

using the Brunauer, Emmett, Teller (BET) method, combustion analysis, XRD, ToF-SIMS, TEM and

impedance spectroscopy has been used to investigate the interaction of gadolinia doped ceria (GDC)

with hydrogen sulphide containing reducing atmospheres. It is shown that sulphur is incorporated

into the GDC bulk and might lead to phase changes. Additionally, high concentrations of silicon are

found on the surface of model composite microelectrodes. Based on these data, a model is proposed

to explain the multi-facetted electrochemical degradation behaviour encountered during long term

electrochemical measurements. While electrochemical bulk properties of GDC stay largely unaffected,

the surface polarisation resistance is dramatically changed, due to silicon segregation and reaction

with adsorbed sulphur.

Keywords: ceria; sulphur poisoning; SOFC anode; electrochemical impedance spectroscopy;

ToF-SIMS; microelectrodes; XRD; XPS; BET; TEM

1. Introduction

Improving solid oxide fuel cells (SOFCs) to a competitive technology requires a joint effort in

process engineering, manufacturing and materials science [1,2]. In the latter, important advances have

been made with the introduction of high performing mixed ionic electronic conductors (MIEC) as

cathode materials [1]. These perovskite-type materials like lanthanum strontium cobalt or cobalt iron

oxide (LSC or LSCF) have succeeded the triple phase boundary active lanthanum strontium manganite

as the electrode material of choice [3]. An analogous approach on the anode side of SOFCs may lead to

similar improvements in performance. Gadolinia doped cerium oxide (GDC) exhibits MIEC properties

in reducing atmospheres and, in combination with metallic current collectors, is considered a prime

candidate as a future alternative anode material. Furthermore, it has been shown that infiltration of

classical nickel/yttria stabilized zirconia (Ni/YSZ) ceramic-metal composite SOFC anodes with doped
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or undoped cerium oxide, or even complete substitution of YSZ, improves their resilience against

sulphur poisoning [4–14]. This property is highly sought after for enabling the commercialization

of SOFCs, where tolerance against hydrogen sulphide containing fuels like diesel reformate or bio

gas is an important requirement. Recent reviews concerning this topic can be found in Refs. [15,16].

In the case of Ni/YSZ, it is generally accepted that the nickel phase is quickly completely covered with

adsorbed sulphur, which also blocks the active triple phase boundary [15,17]. While this explanation

seems reasonable, a recent study showed that despite the high sulphur coverage of the Ni phase,

it retains its catalytic activity in large parts [11]. However, by introduction of the mixed conducting

ceria, the reactive site is extended onto the ceria surface, making Ni/ceria based cermets less prone to

sulphur poisoning [10,13].

Apart from sulphur poisoning on Ni, there are also studies, which also focus on the effects

of H2S on ceria. For example, a SOFC using a novel Cu/ceria anode was reported to be almost

insensitive to H2S concentrations of up to 450 ppm in the fuel. However, a slight drop in power density

compared to sulphide free fuel gas can be gleaned from the text. Visible long term degradation sets

in at concentrations of about 300 ppm H2S, which was associated with the formation of a cerium

oxysulphide phase: Ce2O2S [15,18]. Studying copper containing ceria H2S sorbents, it was found

that copper actually increases the bulk sulphur uptake of ceria and facilitates the reaction to cerium

oxysulphide by reduction of Ce4+ to Ce3+ [19]. Indeed, this mechanism has been proposed to explain

the reversible H2S poisoning of ceria infiltrated Ni/YSZ SOFC anodes, by ceria acting as a sulphur

scavenger. Furthermore, it was found that anodically polarised electrodes show less degradation

and recover faster than unpolarised ones [12]. Moreover, anodically polarised doped ceria electrodes

catalytic properties toward H2S oxidation [12,20]. This might reconciliate the seemingly contradictory

results published on the Cu/ceria system.

It seems like a logical next step to test Ni/GDC as a substitute for the traditional Ni/YSZ cermet

electrodes, which show severe degradation under operation with sulphur containing fuels [10,13,16,21,22].

However, a thorough understanding of the poisoning mechanisms of both Ni/YSZ and GDC is important

for an informed improvement strategy toward sulphur tolerant SOFC anodes [10–12,15,17,18,23,24].

In the present study, an array of analytical methods, including transmission electron microscopy

(TEM), BET surface area analysis, X-ray diffraction (XRD), time of flight secondary ion mass

spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), electrochemical impedance

spectroscopy (EIS) and combustion analysis, is used to characterize different aspects of the interaction

of hydrogen sulphide with GDC model systems in reducing atmospheres. This wealth of information

is used to formulate a tentative model explaining the multi-facetted electrochemical degradation

behaviour of GDC model composite electrodes, observed in long term electrochemical impedance

spectroscopy studies.

2. Experimental

2.1. Preparation of the Model Composite Electrodes

Counter electrodes were prepared by manually screen printing Ni/YSZ paste (Fuel Cell Materials,

Lewis Center, OH, USA) and subsequently Ni paste on the back side of polished YSZ (100) single

crystalline 1 ˆ 1 cm2 substrates with a thickness of 0.5 mm purchased from Crystec, Berlin, Germany.

The counter electrodes were fired at 300 ˝C for 30 min and sintered for 2 h at 1250 ˝C. Current collectors

consisting of 100 nm thin Pt films on a 5 nm thick Ti adhesion layer were both deposited by

magnetron sputtering (Bal-Tec, Balzers, Liechtenstein) onto the polished side of YSZ single crystals

with already prepared counter electrodes. Micro-patterning of the current collectors was done using

photolithography with subsequent Ar ion beam etching in a vacuum chamber. Afterwards, GDC

layers of 200 nm thickness were prepared by pulsed laser deposition (PLD) on top of these samples

with current collectors. PLD-targets were prepared from 10% or 20% Gd2O3 doped CeO2 (Treibacher,

Althofen, Austria), for the sake of brevity called GDC 10 and GDC 20, respectively. The rationale
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behind the choice of two different doping levels was to use the less degradation prone GDC 10 for

electrochemical measurements, while the higher concentration of oxygen vacancies in GDC 20 was

deemed beneficial for ion exchange experiments. However, in practice the difference between

the two materials turned out to be negligible. The deposition took place at 0.04 mbar oxygen

background pressure and the substrate temperature was usually about 750 ˝C, controlled by a

pyrometer (Heitronics, Wiesbaden, Germany). A Lambda COMPexPro 201F KrF excimer laser

(Coherent, Santa Clara, CA, USA) operating at λ = 248 nm with a pulse frequency of 5 Hz and a pulse

length of 50 ns was used to ablate the GDC target with an approximate fluence of about 1.5 J¨cm´2 on

the target. The distance between target and substrate was fixed at 6 cm. Micro-patterning of the

GDC layer was also done by photolithography and ion beam etching. Two types of model composite

electrodes were prepared in this manner: circular GDC electrodes with a grid shaped Ti/Pt current

collector, see Figure 1, and rectangular GDC electrodes with two interdigitated Ti/Pt current collectors,

see Figure 2.

 

Figure 1. (a) Optical micrograph of a circular Pt/GDC 10 composite microelectrode. The bright grid is

a 100 nm thick Pt current collector of 10 µm width and with 10 ˆ 10 µm2 holes beneath a 200 nm GDC

10 thin film; (b) Schematic cross sectional view of a Pt/GDC microelectrode setup wired for impedance

measurement; (c) Electrical impedance spectrum (squares) with data fitting (red line) to the equivalent

circuit shown. The medium frequency part is not considered in the data fitting, see Section 2.11.
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Figure 2. (a) Optical micrograph of GDC model composite microelectrodes (bright blue rectangles

with dashed white frame) on top of buried interdigitated Pt current collectors with a circuit diagram for

the measurements in across- and in-plane mode according to reference [25]. The Pt current collectors

are slightly larger than the GDC electrode for easier contacting (bright red rectangles). The layer

sequence and the placement of the counter electrode in the cross sectional view is analogous to

Figure 1a; (b) Measured data—shown as dots—and fits to the equivalent circuit model according

to reference [25]—shown as lines—for in- and across-plane measurements of a model composite

microelectrode with buried Pt current collectors. Both spectra are fitted simultaneously by one and the

same parameter set. The interdigitated current collectors had a width and spacing of both 30 µm and

a length of 980 µm with a total of 12 digits. Measurements were performed at 750 ˝C in humidified

~2.5% vol H2 in Ar, with a ratio of hydrogen to water of 1:1.

2.2. Preparation of the Porous Ni/GDC Electrodes

The porous Ni/GDC cermet electrodes were prepared by screen printing on both sides of a

polycrystalline YSZ electrolyte. Details of the process are given in reference [26].

2.3. Preparation of Macroscopic Polycrystals

Fine GDC 10 powder (Treibacher, Althofen, Austria) was cold isostatically pressed and sintered

at 1350 ˝C for 5 h with heating and cooling ramps of 2 ˝C per minute in ambient air. The sintered

polycrystals were cut to about 1.5 mm thickness and automatically polished down to a 1 µm diamond

paste finish (Struers, Ballerup, Denmark).

2.4. BET and Combustion Analysis

The specific surface area of powder samples was determined using automated BET adsorption

(Areamat, Jung, Viersen, Germany). The sulphur content of the powder samples was determined by

combustion analysis and consecutive infrared detection and quantification in a Leco CS 600 analyser

(San Jose, CA, USA).

2.5. X-ray Diffraction

Gracing incidence X-ray diffraction measurements were performed on a PANalytical Empyrean

machine (PANalytical, Almelo, The Netherlands) equipped with a Cu tube. On the primary beam path,
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a parallel beam mirror was used with a 0.04 rad soller collimator and a 0.5˝ divergence slit. On the

secondary side, a parallel plate collimator was used and a PiXcel detector in 0d mode. The scans were

taken with a fixed incidence angle of 2˝ from 10˝ to 100˝ with a step size of 0.03˝ in a continuous mode

with counting time 0.484 s/point. The measurements were repeated six times and summed later with

the HighScore software (PANalytical, Almelo, The Netherlands) [27].

2.6. Scanning Transmission Electron Microscopy

The specimens were analysed using scanning transmission electron microscopy (STEM).

The cross-sectional STEM samples were prepared using a focused ion beam (FIB) technique on a Strata

205 FIB workstation (FEI, Hillsboro, OR, USA). The STEM investigations using energy-dispersive X-ray

spectroscopy (EDS) analysis were performed on a field emission gun Zeiss Libra 200FE (Carl Zeiss,

Oberkochen, Germany) operated at 200 kV equipped with in-column corrected omega filter, an X-Flash

Energy Dispersive X-ray (EDX) detector (Bruker, Billerica, MA, USA) and a high-angle annular

dark-field, HAADF, detector (Fischione, Export, PA, USA). The EDS semi-quantitative analysis was

done using ESPRIT software from Bruker (Billerica, MA, USA).

2.7. Gases

Premixed gases of ca. 2.5% H2 in Ar (ARCAL 10) and 200 ppm H2S in ARCAL 10 were bought

from Air Liquide (Paris, France) in purities better than 99.99%. Dilution of the concentrated hydrogen

sulphide carrying gas was realized by analogue mass flow controllers. Except stated otherwise, the H2S

free ARCAL 10 was bubbled through deionized water at room temperature to achieve a water to

hydrogen ratio of about 1:1.

2.8. Diffusion Experiments

Concentration profiles of sulphur species in GDC 10 were measured using a TOF-SIMS V machine

(IONTOF, Muenster, Germany) in high current bunched mode, see e.g., [28,29]. The 34S signal was

used for evaluations on GDC thin film samples and normalized to the total secondary ion count to

enable comparison between different measurements.

The concentration profiles of samples exposed to a tracer species for a specified time can be

described by Equation (1) [30,31]:
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Symbol c in Equation (1) denotes the relative concentration of sulphur in the gas phase

(tracer fraction), cbg is the relative background concentration of the tracer, cgas is the relative tracer

concentration of the gas environment, x is the distance from the surface and t is the diffusion time;

h = k/D reflects the ratio of the surface exchange coefficient k and the diffusion coefficient D.

For macroscopic samples, the 34S signal was very low and the 32S data were evaluated instead.

To overcome the overlap of the 32S with the much more intense O2 signal, two Pearson VII peak

functions [32] were fitted to the profiles with a fixed spacing of 0.0177 u, i.e., the mass difference

between the two ions [29,33]. The results agree admirably with the 34S signal, but with a dramatically

decreased data scatter. The Pearson VII function was chosen empirically as it offered the best fit to

the data.

2.9. X-ray Photoelectron Spectroscopy

XPS spectra were collected using a monochromated 100W SPECS micro-focus 350 X-ray source

and an angle resolved PHOIBOS WAL analyser (SPECS, Berlin, Germany) with a detection angle of

20˝ to 80˝ relative to the surface normal. Prior to mounting, the samples were heated in air at 400 ˝C,



Materials 2016, 9, 649 6 of 23

and subsequently in vacuum at roughly 350 ˝C, to reduce the coverage with adventitious carbon.

Binding energies were calibrated by fixing the still detectable adventitious carbon peak at 285 eV.

2.10. Electrochemical Impedance Spectroscopy

Impedance spectra were recorded using an Alpha-A high-performance frequency analyser

(Novocontrol, Montabaur, Germany) in the frequency range of 1 MHz to 50 mHz with an AC signal of

10 mV root-mean-square. The model-composite electrode measurements were done in a symmetrically

heated three-terminal micro-contact setup, as described in detail in reference [34].

2.11. Impedance Data Evaluation on Model-Composite Microelectrodes

While in reducing atmospheres, GDC exhibits, to a certain degree, electronic conductivity [35];

this property is not sufficient to homogenously polarise 200 nm thin film electrodes made from pure

GDC of a diameter of more than a few microns. Therefore, to guarantee polarisation of the whole

microelectrode surface, an additional Pt current collector is applied beneath the GDC layer analogous

to reference [36], see Figure 1.

A typical measurement of an impedance spectrum of a 300 µm diameter electrode along with the

equivalent circuit to fit the data is shown in Figure 1c. Only the low frequency part from about 1 Hz

to 50 mHz was used to fit the data, which almost exclusively consists of the parallel connection of

the surface polarisation resistance Rsurf with the chemical capacitance Cchem [25,37,38]. The resulting

surface resistance Rsurf was normalized to the surface area of the circular microelectrodes.

To account for slightly non-ideal behaviour, the chemical capacitance was modelled by a constant

phase element CPE, with impedance

ZCPE “ 1

CPE piωqn (2)

From the constant phase element, the chemical capacitance Cchem, according to reference [39],

can be extracted by

Cchem “
´

R1´n
sur f CPEchem

¯
1
n

(3)

The medium frequency parts contain additional information, but those are not easily extracted

with this type of electrode [25] and the medium frequency range is thus not used in the fitting procedure.

To account for the high and medium frequency offset, a series resistance RHF is introduced.

A more sophisticated current collector geometry and equivalent circuit model also enables

interpretation of the features that deviate from this very simple equivalent circuit model [25].

This measurement technique is based on impedance spectroscopy on MIEC electrodes with rather

low electronic conductivity, by means of two comb-shaped, interdigitated current collectors.

These interdigitated electrodes allow two different ways of wiring, leading to in-plane and across-plane

current flow, respectively. A sketch of the measurement modes with an optical micrograph is shown in

Figure 2a. The two resulting impedance spectra (see Figure 2b) allow the additional extraction of ionic

and electronic conductivity of the GDC model-composite microelectrode. For an in depth treatment of

the theory behind this novel technique, please consult the original publication in reference [25].

To evaluate the data a fitting routine was written in the Python programming language using

the scipy [40] and lmfit packages [41]. It is essential that the two impedance spectra measured on

one microelectrode are analysed simultaneously by a single parameter set. In Figure 2b, a typical

simultaneous fit of an across- and an in-plane measurement is shown. The fitting is not perfect, most

likely because of invalid simplifications in the fitting model caused by the larger electrode size than

in the original reference [25]. However, the general trends are well captured and the results compare

reasonably to data recorded on smaller, and hence more ideal, circular microelectrodes or literature

values, see Table 1.
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Table 1. Comparison of material parameters of GDC 10 gathered on model-composite electrodes

with interdigitated current collectors, cf. reference [25], to circular model-composite electrodes or

literature values, respectively. The interdigitated current collectors had a width and spacing of

both 30 µm and a length of 980 µm, cf. Figure 2. The current collector for the circular composite

microelectrode was a grid of 10 µm width and 10 ˆ 10 µm2 holes, cf. Figure 1a. Both current

collectors were Pt buried beneath a 200 nm thick GDC layer. Measurements were performed at 750 ˝C

in ~2.5% vol H2/~2.5% vol H2O/balance Ar. Literature values are averaged for measurements in dry

10% vol H2 in Ar and pure H2 with 3% vol H2O [35].

Parameter Interdigitated Electrode Reference Data Source

Cchem (F/cm3) 330 292 Circular composite
microelectrode, this studyRsurf (Ω¨cm2) 21 7

σion (S/cm) 5.3 ˆ 10´2 6 ˆ 10´2
Extracted from reference [35]

σeon (S/cm) 4.2 ˆ 10´1 1.2 ˆ 10´1

3. Results and Discussion

In the following Section 3, experimental results gathered on different GDC model systems by

various analytical methods will be presented. These results will be used to explain the sulphur

poisoning behaviour of model composite GDC microelectrodes encountered in electrochemical

impedance measurements and will be summarized in Section 4.

3.1. Sulphur Diffusion Experiments

3.1.1. Composite Microelectrodes

In Figure 3a, a ToF-SIMS depth profile of a GDC composite microelectrode is shown, which has

been cathodically polarised at ´1 V in an atmosphere of humidified hydrogen (H2:H2O « 1:1) with

10 ppm H2S for 22 h at 750 ˝C. These rather harsh conditions were chosen to check whether or not

sulphur can be accommodated at an appreciable amount in the GDC lattice from the gas phase and

if a diffusion profile can be detected [42]. As a comparison, Figure 3b shows a depth profile of an

unpolarised neighbouring electrode. For better orientation, the depth profiles in Figure 3 are divided

in three parts roughly corresponding to the GDC layer of the composite microelectrode, the interface

region where the Pt current collector is located and the YSZ substrate. These regions are also visualized

in Figure 3c with the aid of a schematic view of the electrode and representative ion images.

The polarised electrode in Figure 3a shows that the 34S signal is increased by more than

three orders of magnitude when compared to the reference measurement in Figure 3b. This result

impressively shows that sulphur indeed can be incorporated into GDC electrochemically. The sulphur

signal runs perfectly parallel to the CeO signal, indicating that sulphur is only found in the GDC phase

rather than in the YSZ substrate or Pt current collector. The curious peak-shaped increases of the CeO

and 34S signal at the end of the interface region in Figure 3a are most likely due to shadowing effects

of a part of the Pt current collector, which also explains the drawn out interface region. With a factor of

about three, the reference measurement only shows a slightly increased sulphur signal in the GDC

phase when compared to the substrate. In both cases, no diffusion profile is measured; on the contrary,

the sulphur signal is constant throughout the whole depth of the 200 nm thick microelectrode.

Another interesting result of the ToF-SIMS experiments shown in Figure 3a,b, is that in both cases

a strong Si signal is detected right at the surface of the composite microelectrode, which quickly

attenuates deeper in the sample, apart from a small spike in the interface region. This silicon

agglomeration on the surface is not entirely unexpected and has been hinted at in the literature [4,43].

Consequences for the electrochemical properties of the electrodes will be discussed below.



Materials 2016, 9, 649 8 of 23

 

Figure 3. (a,b) ToF-SIMS depth profiles of Pt/GDC 10 composite microelectrodes after annealing in

an atmosphere of 2.5% vol H2 in Ar with a hydrogen to water ratio of 1:1 and 10 ppm H2S for 22 h

at 750 ˝C. (a) The electrode was additionally cathodically polarised at 1 V; (b) Depth profile of an

unpolarised neighbouring electrode. The recorded signals of the different species were normalized to

the total signal count to allow comparison between measurements; (c) Schematic visualization of the

assignment to electrode, interface and substrate region in the depth profiles in (a,b) accompanied by

cross sectional ion images of CeO, Pt and ZrO.

3.1.2. Macroscopic Polycrystals

As the experiments on model composite electrodes in Figure 3 showed, sulphur is incorporated

into GDC, but the diffusion coefficient at the monitored temperatures are too high to record a drop

in the concentration profiles in the 200 nm thin layers. Therefore, in an attempt to measure diffusion

coefficients of sulphur in GDC by means of ToF-SIMS, sulphur incorporation experiments were

performed on macroscopic GDC 10 polycrystals over several days of exposure. To increase the

rate of surface sulphur incorporation and to suppress possible back reactions with water [44,45],

a dry hydrogen atmosphere was chosen. The resulting depth profiles are plotted in Figure 4. In all

three samples, a significant increase of sulphur is detected in respect to a reference sample, which was

not subjected to a sulphur containing atmosphere. Likewise, every sample, except the reference, shows

a surface near enrichment region, highlighted with a rectangular box in Figure 4. The concentration

profiles, assuming a lateral one-dimensional diffusion experiment from a constant source, can be

described by Equation (1) [30,31].
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Figure 4. ToF-SIMS depth profiles of the normalized sulphur signal of GDC 10 polycrystals heat treated

at the specified temperature in an atmosphere of dry 2.5% vol H2 in Ar for 72 h. As a reference sample

an untreated GDC 10 polycrystal was used. The box highlights a surface enrichment region, which was

fitted to Equation (1); the results are given in Table 2.

Table 2. Apparent diffusion coefficients D and surface incorporation constants k for sulphur

incorporated into GDC 10 polycrystals in a dry ~2.5% vol H2 atmosphere in Ar with 10 ppm H2S

for specified times and temperatures. D and k, as well as the background concentration cbg were

evaluated using Equation (1) where applicable. For the uncovered sample at 857.7 ˝C, the background

concentration was estimated manually.

Pt Coverage Temperature (˝C) Diffusion Time (h) Species D (cm2/s) K (cm/s) cbg (Counts/Total Counts)

No

649.8 67.23
32S 6.2 ˆ 10´18 3.1 ˆ 10´14 4.5 ˆ 10´5

34S 1.0 ˆ 10´17 2.7 ˆ 10´16 2.4 ˆ 10´6

749.4 68.65
32S 5.6 ˆ 10´18 3.4 ˆ 10´14 3.8 ˆ 10´4

34S 7.5 ˆ 10´18 4.9 ˆ 10´16 1.3 ˆ 10´5

857.7 42.68
32S – – 1.7 ˆ 10´3

34S – – 1.2 ˆ 10´4

Yes

649.8 67.23
32S 6.0 ˆ 10´17 2.5 ˆ 10´15 3.6 ˆ 10´6

34S 1.5 ˆ 10´16 1.1 ˆ 10´16 1.2 ˆ 10´6

749.4 68.65
32S 4.7 ˆ 10´18 4.6 ˆ 10´15 1.4 ˆ 10´4

34S 4.5 ˆ 10´18 1.5 ˆ 10´16 1.6 ˆ 10´5

857.7 42.68
32S 7.7 ˆ 10´18 2.0 ˆ 10´14 8.0 ˆ 10´4

34S 8.0 ˆ 10´18 8.0 ˆ 10´16 6.0 ˆ 10´5

The resulting surface incorporation constants, the diffusion coefficients and the diffusion times

are listed in Table 2, with the results stemming from two sulphur isotopes measured simultaneously.

Strangely, the extracted diffusion coefficients for the different temperatures are identical within the

accuracy of the method. One might suspect surface space charges as a cause, however, in ceria their

decay lengths are usually in the range of about 1 to 5 nm depending on dopant concentration [46,47]. On the

other hand, the grain sizes of the samples are about 25 µm and therefore too large to explain the roughly

50 nm deep enrichment zone. Hence, it is reasonable to assume that the surface enrichment is caused

by a different mechanism and profiles do not simply reflect sulphur bulk diffusion. Anticipating the

results of Section 3.3, one might speculate that a phase change occurs at the surface. However, no

such indications could be found by X-ray diffraction for the polycrystalline bulk samples presented in

Figure 4.
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Deeper in the sample the concentration drop tapers off for all three sulphur enriched samples.

While the profile at the lowest temperature of 650 ˝C enters a region of slower decrease, the sample

at the intermediate temperature of 750 ˝C reaches a plateau. Unexpectedly, for the sample treated

at the highest temperature of 850 ˝C the concentration even increases slightly, which is hardly a real

effect but most likely due to a SIMS artefact. Nevertheless, it is obvious that the normalized sulphur

signal in the GDC bulk positively correlates with temperature. Judging from the decreasing trend in

the bulk region of the sample annealed at 650 ˝C, the bulk profiles for all samples might in fact be

small sections of even deeper diffusion profiles. The surprisingly high diffusivity of sulphur in the

ceria lattice measured here has indeed been predicted in a very recent theoretical study, where it was

found that the migration energy for a site exchange with an oxygen vacancy is actually very similar for

sulphur and oxygen [48].

Analogous measurements were performed with samples that were covered with porous Pt paste.

However, except a lower sulphur incorporation rate, likely due to the reduced free surface area,

the results exactly mirror the results for the uncovered samples and are also found in Table 2.

3.2. X-ray Photoelectron Spectroscopy

XPS spectra of GDC composite layers recorded after different measurement times in wet hydrogen

atmospheres are shown in Figure 5 along with data measured on a macroscopic GDC reference sample.

Except for the reference sample E and the as-deposited layer D, every measured sample exhibits

a strong peak associated with silicon on the GDC surface (highlighted with the boxes in Figure 5).

These results agree very well with the findings of the ToF-SIMS study (see Figure 3a,b). No clear

correlation between measurement times and silicon coverage is possible from the data available

so far, as samples A and C were measured in an asymmetric heating stage, while sample B was

symmetrically heated. No sulphur was detected on the surface in this XPS study, which is in agreement

with literature [42] and SIMS results, see Section 3.1, as surface sulphur diffuses into the GDC bulk at

elevated temperatures.
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A

Figure 5. XPS spectra of the surface species of different GDC 10 samples treated at 750 ˝C

in 2.5% vol H2 in Ar with a hydrogen to water ratio of 1:1 with intermediate exposure to a

maximum of 10 ppm H2S. A: model-composite microelectrode asymmetrically heated for 150 h;

B: model-composite microelectrode symmetrically heated for 51 days; C: model-composite

microelectrode asymmetrically heated for 140 h; D: Pristine model-composite microelectrode after PLD

preparation; E: Macroscopic GDC polycrystal. The boxes highlights signals associated with Si surface

species, the rest of the peaks can be attributed to Ce or Gd.
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3.3. X-ray Diffraction

A YSZ single crystal was coated on both sides with 200 nm GDC 20 layers with buried Pt current

collectors. To enrich the GDC film with sulphur by cathodic polarisation, a constant voltage of 1 V was

applied to the sample over two days in a humid hydrogen atmosphere with 10 ppm H2S, see sketch

in Figure 6a. Assuming an equal polarisation resistance of cathode and anode, the applied voltage

corresponds to an overpotential of about 400 mV at each electrode. The ToF-SIMS depth profile in

Figure 6b shows a significant enrichment in sulphur in the cathode, proving a successful implantation

step. In contrast, at the anode barely any sulphur signal is recorded. However, the sulphur signal at

the cathode is not evenly distributed laterally as shown in the top view ion image, plotted as an inset

in Figure 6b. Some spots appear to show a rather high sulphur incorporation activity, whereas other

regions show less sulphur uptake.

Figure 6. (a) Schematic cross sectional view and wiring of the electric sulphur implantation experiment.

Both sides of a YSZ single crystal were covered with a model composite Pt/GDC 20 electrode layer and

polarised for 48 h at 1 V at 750 ˝C in 2.5% vol H2 in Ar with a hydrogen to water ratio of 1:1; (b) ToF-SIMS

depth profiles of the normalized 34S signal of the anode and cathode after the implantation step.

The interface region refers to the overlap of Pt, GDC and YSZ signals as visualized in Figure 3c. The inset

shows a top view ion image of the inhomogeneous lateral distribution of the 34S signal; (c) Gracing

incidence X-ray diffraction patterns of anodic and cathodic Pt/GDC 20 layers. Reflexes associated with

Pt, GDC 20 and Ce2O2.546S, a cerium oxysulphide phase, are highlighted.
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In addition, both anode and cathode were characterized by gracing incidence X-ray diffraction

(GID-XRD) and the obtained diffractograms are compared in Figure 6c. As expected, the anode and the

cathode show peaks corresponding to GDC 20 and the Pt current collector. However, at the cathode

side, additional signals were recorded, which could be matched to a hexagonal cerium oxysulphide

phase, with Ce2O2.546S (powder diffraction file 01-087-0283) providing a marginally better match

than Ce2O2S (powder diffraction file 00-026-1085). The Ce2O2.546S phase has so far not been reported

in the context of SOFC research; however, Ce2O2S has been found at higher hydrogen sulphide

concentrations [15,49]. Both compounds contain Ce3+ reduced from Ce4+ of the CeO2 fluorite lattice,

additionally, XPS studies showed that adsorbed sulphur is incorporated into reduced ceria at elevated

temperatures [42,50,51]. The sulphidation of ceria is described, e.g., in Refs. [12,19,52,53], as

CeO2 ` 1

2
H2S ` 1

2
H2 Õ

1

2
Ce2O2S ` H2O (4)

Using the phase diagrams of the Ce-O-S system found in reference [49], the oxygen partial

pressure at an overpotential of 400 mV at the anode of our symmetrical sample corresponds to the

stability regime of CeO2, while at ´400 mV on the cathode side Ce2O2S is the most stable species.

Therefore, it is a reasonable assumption that it is indeed the increased Ce3+ concentration induced by

the cathodic polarisation that facilitates the sulphur incorporation, with the inverse effect true for the

anodic side.

3.4. Scanning Transmission Electron Microscopy

The cathodically polarised sulphur enriched GDC 20 layer (see Figure 6) was further investigated

by scanning transmission electron microscopy (STEM). Two different regions were imaged, one on

the open GDC surface (see Figure 7a–c), and a second one closer to the Pt current collector away

(see Figure 7e,f). In both cases, a thin near surface enrichment of sulphur is found in the corresponding

energy-dispersive X-ray spectroscopy (EDS) maps in Figure 7b,e. However, by overlaying the signals of

the Au/W cover layer with the Ce, Zr and Pt signals, it might be that this enrichment is located within

the Au layer sputtered on the sample during TEM preparation. Furthermore, the contrast was very

much enhanced to better visualize the sulphur enriched regions in the overlay images in Figure 7b,e,

while in the quantitative sulphur maps in Figure 7c,f the surface near accumulation is much less

pronounced. Nevertheless, areas of sulphur enrichment are also found within the GDC layer bulk,

which definitively cannot be caused by an artifact during TEM sample preparation and, moreover,

nicely mirror the result of the ToF-SIMS study in Figure 6b. These regions of high sulphur concentration

penetrate the GDC layer like veins and follow features visible in the electron image, highlighted by the

dotted areas in Figure 7a. From the quantitative EDS maps in Figure 7c,f, a maximum concentration of

about 5 wt. % sulphur can be estimated in the enriched regions. These findings indicate that pathways

with faster sulphur incorporation and diffusion exist within the GDC layer. It is known from the

literature that the electron and, consequently, the Ce3+ concentration is increased at grain boundaries

in ceria [46] and at ceria/YSZ interfaces [54], which might explain the sulphur enriched regions as

speculated in Section 3.3. However, further and higher resolved images will be necessary to confirm

this hypothesis.

3.5. BET and Sulphur Quantification

To quantify the sulphur uptake of GDC 10, a fine powder samples was annealed at 750 ˝C over

3 days in a wet hydrogen atmosphere with an H2S concentration of 10 ppm. A reference sample was

also treated analogously in a sulphur free atmosphere. Afterwards, the surface area was determined by

BET adsorption and the sulphur concentration by combustion and consecutive infrared quantification.

The total amount of sulphur found in the combustion analysis would equate to a surface coverage

of about 5%. However, the SIMS results presented in this study and XPS studies in literature [42,50,51]

strongly suggest that the sulphur was incorporated into the GDC bulk. Assuming equally sized
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spheres, a mean powder size was calculated from the BET measurement. The results are given in

Table 3. The half of the mean diameter of the powder of about 70 nm is well below the diffusion lengths

probed in the ToF-SIMS studies presented in this work, see Figures 3 and 4. Therefore, it is a reasonable

hypothesis that the sulphur is evenly distributed in the grain volume leading to a concentration of

roughly 350 mM. Assuming that sulphur is completely dissolved in the oxygen sub-lattice of cubic

GDC, this amount corresponds to a situation where 0.2% of all oxygen sites are being occupied by a

sulphur ion.

Figure 7. Scanning Transmission electron—angular dark field (STEM-ADF) micrographs and

corresponding EDS elemental maps of a model-composite Pt/GDC 20 electrode, which was sulphur

enriched by cathodic polarisation (see Figure 6). The gold and tungsten layers were applied as a

protective cover during TEM preparation. (a) STEM-ADF micrograph of the GDC 20 layer away from

Pt current collectors, the dotted areas correspond roughly to sulphur enriched zones; (b) EDS elemental

maps of the investigated area in (a), the bright green areas in the GDC layer correspond to sulphur

enriched regions; (c) Quantitative map (wt. %) of sulphur enriched regions in the part of the GDC layer

imaged in (a,b); (d) STEM-ADF micrograph of the GDC 20 layer close to the Pt current collector and

corresponding EDS elemental map in (e) and quantitative map of sulphur in (f), respectively.

Table 3. Specific BET surface areas, powder sizes and sulphur content of GDC 10 powder samples

treated for 72 h at 750 ˝C in a wet 2.5% vol H2 in Ar atmosphere, with a ratio of hydrogen to water

of 1:1. The powder size was calculated from the surface area by assuming equally sized spheres.

The volumetric sulphur concentration assumes homogeneously distributed sulphur in the GDC bulk.

Gas Phase H2S
Concentration (ppm)

BET Surface
Area (m2/g)

Powder
Size (nm)

Sulphur
Content (wt. %)

Sulphur
Concentration (mM)

0 6.114 135.2 < 3 ˆ 10´3 < 68

10 5.947 139.0 1.6 ˆ 10´2 ˘ 3 ˆ 10´3 360

3.6. Impedance Spectroscopy

3.6.1. Circular Composite Microelectrodes

In Figure 8, the long-term evolutions of the chemical capacitance and the surface resistance

of a circular GDC/Pt model-composite microelectrode exposed to different hydrogen sulphide

concentrations are plotted. Since numerous microelectrodes are present on one sample, different
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experiments were conducted on the same sample but on different electrodes. Therefore, several axis

interrupts are shown and explained in the figure caption.
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Figure 8. Evolution of chemical capacitance and surface resistance during a long-term measurement of

a 300 µm diameter Pt/GDC 10 circular model-composite microelectrode at 750 ˝C. The atmosphere

was 2.5% vol H2 in Ar with a hydrogen to water ratio of 1:1; the H2S content is plotted in the bottom

diagram. In the shaded region, labelled A, the plotted data stem from a different electrode on the

same but pristine sample. The data in regions B, C and D were all recorded on the same electrode.

During the first break in the time-axis, labelled 1, the sample was exposed to 10 ppm H2S for a week.

During break 2, the electrode was polarised at +0.2 V for 10 days. During break 3, measurements

were paused for a week at room temperature. The dotted blue line in the resistance—time plot is an

extrapolation of the linear degradation encountered on the pristine sample plotted in region A.

Region A

The shaded area A represents data taken on the pristine sample, but on a different electrode than

in the rest of the plot. While the chemical capacitance stays constant, the surface resistance shows very

fast and linear degradation in the first few hours of measurement (please note the different scaling

in x- and y-axes in the resistance plot in Figure 8). In the very beginning, the surface resistance was

measured to be below 5 Ω¨cm2, indicating a highly active GDC surface for hydrogen oxidation [4].

However, it degrades with a rate of roughly 0.7 Ω¨cm2 per hour and its extrapolation is shown as a

blue dotted line in the entire resistance plot. Experiments on other pristine samples showed a very

similar behaviour with degradation rates ranging between 0.3 and 1 Ω¨cm2 per hour. In accordance

with the ToF-SIMS and XPS results this degradation behaviour can readily be explained by an increase

of the Si coverage of the surface. The source of the Si might be the quartz parts of the setup [43],

the GDC itself [4], or the YSZ electrolyte [55,56].

Region B

During the first axis break, labelled “1” in Figure 8, several experiments were conducted,

including the hydrogen sulphide exposure for the SIMS study presented in Figure 3. This totalled

to an exposure of 10 ppm H2S in the feed gas for about a week. However, despite this history the

extrapolated surface resistance degradation from region A serves as a remarkably good estimate for

the values measured several weeks later. This hints that the underlying degradation process is largely

independent of the sulphide gas concentration and a very long-scale process at 750 ˝C in wet hydrogen
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atmospheres. This finding is again in agreement with the postulated Si poisoning, which is proposed

as an explanation.

Upon exposure to H2S the surface resistance reacts with a fast almost step-like increase followed

by an increased degradation rate of about 6 and 9 Ω¨cm2/h for 2 or 5 ppm H2S, respectively. As soon

as the H2S supply is switched off, there is again a step-like decrease in surface resistance followed by a

slower recovery phase. Whether or not there is an additional—H2S-triggered—irreversible increase in

surface resistance is hard to evaluate from the available data due to the long time scale of the processes

at 750 ˝C. However, it is immediately obvious that there is no pronounced quantitative difference

in the behaviour of the surface resistance between an exposure to 2 or 5 ppm H2S, except a slightly

steeper step and marginally faster degradation for the higher concentration. Very similar behaviour

was found in a study on sulphur sorbents based on ceria: The weight change of a ceria powder upon

exposure to sulphur qualitatively mirrors the time dependence of the surface resistance in the present

study [19]. Additionally, in a different study, it has been shown that the oxidation of methane on a

GDC catalyst can be promoted by sulphur adsorption on ceria [53]. In both works the interaction

of H2S with ceria was found to be subdivided into a fast and a slow process. The fast process has

conclusively been ascribed to sulphur adsorption, while the slow process has been correlated with

dissolution of sulphur into the bulk and possibly oxysulphide formation. In XPS studies dealing with

hydrogen sulphide adsorption on reduced ceria thin films, it was found that at temperatures exceeding

600 K, only dehydrogenated sulphur is adsorbed to the surface and also bonds to surface oxygen

vacancies [50], which excellently explains the fast increase in the surface resistance.

In Figure 9a the long term evolution of the polarisation resistance, normalized to the projected

surface area, of a porous Ni/GDC 10 electrode in a wet hydrogen atmosphere at 780 ˝C is plotted.

When comparing Figure 9a to Figure 9b, where an excerpt of region B in Figure 8 of a dense model

composite electrode during a sulphur poisoning experiment is shown, it is immediately obvious how

qualitatively similar both curves are. In studies on porous anodes, the resistance increase upon sulphur

poisoning is sometimes ascribed to the metallic Ni current collector phase [11,57]. Additionally, changes

in gas diffusion have also been suggested as a cause, due to a crystallographic phase transition and

corresponding volume change in GDC [12], which would also have an effect on the polarisation

resistance. However, due to the well-defined surface geometry and the absence of any metal/gas

interfaces in the model composite electrode, such effects can be excluded here. Therefore, it is clearly

shown here that the surface resistance of GDC also exhibits a pronounced sensitivity to H2S in the

gas phase.

 

Figure 9. Long term evolution of the polarisation resistance of (a) a porous Ni/GDC 10 electrode

at 780 ˝C normalized to the projected surface area and (b) a 300 µm diameter Pt/GDC 10 circular

model-composite microelectrode of 200 nm thickness at 750 ˝C. The graph in (b) is a magnification of a

feature in Figure 8 region B in the polarisation resistance plot. The atmosphere in (a,b) was 2.5% vol H2

in Ar with a hydrogen to water ratio of 1:1. The duration and the concentration of the hydrogen

sulphide poisoning phases are highlighted in the graphs.
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Between the pristine electrode data in area A in Figure 8 and the data shown in area B, the chemical

capacitance exhibits a difference by a factor of about two. This difference might partly be explained

by a different thickness of the two electrodes, caused by inhomogeneous pulsed laser deposition

as indicated by a colour gradient visible across the sample. Additionally, impurity segregation to

the grain boundaries [46] would take place during the initial stages of a long term measurement.

This would cause a drop in total ionic conductivity and subsequently a reduced polarisation of

the GDC layer above the Pt current collectors in the later stages of the experiment [25] (see also

Section 3.6.2). However, besides this, the chemical capacitance stays remarkably constant during

the whole measurement cycle, with marginally higher levels during H2S poisoning. The proposed

sulphur surface coverage likely changes the concentration of Ce3+ and OH groups on the surface,

which were identified to cause a surface-related capacitance on ceria in reducing conditions [37,58].

Additionally, the H2S premix is added as a dry gas into the humid hydrogen stream to avoid dissolution

of the sulphide in the water of the humidifier and a slight drop in oxygen partial pressure is the

consequence, which also leads to an increase in the chemical capacitance [37].

Region C

During the second axis break, labelled “2” in Figure 8, the sample was anodically polarised

at 0.2 V for 10 days. The chemical capacitance is again unaffected by this treatment, but the surface

resistance dropped by roughly a factor of 3. However, after a short nonlinear increase, the surface

resistance settles on a degradation rate of 4 Ω¨cm2 per hour. It has been demonstrated in Figure 6

that anodic polarisation protects GDC from sulphur incorporation. Indeed, it has been proposed that

anodic current actively removes dissolved sulphur in doped ceria [12,20]. It is thus reasonable to

assume that at least the surface region has been cleaned from absorbed sulphur by a combination of

the long exposure to a H2S free atmosphere and the anodic bias. Accepting this interpretation, one

could further speculate that the subsequent fast increase in resistance corresponds to a redistribution

from sulphur in the GDC bulk to the surface, which has been reported in an XPS study on reduced

ceria [51]. The extrapolated surface degradation from the pristine electrode, plotted as a blue dotted

line in Figure 8, now overestimates the measured data; however, due to the previous polarisation

treatment these values might not be comparable.

Region D

The last axis break, labelled “3” in Figure 8, marks pause for one week during which the sample

was cooled to room temperature, after which the same electrode was reheated and measured further.

The surface resistance starts with a slow decrease over 30 h, the absolute value of about 850 Ω¨cm2

matches the downward sloping end of region B. This shows that the anodic polarisation caused

no long-lasting improvement of the total surface resistance. The H2S poisoning phases once again

show no proportionality between surface resistance increase and the sulphide concentrations. To the

contrary, the poisoning effect plateaus on a similar level of about 1400 Ω¨cm2, especially for 5 and

10 ppm H2S in the feed gas. Interestingly, this plateau is lower than for the maximum resistance

during the poisoning experiments in region B of Figure 8. There is, however, a clear difference in the

transient behaviour prior to reaching this plateau: The time to reach this resistance plateau increasingly

shortens with higher H2S concentration and at 10 ppm almost no intermediate data points are resolved.

After turning off the H2S supply, the surface resistance recovers and quickly reaches a plateau of about

1100 Ω¨cm2. This behaviour is again in contrast to the experiments shown in region B. Interestingly, the

extrapolated resistance degradation from the pristine electrode is again a good approximation to the

actual measured surface resistance. However, given the comparatively short time the experiment lasted

in region A of Figure 8, from which the data are extrapolated, this might as well be a coincidence at this

stage in the long term experiment. The absence of a continuous slow degradation in H2S-containing

atmosphere as well as the lack of the slow recovery phase after turning of H2S might be due to the

fact that not many active surface regions remain due to the advanced state of Si-based degradation.
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While the adsorption effect, postulated for the results in region B, still exists, the amount of sulphur

incorporated is probably minute and quickly diluted in the GDC bulk. Another interpretation might

be that a kind of equilibrium is reached, most probably due to a solubility limit of sulphide in the

GDC bulk at the respective H2S partial pressure, confer Equation (4), and no more bulk degradation

is possible.

The chemical capacitance only reacts to the first H2S spike and stays constant during the rest of

the measurement. Due to the advanced stage of degradation, a clear interpretation cannot be offered.

3.6.2. Experiments on Composite Micro Electrodes with Interdigitated Current Collectors

The experiments on circular microelectrodes, shown in Figure 8, exhibited a multifaceted

degradation and sulphur poisoning behaviour with several processes happening simultaneously.

To probe more specific material parameter changes and facilitate a more detailed interpretation,

microelectrodes with interdigitating current collecting fingers were employed, which allowed the

measurement of chemical capacitance, surface resistance and, additionally, ionic and electronic

conductivity [25].

Pristine Sample

In Figure 10a, the fit results of a pristine GDC electrode are plotted. The surface resistance starts

out low at about 10 Ω¨cm2 with a degradation rate of 0.4 Ω¨cm2/h. These values agree very well with

the results from the pristine circular microelectrode shown in Figure 8. When the sulphur poisoning

is started with 10 ppm H2S a sharp increase is again observed followed by an increased degradation

rate of 2.5 Ω¨cm2/h. However, in contrast to the microelectrode experiment, it is fairly obvious that an

irreversible change in the surface resistance remains after the sulphide is removed from the gas phase.

The surface resistance after the poisoning step stays constant at 150 Ω¨cm2 over the measured time.

The absolute value of the chemical capacitance with 750 F/cm3 also matches the measurement

on the pristine circular microelectrode in region A of Figure 8 with about 700 F/cm3. As before,

it immediately reacts to the gas change at the beginning of the poisoning experiment with a sudden

increase. After the poisoning experiment, the chemical capacitance seems to slowly decrease over the

rest of the measurement.

The ionic conductivity of the GDC electrode plotted in Figure 10a shows a linear downward trend

of 0.14 mS/(cm¨h). Silicon is enriched on the surface according to the findings of the XPS results in

Section 3.2. However, silicon is also known to accumulate in the grain boundaries of YSZ and GDC (46)

forming an impurity phase there, which effectively hinders oxygen transport. While it is generally

possible to separate the resistive properties of grain bulk and grain boundaries by electrochemical

impedance spectroscopy, it is much more complicated in the thin film case [59,60]. Therefore, one can

currently only speculate that this continuous decrease in ionic conductivity is indeed due to silicon

segregating to the GDC grain boundaries. The first phase is followed by a step-like drop at the start

of the sulphur poisoning and a further decrease of 0.03 mS/(cm¨h). This decrease is not recovered at

the end of the poisoning phase and the ionic conductivity reaches a plateau at about 10 mS/cm. It is

speculated that the decrease upon sulphur exposition in ionic conductivity may be related to lattice

distortions caused by incorporation of larger sulphur ions into the oxygen sub-lattice of the GDC

host structure. The effect of lattice strain on oxygen transport is a highly active field, but out of scope

of the present study. However, as a general rule, tensile strain tends to accelerate oxygen diffusion,

while compressive strain, as would be expected in the vicinity of an incorporated sulphur ion, has the

adverse effect [61].

In contrast, the electronic conductivity of the GDC electrode is constant at about 0.21 S/cm during

the whole experiment, any possible trends are hidden beneath the data scatter.
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Figure 10. Chemical capacitance, surface resistance, ionic and electronic conductivity development

of long-term measurements of Pt/GDC 10 interdigitated model-composite microelectrodes at 750 ˝C

in an atmosphere of 2.5% vol H2 in Ar with a hydrogen to water ratio of 1:1; the H2S content in the

feed gas is plotted in the bottom diagrams. (a) Measurements on a pristine sample. The interdigitated

current collectors had a width 15 µm, a spacing of 15 µm and a length of 980 µm with a total of

8 digits; (b) Measurements on an aged electrode after two cool downs to room temperature and a

photolithography step to improve contacting. The interdigitated current collectors had a width 15 µm,

a spacing of 5 µm and a length of 980 µm with a total of 12 digits.

Aged Sample

In Figure 10b, the data of an aged electrode recorded on the same sample, as are the data shown

in Figure 10a, are plotted, but after a cumulative week of operation at 750 ˝C with two cool downs to

room temperature and an additional lithography step to improve contacting. The surface resistance

and chemical capacitance exhibit qualitatively the same behaviour to sulphur poisoning as described

for the pristine sample and for the circular microelectrode in region B in Figure 8. The absolute value

of the surface resistance in excess of 1000 Ω¨cm2 is tremendously higher than in the pristine sample,

while, in contrast, the chemical capacitance has dropped slightly. These changes mirror the trends of

the circular microelectrode data of Figure 8, when comparing the pristine electrode data in Region A

to the rest of the plot.
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While the ionic conductivity in Figure 10b exhibits a clear downward trend right at the beginning

as well as during phases of sulphur poisoning with plateaus in between, it is important to note that

the total change is about 5% and therefore very minute. The range of about 5 mS/cm is lower than the

plateau at the end of the measurement of the pristine electrode in Figure 10a.

Finally the electronic conductivity in Figure 10b is again nearly constant, but follows the ups

and downs of the chemical capacitance. This correlation can be explained straightforwardly, since the

chemical capacitance is a direct measure of the concentration of electrons [37], which again linearly

affects the electronic conductivity [62]. The better resolution of electronic effects on this electrode

compared to the pristine one discussed above can be explained by the different geometry of the current

collectors (for details see caption of Figure 9). The absolute value of the electronic conductivity of

about 0.18 S/cm agrees very well with the values of the pristine electrode in Figure 10a, demonstrating

only minor degradation effects of this material parameter.

The results from the impedance spectroscopy study on model-composites with interdigitating

current collectors nicely show that the increase in polarisation resistance observed on circular

microelectrodes during sulphur poisoning can almost exclusively be explained by a change in the

surface exchange resistance. However, a slight but reproducible decrease of the ionic conductivity

was also observed. In contrast, the electronic conductivity does not change with sulphur exposure or

temperature cycling.

4. Summary of the Proposed Surface Resistance Degradation Mechanism

The proposed degradation mechanism of the surface resistance of GDC model composite

electrodes is summarized with the aid of the sketch in Figure 11: in Section 1, a constant degradation

is observed due to the increasing surface coverage by a Si-species, either diffusing from the sample

itself or transported there from the gas phase [4,43,55,56]. As soon as hydrogen sulphide is in the

gas phase, a fast resistance increase happens in Section 2. This process is assumed to be related to an

adsorption process of sulphide on GDC competitively inhibiting the reactive surface regions, such

as oxygen vacancies [50]. Adsorbed sulphur is then slowly incorporated into the GDC bulk [42,50],

which is speculated to be the main driver of degradation in Section 3. After the H2S supply is

switched off, the surface sulphur species desorbs in Section 4, reversing the process in Section 2.

In Section 5, the polarisation resistance slowly recovers from the bulk poisoning during the sulphur

exposure. Whether or not a complete recovery can be achieved is still unclear and likely a function of

temperature, H2S concentration as well as exposure and recovery time.

 

Figure 11. Schematic sketch of the surface resistance development of a GDC model composite electrode

in reducing atmospheres with time during a typical sulphur poisoning experiment. Region 1: Only slow

degradation of the surface resistance is observed, attributed to Si poisoning. Region 2: Upon the start of

sulphur poisoning a fast increase of the polarisation resistance happens, which is most likely explained

by surface adsorption of H2S and corresponding inhibition of the GDCs electrochemical active surface.

Region 3: Further decrease of the resistance potentially caused by adsorbed sulphur being incorporated

into the GDC bulk. Region 4: The sulphur supply is switched off and desorption of sulphur partly

recovers the GDC surface. Region 5: Slow recovery of the surface resistance, possibly connected to

removal of absorbed sulphur in the GDC bulk.
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5. Conclusions

An array of analytical methods, including TEM, BET, XRD, ToF-SIMS, XPS, electrical impedance

spectroscopy and combustion analysis, has been applied to characterize the interaction of hydrogen

sulphide with gadolinia doped ceria in reducing atmospheres. It has been found by ToF-SIMS

analysis that cathodic polarisation of model composite microelectrodes, consisting of a buried Pt

current collector under a structured GDC layer on a YSZ single crystal, in an H2S containing

atmosphere lead to a significant enrichment of the sulphur concentration within the microelectrode.

Analogous experiments conducted on larger structures showed that this enrichment might even

lead to phase changes, as measured by X-ray diffraction. Anodic polarisation effectively hampered

sulphur incorporation.

ToF-SIMS showed an inhomogeneous lateral distribution of sulphur post cathodic incorporation.

Subsequent analysis by transmission electron microscopy suggested that these regions of higher

incorporation activity are related to the layer structure. Additionally, a high surface concentration of

silicon was found on all layers by ToF-SIMS and XPS.

Diffusion experiments on macroscopic polycrystals yielded diffusion lengths of sulphur well

beyond the probed volume of roughly 500 nm for an exposition of multiple days to hydrogen sulphide,

at temperatures between 650 ˝C and 850 ˝C. However, higher temperatures are correlated with a

higher bulk sulphur concentration. A temperature independent surface near enrichment of sulphur

was also measured, but no definitive interpretation can be offered, although some hints are found that

it might be related to a phase change to a cerium oxide sulphide.

BET adsorption in combination with combustion analysis allowed the quantification of the sulphur

concentration in a GDC powder sample. The sulphur uptake after 3 days at 750 ˝C was around

0.016 wt. % or, assuming a homogeneous distribution in the bulk, 350 mM.

Electrochemical impedance spectroscopy studies on model-composite microelectrodes of circular

shape and with interdigitated current collectors were conducted. It was found that material parameters

associated with the bulk of the probed GDC layer, such as the chemical capacitance and the electronic

conductivity, barely change over time and with exposition to hydrogen sulphide. The ionic conductivity

showed a slight but consistent sensitivity to sulphur exposure, which was ascribed to lattice distortions

due to the incorporation of the larger sulphur ion into the oxygen lattice of GDC. The surface related

resistance, however, showed degradation even before exposure to hydrogen sulphide associated with

the continuing contamination of the surface with Si impurities and might partially explain irreversible

long term degradation effects. Furthermore, the polarisation resistance proved highly sensitive to

H2S in the gas phase and showed a multi-facetted degradation over time. This behaviour has been

tentatively explained by a combination of quick surface adsorption of a sulphur species, which leads

to an obstruction of the reactive centres, and subsequent incorporation of sulphur in the surface near

regions, leading to continuing degradation.
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