000811808 001__ 811808
000811808 005__ 20240708133632.0
000811808 0247_ $$2doi$$a10.13052/jge1904-4720.5342
000811808 037__ $$aFZJ-2016-04159
000811808 082__ $$a333.7
000811808 1001_ $$0P:(DE-Juel1)130210$$aAeberhard, Urs$$b0$$eCorresponding author$$ufzj
000811808 245__ $$aTowards a Multi-scale Approach to the Simulation of Silicon Hetero-junction Solar Cells
000811808 260__ $$aGistrup$$bRiver Publishers$$c2016
000811808 3367_ $$2DRIVER$$aarticle
000811808 3367_ $$2DataCite$$aOutput Types/Journal article
000811808 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583831185_2514
000811808 3367_ $$2BibTeX$$aARTICLE
000811808 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811808 3367_ $$00$$2EndNote$$aJournal Article
000811808 520__ $$aThe silicon hetero-junction (SHJ) technology holds the current efficiency record of 25.6% for silicon-based single junction solar cells and shows great potential to become a future industrial standard for high-efficiency crystalline silicon (c-Si) cells. One of the main advantages of this concept over other wafer based silicon technologies are the very high open-circuit voltages that can be achieved thanks to the passivation of contacts by thin films of hydrogenated amorphous silicon (a-Si:H). The a-Si:H/c-Si interface, while central to the technology, is still not fully understood in terms of transport and recombination across this nanoscale region, especially concerning the role of the different localized tail and defect states in the a-Si:H and at the a-Si:H/c-Si interface and of the band offsets and band bending induced by the heterostructure potential and the large doping, respectively. For instance, a consistent microscopic picture of transport and recombination processes with treatment of thermal and tunneling mechanisms on equal footing is lacking. On the other hand, there are new SHJ device architectures like thin wafers with light trapping structures [1] or interdigitated back contact (IBC) cells [2], which define additional requirements for the modelling approach concerning the integration of 3D optical and electrical simulations. This paper provides an overview over our current efforts in the creation of a multi-scale and multi-physics framework to deal with the challenges encountered in the simulation of SHJ solar cells.
000811808 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000811808 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000811808 536__ $$0G:(DE-Juel1)jiek50_20141101$$aAb-initio description of transport and recombination at defective interfaces in solar cells (jiek50_20141101)$$cjiek50_20141101$$fAb-initio description of transport and recombination at defective interfaces in solar cells$$x2
000811808 588__ $$aDataset connected to CrossRef
000811808 7001_ $$0P:(DE-Juel1)136941$$aCzaja, Philippe$$b1$$ufzj
000811808 7001_ $$0P:(DE-Juel1)130237$$aErmes, Markus$$b2$$ufzj
000811808 7001_ $$0P:(DE-Juel1)130284$$aPieters, Bart$$b3$$ufzj
000811808 7001_ $$0P:(DE-Juel1)167372$$aChistiakova, Ganna$$b4$$ufzj
000811808 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b5$$ufzj
000811808 7001_ $$0P:(DE-Juel1)162140$$aRichter, Alexei$$b6$$ufzj
000811808 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b7$$ufzj
000811808 7001_ $$0P:(DE-HGF)0$$aGiusepponi, Simone$$b8
000811808 7001_ $$0P:(DE-HGF)0$$aCelino, Massimo$$b9
000811808 773__ $$0PERI:(DE-600)2864593-5$$a10.13052/jge1904-4720.5342$$gVol. 5, no. 4, p. 11 - 32$$n4$$p11 - 32$$tJournal of Green Engineering$$v5$$x1904-4720$$y2016
000811808 909CO $$ooai:juser.fz-juelich.de:811808$$pVDB
000811808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130210$$aForschungszentrum Jülich$$b0$$kFZJ
000811808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136941$$aForschungszentrum Jülich$$b1$$kFZJ
000811808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130237$$aForschungszentrum Jülich$$b2$$kFZJ
000811808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130284$$aForschungszentrum Jülich$$b3$$kFZJ
000811808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167372$$aForschungszentrum Jülich$$b4$$kFZJ
000811808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich$$b5$$kFZJ
000811808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162140$$aForschungszentrum Jülich$$b6$$kFZJ
000811808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b7$$kFZJ
000811808 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000811808 9141_ $$y2016
000811808 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811808 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811808 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000811808 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000811808 980__ $$ajournal
000811808 980__ $$aVDB
000811808 980__ $$aI:(DE-Juel1)IEK-5-20101013
000811808 980__ $$aI:(DE-82)080012_20140620
000811808 980__ $$aUNRESTRICTED
000811808 981__ $$aI:(DE-Juel1)IMD-3-20101013