001     811808
005     20240708133632.0
024 7 _ |a 10.13052/jge1904-4720.5342
|2 doi
037 _ _ |a FZJ-2016-04159
082 _ _ |a 333.7
100 1 _ |a Aeberhard, Urs
|0 P:(DE-Juel1)130210
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Towards a Multi-scale Approach to the Simulation of Silicon Hetero-junction Solar Cells
260 _ _ |a Gistrup
|c 2016
|b River Publishers
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583831185_2514
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The silicon hetero-junction (SHJ) technology holds the current efficiency record of 25.6% for silicon-based single junction solar cells and shows great potential to become a future industrial standard for high-efficiency crystalline silicon (c-Si) cells. One of the main advantages of this concept over other wafer based silicon technologies are the very high open-circuit voltages that can be achieved thanks to the passivation of contacts by thin films of hydrogenated amorphous silicon (a-Si:H). The a-Si:H/c-Si interface, while central to the technology, is still not fully understood in terms of transport and recombination across this nanoscale region, especially concerning the role of the different localized tail and defect states in the a-Si:H and at the a-Si:H/c-Si interface and of the band offsets and band bending induced by the heterostructure potential and the large doping, respectively. For instance, a consistent microscopic picture of transport and recombination processes with treatment of thermal and tunneling mechanisms on equal footing is lacking. On the other hand, there are new SHJ device architectures like thin wafers with light trapping structures [1] or interdigitated back contact (IBC) cells [2], which define additional requirements for the modelling approach concerning the integration of 3D optical and electrical simulations. This paper provides an overview over our current efforts in the creation of a multi-scale and multi-physics framework to deal with the challenges encountered in the simulation of SHJ solar cells.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
536 _ _ |a Ab-initio description of transport and recombination at defective interfaces in solar cells (jiek50_20141101)
|0 G:(DE-Juel1)jiek50_20141101
|c jiek50_20141101
|f Ab-initio description of transport and recombination at defective interfaces in solar cells
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Czaja, Philippe
|0 P:(DE-Juel1)136941
|b 1
|u fzj
700 1 _ |a Ermes, Markus
|0 P:(DE-Juel1)130237
|b 2
|u fzj
700 1 _ |a Pieters, Bart
|0 P:(DE-Juel1)130284
|b 3
|u fzj
700 1 _ |a Chistiakova, Ganna
|0 P:(DE-Juel1)167372
|b 4
|u fzj
700 1 _ |a Bittkau, Karsten
|0 P:(DE-Juel1)130219
|b 5
|u fzj
700 1 _ |a Richter, Alexei
|0 P:(DE-Juel1)162140
|b 6
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 7
|u fzj
700 1 _ |a Giusepponi, Simone
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Celino, Massimo
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.13052/jge1904-4720.5342
|g Vol. 5, no. 4, p. 11 - 32
|0 PERI:(DE-600)2864593-5
|n 4
|p 11 - 32
|t Journal of Green Engineering
|v 5
|y 2016
|x 1904-4720
909 C O |p VDB
|o oai:juser.fz-juelich.de:811808
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130210
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)136941
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130237
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130284
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167372
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130219
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162140
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21