001     811858
005     20240610121202.0
024 7 _ |2 doi
|a 10.1038/nphys3621
024 7 _ |2 ISSN
|a 1745-2473
024 7 _ |2 ISSN
|a 1745-2481
024 7 _ |2 WOS
|a WOS:000375255000025
024 7 _ |a altmetric:5007732
|2 altmetric
037 _ _ |a FZJ-2016-04200
082 _ _ |a 530
100 1 _ |0 0000-0002-9332-9125
|a Turlier, H.
|b 0
245 _ _ |a Equilibrium physics breakdown reveals the active nature of red blood cell flickering
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1482152733_5865
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Red blood cells, or erythrocytes, are seen to flicker under optical microscopy, a phenomenon initially described as thermal fluctuations of the cell membrane. But recent studies have suggested the involvement of non-equilibrium processes, without definitively ruling out equilibrium interpretations. Using active and passive microrheology to directly compare the membrane response and fluctuations on single erythrocytes, we report here a violation of the fluctuation–dissipation relation, which is a direct demonstration of the non-equilibrium nature of flickering. With an analytical model of the composite erythrocyte membrane and realistic stochastic simulations, we show that several molecular mechanisms may explain the active fluctuations, and we predict their kinetics. We demonstrate that tangential metabolic activity in the network formed by spectrin, a cytoskeletal protein, can generate curvature-mediated active membrane motions. We also show that other active membrane processes represented by direct normal force dipoles may explain the observed membrane activity. Our findings provide solid experimental and theoretical frameworks for future investigations of the origin and function of active motion in cells.
536 _ _ |0 G:(DE-HGF)POF3-553
|a 553 - Physical Basis of Diseases (POF3-553)
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-Juel1)140336
|a Fedosov, Dmitry
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Audoly, B.
|b 2
700 1 _ |0 P:(DE-Juel1)130514
|a Auth, Thorsten
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Gov, N. S.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Sykes, C.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Joanny, J.-F.
|b 6
700 1 _ |0 P:(DE-Juel1)130665
|a Gompper, Gerhard
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Betz, T.
|b 8
|e Corresponding author
773 _ _ |0 PERI:(DE-600)2206346-8
|a 10.1038/nphys3621
|g Vol. 12, no. 5, p. 513 - 519
|n 5
|p 513 - 519
|t Nature physics
|v 12
|x 1745-2481
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/811858/files/nphys3621.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811858/files/nphys3621.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811858/files/nphys3621.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811858/files/nphys3621.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811858/files/nphys3621.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/811858/files/nphys3621.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:811858
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)140336
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130514
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130665
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-553
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b NAT PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)9920
|2 StatID
|a IF >= 20
|b NAT PHYS : 2014
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0550
|2 StatID
|a No Authors Fulltext
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21