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1. Neutron Sources 

Harald Conrad 

1.1 Intl"oductory remal'ks 

Sioll' neutrons are a virtually unique probe for the investigation of structure and dynamics of 

condensed matter and biomolecules. Neutrons are ca lied slow, if tl1eir kinetic cncrgy is below 

I ke V. As the first neutrons used as microscopic probes were generated in nuclear reactors, 

historie terms like thermal neutrons are also frequently used in the classification of neutrons. 

In reactor physics the nation thermal is lIsed 10 distinguish these neutrons, which sustain the 

l1uclear chain reaetien, from the/ast fission neutrons with energies of several MeV. Thermal 

neutrons, Le. with an average kinctic energy of E=. 25 meV, are of particular interest in the 

context of this course. They are in thermal cquilibrium with an adequate slowing down me­

dünn (moderator) like graphite, light or heavy water at ambient temperature (kB T = 25 meV). 

\Vith the availabi lity of eryogenic moderators, cold neutrons (E == 3 meV) became important 

in rccent decades, too. Strictly speaking, cold or so called hOl neutrons(E =200 meV) have 

to be considered as thermal. tao, beeause these are neutron gases in thennal equi librium with 

a moderator at a pal1ieular temperature. Cold neutrons are in cquilibriul1l with a eryogenie 

moderator, e.g. liquid hydrogen at 20 K or solid methane at liquid nitrogen tcmperatme, 77 K. 

Hot neutrons are those in equilibrium with e.g. a graphite block heated to 2000 K, say. 

These hot neutrons and the even more energetie. so ealled epithermal neutrons (E > I eV) 

may in the future gain importance for scattering experiments, in particular with respect to 

pulsed aceelcrator driven neutron sourees (see below). But it is important to realize that there 

are no primar)' somees known, whieh direetly deli ver neutrons in the relevant energ)' range of 

t)'pieally 10,3 eV < E < I cV. All exisling sources emit primary neutrons with energies of 

about 106 eV 01' above and we are left with the diffieult task to reduce the neutron energ)' 

between 6 alld 9 orders of magnitude (moderation). 

1.2 Fl'ce Neutl'ons 

Free neutrons are unstable (half Iife about 12 minutes). As a nuclear eonstituent Ihey are sta­

ble, though, and as bound particles virtually ubiquitous, except in light hydrogen. So, the on1)' 

means of generating free neutrons are nuclear reaetions. There is a variet)' of possible reac­

tions, most I)' forced ones, although spontaneolls neutron emission is known to cx ist as weil. A 
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number of neutron somces is described in the Appendix, in partieular with respect to the 

achievable intensities. Tltere are, of course, other criteria (e.g. cost or teelmieal limitations), 

but for the neutron scattering experiment the highest possible signal (intensity) at the detcc­

tal' is decisive. Thc quality of an experiment strongly depends on the counting statisties, 

which in turn governs the resolution eapability of a neutron diffraetometer or spectrometer. 

This eriterion excludcs most of the sources deseribed jn Ihe Appendix for modern neutron 

seattering instnllnents, although electron accelerators for (y,n)-reaetions were sueeessfully 

utilized for a certain time. For other applieations Iikc medieal or in nuclear and plasma 

physies those sources were and still are of importance. 

In the following we will explain in greater detail Ihe two most important sources for neu­

tron seattering experiments: the nuelear reaetor and the spallation souree. 

1.3 The nuclcar reactol' as a neutron SOHree 

Fission of a single 2JSU nueJeus with one thermal neutron releases on average 2.5 fast neu­

trons with energies around 1 MeV. So, this is more than needed to suslain a ehain reaelion. 

Tltcrefore we ean withdraw typieally 1 neutron per fission for purposes Iike neutron scattering 

experiments witllOut distmbing the chain reactioll. The somee strengths Q(n/s), Le. neutrons 

emitted per seeond, aehievable with these surplus neutrons are Iimited in partieular by prob­

lems ofremoving the energy released, whieh is about 200 MeV per fission. Using the relation 

1 eV = 1.6xl0·19 Ws we get Q" 3xl0" n/s per MW reactor power to be rcmovcd. As mcn· 

tioned in the introduetiOil the fast neutrons have to be slowed down to thermal energies to be 

useful for neutron seattering. 

Tlte stoehastie nature of the slowing down of neutrons by eollisions with light nuelei of the 

moderator medium (e.g. protons in water) leads to the nation of a neutron flux CI> as a quality 

criterion for thermal neutron sourees. This flux is defined as the mmlber of (themlal) neutrons 

per seeond isotropically penetrating a unit area. In order to ealeulate the flux CI>(r) for a given 

souree distribution Q(r) (the fuel elements of a reaetor eore submersed in a moderator me­

dium) we had to solve the general transport (BoltzmalU1) equation. But there are no analytieal 

solutiolls possible for realistie geometries of reaetor cores {I]. An estimatc, however, will be 

given for simple model: a point souree loeated in the center of a spherical moderator vessel. If 

the radius of the vessel is equal to the so called slowing down Icngth Ls [2], then 37% of the 

souree neutrons beeome thermal. Using the definition (I>lh = Vth . n (average neutron velocity 

Vth), where the stationary neutron density n is given by a balance equation, viz. n = q . l' (bal­

ance = produetion rate· life time) with q as the so ealled slowing down density, we have 
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(1.\) 

where the slowing down density q is the number ofneutrons slowed down 10 thermal energies 

(i.e. 10 abaut 25 meV) per uni! volume and per second. For a point sauree of strength Q in the 

center of a spherical moderator volume ofradius r = Ls we oblain what we have inserted far q 

in (2.1). The life time (also ealled relaxation time) is given by [2] T = (E'b'.'h + D'B') -', 

where :Eabs and D afe the coefficients of absorption and diffusion of neutrons, respectively, 

and B2 = {n/Ls)2 a geometrical faetor, Ilte "buckling", wh ich is a measure for Ihe spatial flux 

distribution. Inserting numerical values, Ls= 29 CIll, L abs = 3xl0'S cm,l and D = 2xlO5 cnl/s 

for heavy water (Jillich's research renctor FRJ-2 is heavy water moderntcd), we ohlain wilh 

the sourec strength Q '" 3x 1 0" n/(s MW) a thermal neutron !lux <1>,. = 1.\ x 1 013 n/(em's MW). 

Extrapolating this to 23 MW, the power ofthe FRJ-2, wc obtain <I>'h = 2.5xl014 n/(em' 5). This 

is only 25% too big, a surprisingly good result taking into account the non realistic assumption 

reaetor core 
(25 fuel elements) 

graphite reneetor 

010 - moderator 
vessel 

4IlS(I summ) 
~H6 ( .S5mm) 

.H' 
(iSSmm) 

6HQ"1J6HGR' 
CI US mm)l(g55 mm) 

lOH cha nnel 
with cotd 

source 
(1 260 mm) 

6HOR6,,&HGRl 
(1 565 mm)J(95S mm) 

Fig. 1. J Horizontal cut throllgh fil e rene/ar block 0/ fhe JÜlicl, research I'eaclor FRJ-2. 
(file lIumbers befoll' fhe acroll)'1IIS are file beam chmmcl heights ahove Ihejloor a/lhe experimental 
hali.) 
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ofthe reactor being a point source. In fact the core ofthe FRJ-2 consists of25 tublilar, 60 cm 

high fllel elements arranged within a lateral grid of about one meter in diameter. The core is 

submersed in and cooled by heavy water streaming through the tubes. Figure 1.1 shows a plan 

cross sectional view of the reactor block. 

The FRJ-2 is operated with highly emiched uranium 2JlU. With thc existing relaxed file! 

element arrangement an essential neutron flux enhancement, e.g. by an order of magnitude, 

were only possible with a corresponding but unwanted power increase. A different possibility 

exists in compacting the core, a solution chosen for the high flux reactor at the Institut Laue­

Langevin in Grenoble, FraIlee. In fact, its core consisls of a single annular fuel element of 

40 cm auter and 20 cm inner diameter, respectively. Operated at 57 MW, a disturbed flux at 

the beam tube noses of<l>th = l.2x 10" n I (cm' s) is obtained. 

Technfcalllmitations 

We have just established a relation between neutron yicld und reactor power released as heat. 

Disregarding for the moment .investment and operation costs, thc limiting factor for achiev­

able neutron yiclds is the power or, to be more precise, the power density in the reactor core. 

This teclmically decisive faetor, the power density (MW/litel'), was not ineluded in the 

number givcn in the previous seetion, because it depends on the details of the reactor, in 

particular the core size, the uranium emichment and lhe fuel density in the fuel elements. lhe 

size of the primary neutron saurce (reactor core, target volume, etc.) is important for a high 

flux of thennal neutrons within the moderator. In Table 1.A.l of the Appendix a selection of 

reactions is given and related to its neutron yields and power densities. 

It is DOW weil established that power dellsities in reactor cores cannot substantially be in­

creascd without unwanted and impracticable consequences, such as liquid sodium cooling. In 

particular, the service time of reacter vessel cOlllponents Iike be am tube !loses or cold sources 

would become intolerably short due to radiation damage. Experience witlt the Grenoble High 

Flux Reaetor shows that these service times are of the order of seven years. Tell times higher 

fluxes would result in impracticable service times under olle year. 

1.4 Pulsed contra continuous sourCI!S 

Regarding these arguments, we may ask ourselves, whether high flux reactors have already 

reached a fundamental limit. This were certainly the case, if we expeeted a flux increase by 

another order of magnitude like the olle observed in reactor development since the fifties (see 

Table l.1). 
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Period Examplc Flux <1>110" cm,2 SI 1 

1950 - 60 FRM-I MUnchen - I 

1960 - 70 FRJ-2 JUlieh -10 

1970 - 80 HFR Grenoble - 100 

1980 - 90 ? - 1000??? 

Table /.1 Developmenl o/Ihel'mal f/lixes ofresearch reaelors 

A flux inereasc by. factor of about 6 over that of thc Grenoble reactor had been envisaged 

far a Ilew research reactar in Oak Ridge, USA, This enhancement would have been only pos­

sible by apower increase to 350 M\V with a simultaneous increase of the average power dell­

sity by. faetor of 4 eomp.red to Grenoble, After ten years of plaIllling, the US Department of 

Energy decided not to build this so ealled ANS (Advaneed Neutron Source). 

At this point we have eamestly to ask, whether the decision was adcquate to build ever 

Illore powernd hut continuously operating reaetors. Frorn a tcclmical point of view is \:vas 

perhaps the easiest path, from the point of view of neutron scattering, on the other hand, it 

was by 110 mealls necessary cr economic. In order to accept this wc only have to realize that 

fhe two standard methods of neutron scattering, Le, crystal and time of flight teclmiques, in 

any case only lIse aminute fraetion (10-2
,., 10-4 

) of the souree flux, Monoehromatization 

and/or chopping the prilllary beam as weil as eollimation and souree to deteetor distanee 

(shielding!) may even reduee the souree /lux by f.etors of 10-8 to 10- 11
, depending on resolu­

tion requirements, 

Time of flight speetroscopy ineffieiently utilizes the eontinuous reaetor flux foe two rea­

sons, because it requircs bOlh a monochromatic and a pulsed beam. Crystal spectrometers and 

diffractometers use an extremely narrow energy band, too. The rest ofthe spectmm is literally 

wasted as heat. Obviously, time of flight tcclmiques with pulsed operation at the same average 

souree power yield gain faetors equal to the ratio of peak to average flu x. With erystal tceh­

niques lligher order Bragg refleetions ean be utilized, because they become distinguishablc by 

their time of flight. In other words, the pe.k flux will be usable betwcen pulses as weil. 

So, without inereasing Ihe average power densi ty, pulsed sources can deliver much lligher 

peak fluxes, e.g. 50 times the HFR flux . Now, wh ich type of pulsed souree is to be preferred: 

a pulsed reaetor or an accelerator driven source? This question is not easy to answer. Possibly 

it depends on lhe weights olle is willing 10 assign to the partieular arguments. ImportaJH ar­

guments are eost, safety. pulse stmcture or the potential for olher uses Ihal1 neutron seaHering, 
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If we set aside the costs and ask about safety, we can assert that accelerator driven sources 

(e.g. spallation sources) are inherently safe, because no critical configuration is needed for the 

neutron production. A pulsed reaetor, on the other hand, has to mn periodically through a 

prompt super critical configuration. Therefore the extern al control mechanisms (absorbers) of 

the continuously operating reactor will not work. The power exeursion must be Iimited by in­

herent mechanisms, e.g. by the temperature rise of the fuel. Although it may be unlikely in re­

ality, malfunctions of the necessarily mechanieal insertion of excess reactivity (rotating parts 

of fnel or reflector) may lead to substantial damage of the reactor core. No problems exist in 

that respect with a spallation neutron source. Furthermore, the proton beam can be shut down 

within a few milliseconds. Neutron generation by protons enables the shaping of pulse struc­

tures (pulse duration below I microsecond, arbitrary pulse repetition rates) basically unfeasi­

ble with mechanical devices. 

1.5 The Spallation Neutron Source 

1.5.1 The spallation reaction 

For kinetic energies abovc abotlt 120 MeV, protons (er neutrons) cause areaction in atomic 

nuclei, which leads to arelease of a large numbcr of neutrons, protons, mesons (if the proton 

energy is above 400 MeV), nuclear fragments and y-radiation. This kind of nuclear disinte­

gration has becn named spallation, because it resembles spalling of a stone with a hammer. 

The spallation reaction is a two stage process, whieh can be distinguished by the spatial 

and spectral distribution ofthe emitted neutrons. Tltis is depicted schematically in Figure 1.2. 

Spallation 

Fig. 1.2 The spallaliollprocess 
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In stage I the primary proton knocks on a nucleon, which in turn knacks Oll another nu­

clean of the same Ilucleus (intra-nuc1ear eascade) or of a different nuc1eus (inter-nuclear cas­

cade). With increasing energy of Ilte primary particle thc nucleons kicked out of the nuclei 

will for kinematic reasons (transformation from center of mass to laboratory system) be 

emitted into deereasing solid augles around forward direction. The energ)' distribution of the 

easeade particles extends up to the primaT)' proton energy. After emission of the caseade par­

ticles the nuelei are in a highI)' exeited state, whose energy is released in stage 2 mainly by 

evaporation of neutrons, protons, deuterons, a-particles and heavier fragments as weil as y-ra­

diation. Depending on the particular evaporation reaetion course, different radioaetive nuc1ei 

remain. These evaporation neutrons are isatropically emitted . They are the primary samee 

neutrons, in which we are intcrested in the present context. The spectnnl1 of the evaporation 

neutrons is very similar to that ofnuclear fission and has a maximum at about 2 MeV. This is 

the very reason, why we can utilize the spallation neutrons as with a fission reaclor. 

The yield of evaporation neutrons increases with proton encrgy and depends on the target 

material. The following expression for the yield has been found cmpirically 

y ~ f· (A + 20) . (E - b) neutrons I proton, (1.2) 

where A is the mass mlmber of the target material (9 :S A :s 21 0), E is the proton energy 

(0.2 :s E:s 1.5 GeV) and b ~ 0.12 GeV. The faetor f depends on the target geometry. 

Fig.I.3 
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For uranium, which releases neutrons by fission as weil, b = 0.02 GeV. In Figure 1.3 the yield 

for lead and uraniull1 is plotted and related to lhe energy released per neutron. The latter has 

important consequences as already discussed in seetiOil 1.3. 

1.5.2 TecJmic.1 details 

A spallation neutron souree consists ofthree important components, the accelerator, the target 

and the moderators. For reasons discllssed in sectiolls 1.3 and 1.4 the planned European 

Sp.lIation Source (ESS) will be pulscd. 

/ .5.2./ The acceleralor 

The concept of the ESS envisages a pulsed linear accelerator (linac), which will supply the 

full beam power, and two subsequent storage rings for eompressing the pulses from the linac. 

Tlte ESS design parameters are: 

linac proton energy 
average CUfrent 
average beam power 
linac peak current 
ring peak current 

1.33 GeV, 
3.75 mA 
5 MW 
0.1 A 
100 A 

repeti tion rate 50 S- I 

Iin3c pulse duratiOtl 1 ms 
pulse duratiOtl after compression J.ls 

300 m lang (supercondueting c.vities) 

ring diameter: 52 m 

It is worthwhile to point out that we need a rather complex machine to aeeeierate particles 

from rest to kinetic energies of 1 GeV or above and extract them in pulses of only I J.1S dura­

tion. For the ease of the ESS we Ilced five stages of acceleration and compression such as 

- electrostatic acceleration to 50 keV 
- radio frequency quadrupole (RFQ) acceler.tion from 50 keV to 5 MeV 
- drill tube linae (Alvarez-type) from 5 MeV to 70 MeV 
- superconducting multiple cavity linac from 70 MeV to 1330 MeV 
- two (!) compressor rings (spaee charge !). 

/.5.2.2 The largel - solid 01' liquid? 

According to relation (1.2), hcavy elements (large mass I1umber A) are favored as target can­

didate materials, in particular the refractory metals tantalum, tungsten or rhenium, but also 

lead, bismutit or even uraniul11. Wltatever material is selected, it will be sllbjeet to heavy mul­

tiple loads. Firstly, about 60% oftlte 5 MW average bC8m power is dissipated within the tar-
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gel as heat, the rest is Iransported as released radiation to the target vicinity Iike moderators, 

reflector and shielding or is converted into nuclear binding energy. Secondly, all materials hit 

by protons (and fast neutrons) will suffer from radiation damage. Finally, the extremely short 

proton pulses generate shock~like pressure waves in target and structural materials, which 

may substantially reduce the target service lifc. In order to both keep average target tempera~ 

tures law and reduce specific radiation damage and loads due 10 dynamic effeets from shock 

waves, asolid rotating target is conceivable and has been proposed for the ESS . As any solid 

target has to bc eooled, it will inevitably be "diluted" by the eoolant, whereby the primary 

source's luminosity will be diminished. One should therefore operatc the target in its liquid 

state avoiding an additional eooling medium . Radiation damage would be no longer a prob­

lem with the target, but of course with its contai.ner. Obviously, the refraetory metals are ex­

c1uded due to their high melting points. So we are left with clements like lead, bismuth, the 

Pb-Bi eutectic or - of course - mercury. In fact , mereury has been chosen for the ESS, because 

it was also shown to exhibit favorable neutron yield conditions as presented in Figurc 1.4 . 

I 

Target Materials 

0 Hg 

* W 
x Ta 

0 
0 

I< 0 

" 
0 

0 
Ä 

Ä ~ 
I 

40 60 
Target Depth[cm] 

Fig. 1.4 Calclllated axial leakage distributions o//ast neutrons/rom Cl lead-rejlected 
mercwy target compared to water cooled tantlllum anti tUllgsten targets, respeclively. 

The dimensions of a target along the beam path will reasonably be choscn according to the 

range of the protons of given kinetic energy. For mercury and the ESS energy of 1.33 GeV 

this is abollt 70 cm. Lateral target dimensions are optimized so that the moderators are not tao 

far from the proton beam axis (solid angle!). A typical target-moderator-reflector configura­

lion is depicted schcmatically in Figure 1.5. 
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Fig. 1.5 Schematic verNenl (md horizontal cuts tlzrollgh the inner part of fhe target block. 

152,3 The moderators 

Let us eventually turn to the "heart" cf the facility, the moderators, which were just shown in 

the last figure above in their relative positions next to the target. As the upper and tower faces 

of the target are equivalcllt for symmetry reasens with respect to the emission cf fast neutrons, 

it is obvious to exploit both sides with moderators. The question 110W is, whether we shall use 

D2Ü as the slowing down medium Iike in all modern medium and high flux reactors cr pos si­

bly H20? As we have discussed in section 104, not the highest possible average neutron flux is 

the only reasonable demand, but rather the highest possible peak flux for a given (or re­

quested) average flux. In that respect, H20 is the preferred material due to its bigger slowing 
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down power and stranger absorption for thermal neutrons (see below). The reason for this 

seemingly paradoxienl demand for stronger absorption is that the aehievable neutron peak 

flux is not only proportional to the proton peak eurrent, but also depends on thc storage time "T 

(see below) of thermal neutrons in the moderator. \Ve ShOllld point out here timt the slowing 

down time for H20 and D10 is small compared to the storage time "T. Tlte neutron peak flux is 

given by the following expression, which is the resllit of a convolution of a proton puise of 

duration tp witlt an exponential decay of the neutron field within the moderator with storage 

(decay) time • . 

... _ trep - I plr 
"'1,,=<1>I,,·-·(I - e ) (1.3) 

I p 

where <hIli' CD/li are peak and average flux . respectively. and trep is the time between pulses. 

In the limit tp -) 0 expression (1.3) reduces to eh tll = $111 ' 1 rep / r • Le. even a o-shaped eUf­

rent pulse results in a finite neutron peak flu x. \Ve see as weil that in this case the peak flux is 

inverse)), proportional to the moderator storage time. Al~o with finite current pulses a short 

storage time is important for obtaining large peak fluxes. The storage time t of a themlal neu­

tron is a rneasure of the escape probability from the moderator and is obviollsly determined by 

both the geometry of the moderator vessel and the absorption cross section of the moderator 

medium (see sectiol1 1.3) and can be written [2]: 

(1.4) 

where Vth is the average neutron velocity, Labs the macroscopic absorption cross section, D 

the diffusion constant for thermal neutrons and L is a typical moderator dimension. The ab­

sorption cross section of H20 is abollt 700 times bigger than that of D10. If it wer~ only for 

this reason, an H20-ll1oderator had to be smaH (small L in (1.4)), because we want of COUfse 

utilize the neutrons that leak from the moderator. So. a short storage time must not entirely be 

due to self-absorption. As, on the other hand, H20 possesses the largest known slowing down 

density (the number of neutrons, which become themlal per cm3 and s). an H20 -moderator 

anyhow does not Ileed to be big. In section 1.3 we have already quoted that within a spherical 

moderator vessel with its radius equal to the slowing down length Ls (= 18 cm for H20). 37% 

ofthe fast neutrons emitted from a point source located in the center become thermal. In fac t, 

an H20-moderator must not be essentially larger, becausc within a sphere with r = 23 cm a l­

ready 80% ofthe neutrons are lost due to absorption. 
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For these reasons a pulsed spallation sOllTee will have sm all (V == 1.5 liter) I-hO·modcrators 

for thermal neutrons. The corresponding storage time of such I-hO·moderators has beeil 

mcasured alld is 1" = 150 J..IS [3], whieh is in good agreement with the estimate according to 

(1.4). Small size and absorption diminish in any case the time average neutron yield. In order 

to improve this without deteriorating the peak fluxes, two tricks are used. Firstly, a moderator 

is enelosed by a so-ealled relleetor (see Fig. 1.5), a strongly seattering ("rellecting") but non 

moderating material , Le. a heavy elcment with a large scattering cross sectiOll like lead. Sec· 

ondly, the leakage probability from thc moderator interior, Le. a region of higher flux duc to 

geometrieal buekling (Chapter 1.3), is elulaneed by holes or grooves pointing toward the neu­

tron beam holes. Both measures give gain factors of2 cach, whereby the refleclor gain is so to 

speak <I for free", because lhe anyway necessary lead or iron shielding has the same effect. A 

refleetor ean be imagined to effect such timt it scaUers fast neutrons back, whieh penetrated 

the moderator \Vithout being or insufficiently slowed down, Similar considerations hold as 

weil for cold moderators employed with spallation sourees (Fig. 1.5). 

As a final remark let lIS point out that the overall appearance of a target station ean hardly 

be lold from a reactor hall with the respcetive experimental equipment in pI ace. In ballt eases 

neutrons are extracted from the moderators by beam ehmmels er guide tllbes and transparted 

to the variolls seattering instruments. 

In the following Table 1.2 the expeeted and experimentally supported Ilux data of ESS are 

shown and compared to those of existing saurces. 

High nux renetor Pulsed reactor Spallation source ESS 
(HFR) IDR-II 1515 Hg·Target 

Gr.noble "FR) Dubna (RU) Chilton (UK) H 20 Moderator 

<1:>[C/II-'s-'J 10" 2· 10" 4.5· 10" 104·10" 

$[C/II-'s-'J 10" 2· 10" 7. 1012 0.6·10" 

Pulse repetition rate V[S·I] - 5 50 50 

Pulse duration [10.6 sJ - 250 30 165 

<i>'I{ 1017 cm-1s- l ] I' I 2.2 70 

• .. , wlth neutron chopper 100 s 

Tab. 1.2 Comparison ol/he pelformance olvarious moderl1l1eutron SOl/rees 
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Appendix 

Neutron Sources - an ovcl-vicw 14] 

1.A.1 Spontaneous nuelear reaetions 

Although every heavy l1ucleus is unstable against spontaneous fission, this reactioll is gener­

aHy suppressed by a-decays beforehand. With the advent of nnclear reaetors, on the ot her 

hand, an exotic isotope, 2S2Cf, became available in sufficient amount from reprocessing spent 

nuclear fllef, where 3% of the decays are by spontaneOllS fission. The rest is a-decay. The 

data of a 2S2Cf_source are: 

- yield: 3.75 neutrons I fission 
resp. 2.34 x 1012 neutrons / (gram s) 

- halflife: 2.65 y (ineluding a-deeay) 
- average neutron energy: 2.14 MeV (fission spectrum) 

1.A.2 Foreed nuelear reaetions 

In this ease we can distinguish bctween reactions initiated by both chargcd and neutral parti­

eies. In this context y-quanta are regardcd as neutral \'particles", 

l.A.2.1 Reae/ions will) eharged partie/es 

Although we will restrict the discllssion to light ions such as protons, deuterons and a-parti­

eies, a wide field is covered from the historically important radium-beryllium-source to the 

tatest somces like plasma focus or spallation sources. 

( a,ll)-Rencliol1s 

Reaction partners with these sources are either natural (Radium, Polonium) or artificial 

(Americium, Curium) radioactive isotopes and a light element such as Beryllium as target 

material. Using a radium-bcryllium-sourcc Bothe and Becker discovered in 1930 a ncw 

particle, wh ich they failed to identify it as the neutron. Two years later Chadwick accol11-

plished this earning him the Nobel prize for this reat. Modern sources employ artificial iso­

topes alloyed with Beryllium. Yields are between 10--4 and 10-3 neutrons per particle. The 

tec1mical parameters of a modern 241 Am/Be-somce are: 

- yield: 0.9 x 107 neutrons I s per gram 241 Am 
- halflife: 433 y 
- neutron energy: a few MeV (complex line spectrum) 
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(p,II)- alld (d,II)-ReaCliolis 

Bombarding targets (Be, ... , U) with protons or deuterons of medium energy (Ekin :s; 50 MeV), 

either neutrons are rcleased foml the target nuclei in the case of protons Of the neutrons are 

strippcd from the deuterons during lhe impact and thereby released. Yields are cf the order of 

10- 2 n/p resp. 10" n/s per milli-Ampere. 

An interesting special case is the reaction between the two heavy hydrogen isotopes. be­

cause it can be exploited in two different ways. One variant is the so-called neutron genua­

tor utilizing the large reaction cross section ofthe D-T-rcaction, which peaks already at very 

low deuteron energies (5 barn at 0.1 Me V). With this low particle energy the emitted neutrons 

are virtually mono-energetic (En :::= 14 MeV) and the emission is isotropie. The target may be 

gaseous or Tritium dissolved in adequate metals (Ti, Zr) . The yield for a D-T-neutron gen­

erator with Ek;o(d+) = 0.1 MeV is ofthe order of 1011 neutrons/s per milli-Ampere. 

The seeond variant ofexploitillg the D-T-reaetion is the plasma souI'c~c . In this souree both 

gases are completely ionized by applying high pressure and temperature forming a hOllloge­

neous plasma, which releases neutrons via the fusion feaction. In principle, this is the same 

reaction as with the neutron generator. Such sources operate in a pulsed mode, because the 

plasma has 10 be ignited by repeated compression. Due to the need for this compression this 

special kind of a plasma source is also ealled the plasma focus. Up to now yields of about 

3 x 10 12 neutrons / s have been obtained experimentally. Planned faeilities are expected to de­

liver 1016 neutrons / s, 

Chapter 1.5 has already been dedicated in greater detail to (p,n)- or (d,n)-reactions at high 

particle energies (> 100 MeV), which lead to spalling of the target nuclei ("spallation"). At 

this point we only want to give a typical l1umber for the neutron yield for eomparison with the 

other reactions quoted in this Appendix : 

- yield (for I OeV protons on lead): 25 neutrons / proton 
resp. 1.5 x 1017 neutrons / s per milli-Ampere 

- average neutron energy: 3 MeV (evaporation spcctrum) 
+ easeade neutrons (up to proton energy). 

1.A.2.2 Reaetions with neutra/ ·partie/es" 

(y,n)-Reacliolls (phololluc/ear reae/ions) 

Gamma rad iation of rad ioaetive isotopes ean release so ealled photoneutrons, a proeess, 

whieh is indeed exploited in devices analogaus to (a,n)-sources. A typically sphcrieal y­

somce of a few eentimeters in diameter is enclosed by a shell of target material. Duc to the 

extremely high y-activities needed, even weakest neutron somecs (106 nls) ean only be hand-
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ted remotely. It is much more convenient to turn on thc scurce \Viten needed by replacing y­

radiation by bremsstrahlung generated by electrol1 bombardrnent of a heavy metal target. 

Using e.g. 35 MeV clcctrons, we obtain a yield ofabout 10-2 nie resp. 0.8 x 10" nls per mA. 

Neutron induced J111c1earjissioll {fhe Ilucleal' reactol'} 

Of all neutron sources realized up to now, nuclcal' rcactol's are still the most intcllse ones. 

We had therefore dedicated a detailed chapter for this kind of source (chapter 1.3). 

For comparison we have compiled the yields, heat deposition, samee strengths and power 

densit ies of the various reactions in the following Table I.A.I. 

Reßction Yicld Heat dellosi tion Souree strcngth Sourcc powc." 
IMeV /nl Inls l Deusity 

IIMW I Lite)'1 

Spontaneous fission 2S2Cf 3.75 tllfission 100 2 x 1012 g ' l 0.8 
(39 W/g) 

'Be (d,n) (15 meV) 1.2 x 10-2 nld 1200 8x I Ol3 mA'\ -

'H (d,n) (0.2 MeV) 8 x 10-' ,lid 2500 5 x IOIlIllA'\ -

Spa ll ation 28,lip 20 10 18 0.5 (ESS) 
1.33 GeV protons Oll Hg 

Photoproduction 1.7 x 10-2n/e 2000 
W!e,n) (35 MeV) 

4 x 10 14 5 (Harwe ll ) 

2HU fission I n/fission 200 2 x 10\8 1.2* 
nuclear chain reaction I (HFRGrenoble) 

* At the hot spot 3.3 MW/L. For 2 x 1011 source neutrons per second this gives a thermal flux of IOIS n cm-2 
5.

1
. 

Toble J .A.l Yield, Izeaf deposition, SOllrce strength Q1ld power densityfor selected neutron 
sOllrces 
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2. Properties of the neutron, elementary 
scattering processes 

D. Richter 

2.1 A fe,,", l'cmarks on history 

In 1932 the neutron was discovered by Chadwick. Thc name results frol11 the observation that 

the neutron apparently does not possess an electric charge: it is neutral. Today, olle knows 

that the neutron is an ensemble of ane up quark and two down quarks. According to the 

standard thcory, thc total charge therefore amounts to 2/3 e" + 2 ( -1/3 c") ~ O. At preseHt this 

theoretical statement is proven with aprecision of ~ 10-21 c-! 

Only four years later in 1936 Hahn and Meitner observed thc first man-made nuclear fission. 

In the same year also the first neutron scattering experiment was perfOlmed. Hs set-up is 

shown in Fig.2. I. Neutrons were laken from a radium beryllium source which was covered by 

a paraffin moderator. From lhat moderator neutron beams were extracted such that they hit 

magnesium oxide single crystals which were mounted on a cylindrical circumference under 

the appropriate Bragg angle. After rcf1ection thcy were guided to a detector wh ich was 

mounted opposite to the radium-beryllium source. In order to avoid any directly penetrating 

neutrons a big piece of absorber was mounted in between the detector and the source. 

Figure 2.1: Mitchell and Powers's apparatus for demonstrating the diffraction of neutrons 
(after Mitchell and Powers 1936). 
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In December 1942 Fcrmi blliId his first nllcIear reactor in Chicago - the so callcd Chicago 

pile - wh ich Ied to the first controlled nllcIear chain reaction, OnIy one year Iater the Oak 

Ridge Graphite Re.ctor went eritic.1. It had • power of 3,5MW and was originally lIsed for 

the production of fissionablc material. Fig,2.2 shows this reactor wh ich by now is anational 

historic landmark. At this reactor, Shull bllild the first neutron diffractometer which became 

operationally at the end of 1945. At that instmmcnt the first antiferromagnetic stmcture 

(MnO,) was soIved (Shllll, Noble Price 1994), At the end ofthe 40's and the beginning ofthe 

50's nuclear reactors for neutron research came into operation in scveral countries. 1954 the 

Canadian NRU Reactor in Chalk River was the most powerful neutron samee with a flux of 

3·1014n/cm·2s·', Theee Brockhouse dcveloped the tri pie axis spectrometer which was 

designed, in order to observe inclastic neutron scattering and in particular to investigatc 

elcmcntary cxcitations in so lids. For this achicvement Brockhousc receivcd the Nobel Price in 

1994. Another milestone in neutron scattering was the installation of the first cold sourcc in 

Harwell (Gre.t Britain), This cold source allowed to moderate neutrons to liquid hydrogen 

tcmperatures with the effect that for the first time long wavelength neutrons became availabl~ 

in large quantities. 

Figure 2,2: View ofthe Oak Ridge Graphite Re.cto!'. 
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In the 60's the first high fiux reactor specially designed for beam hole experiments became 

critical in Brookhaven (USA). It provided a fiux of 10" nlcm"". For research reactors this 

level of fiux was not significantly surpassed since then. Finally, 1972 the high finx reactor at 

the Institute Laue Langevin in Grenoble (France) went into operation. This reaetar sincc thell 

constitutes the most powerful neutron souree worldwide. 

In parallel using proton accclerators already beginning in the 60's, another path for neutron 

productiOll was developed. Pioneering work was performed at the Argonne National 

Laboratory (USA). At present the most powerful Neutron Spallation Source is simated at the 

Rutherford Laboratory in Great Britain which bases on a proton beam of about 200KW beam 

power. The future of neutron scaltering will most probably go along the lines of spallation 

sourees. At present in the United States the constmction of a 2.5MW spallation source has 

commenced with the aim to gel operatiOItal in 2005. European plans to build a Megawatt 

Spallation Source are still under development and hopefnlly a European decision for thc 

European Spallation Source (ESS) will be reached in the year 2003. 

Aflcr the war, Gennany was late in the development of neutron tools for research. Only in 

1955 international agreements allowed a peaceful lIse of nuelear research. In the same year 

thc first Gemlan Research Reaetor became critical in Garehing. In the early 60's powerful 

research reaetors were build like for example the FRJ-2 reaetor in JUlieh which provides a 

tlux of 2.10 14 n!cm·2s·l. Instfilmental dcvelopmcnts became a domain of Gcmlan neutron 

research. A number of important Gennalt eontributions in this field are the backseattering 

spcetromcter, the neutron sm all angle scattering, the instruments for diffuse neutron seattering 

and high resolution time of fiight machines. 

2.2 Propcrties of the neull'oll 

The neutron is a radioaetive particlc with a mass of 11Jn = 1.675 . 10·27kg. It decays aftcr a 

menn Iifetime of r= 889.1 ± 1.85 into a proton, an electron and an antineutrino (ßdccay). 

11 -) p" + e + v (+ 0.77 MeV) (2.1) 
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For any practical application the finite lifetime of the neutron has no cOl1sequence. At neutron 

velocities in lhe order of 1000111/s snd distances in experiments up 10 100m lifetime effects 

are neglig ible. 

The neutron carries a spin of Yl wh ich is accompanied by a magnetic dipole moment 

(2.2) 

where j.!N is the nuclenr magneton, rhe kinetic energy of the neutron E" = t m,,' v; may be 

givcn in different units as follows 

I meV 

since 

since 

E 

E 

l.602 . 10.21 J => 

hv 

kBT 

I meV=> 

I meV=> 

8.066 en'" 

0.2418·10" Hz 

I l. 60 K 

The neutron wavelengths is obtained from the de Broglie relation 

(2.3) 

According 10 Ihe conditions for moderation, neutrons in different wavelength regimes are 

separated into different eategories "s displayed in Fig.2.3. They are produeed by moderation 

in particular moderators which are kept at different temperatures. 

hot thermal eold very cold ultra cold 

I O~ 
E [,V] 

Figure 2.3: Relation between neutron wavelength and their corresponding kinetic energies. 
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Hot neutrons in reactors are obtained from hot sources at temperatures around 2000K. 

Thennal neutrons evolvc from ambient moderators while cold neutrons are obtained from 

mainly liquid hydrogen or deuterium moderators. Thc velocity distribution of the neutrons 

evolving from such a moderator are givcn by a Maxwell velocity distribution 

(2.4) 

Thereby. rt(u) du is the number of neutrons wh ich are emitted through an unit area per 

sccond with veloeities bctwecn uand u+du. Fig.2.4 displays Maxwellian flux distributions 

far the three types ofmoderators discussed above. 

Figure 2.4: 

, 

l>K 

)OOK 

2000 K 

o 10 Il 

",[km s"' 

Velo city distributions of neutrons from cold (25K), thennal (300K) and hot 
(2000K) moderators. 

Finally, Neutrons as weil as X-rays are used for scattering experiments on materials. Tablc 

2.1 compares the most important properties of hoth radiations. 
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Table 2.1: 
COlllllarison of X-rays ami neutrons 

X-rays are transversal neutrons are particle wavcs 
clectromagneHc wavcs 

Mass I1Iphof:::: 0 111" = 1.6749286(10) . 1Q'''kg 

Charge 0 0 

Spin I Y, 

Magnetic Moment 0 /In = - 1.91304275(45) /IN 

Typical Energy 10kcV 25meV 

Wave lenglh Ax = c'Je = 1.24A A - X: ) 112 
= 1.8A 

t/ - 2Em
n 

()'" Velocily speed of Iighl 2E 
= 2200% u,,:::: ;;:: ,~ 

2.3 Neutron pl'oductiol1 

Neutrons are generated by nuclear reactions. Far the investigation ormatter a large luminosity 

that means a high flux of neutrons p of thc reqllcsted energy range is essential. Such fluxes at 

present can only be obtained through nuclear fission or spallation. Both are schcmatically 

displayed in Fig.2.5 . 

In nuelear fission a thermal neutron is absorbed by an 235U nucleus. The thereby highly 

excited nucleus fissions into a number of smaller nuclei of middle heavy elements and in 

addilion inlo 2-5 (on average 2.5) highly energehe fasl fission neuirons. Typical energies are 

in the rage of several MeV . In order to undertain a nuclear chain reacHoll, on the average 1.5 

moderated neutrons are nccessary. At a balance a research reactor delivers about I neutron per 

fission event. 

The 1110st powerful research reactor worldwide, the HFR at thc Institute Laue Langevin in 

Grenoble, produces a neutron flux of tA"rrm = 1.5· IOl snlcm2s (thermal power 60MW). The 

2·6 



related valucs for the FRJ-2 rcaetor in Jülich for eomparison are tPrherm = 2, 1014 n/em2s at 23 

MW. 

Fission 

q.. proton 

-4 netirco 

Ihecmal 

Spallation 

fast + 
protons p 

~ ... 
e.g. 1 GeV 

Pb 

fission c.t Ihe 
exdled oocleus 

Inlra·oocJear 
cascade 

higt>ty exciled 
rodeus 

111 er -nuc!ear 
cascade 

-
., 

. (' ~"'...;\ ~ 
~r~ , '\ 

Q., ', 40~.,J J}): .,t. 

/~-
--, ~ ." 

ev~ora:lon 

Figurc 2.5: Sehematie presentation ofthe fission and spallation proeess. 

In the spallation process highly energetic protons which are typically at energies of abaut 

IGeV hit a target of heavy nuclei like tungsten 01' tantal um. The proton excites Ihe heavy 

nuclcus strongly and in the event in the order af 20-25 neutrons are evaporated from such a 

l1ucleus. The energies afthe spallatian neutrons are typically in a range from several MeV up 

10 hundreds of MeV. Other than a research reactor, a spallation neutron source can easily be 

operated in a pulsed mode, where a pulscd proton beam hits a target. At the spallation source 

ISIS at the Rutherford Laboratory for example, the repetition frequency amounts to 50Hz. In 
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this way even at a comparatively low average neutron flux very high pulsed fluxes may be 

obtaincd. In the thennal range for example, the Rutherford souree is able to sUlpass the ILL 

with respect to the peak flux significantly. Such plIlsed sources can be lIsed in particll larly 

weil for time of flight experiments wh ich will be discussed later in the schooL 

2.4 Neutron delectlon 

Generally the detection of neutrons is perfomled indirectly through particular nuclear 

rcactions which producc charged particles. A !lumber of possible reactions are Iisted in 

Table 2.2. 

Proportionality counters operate with agas vohnnc of JHe or BF) (enriched with lOB). Such 

counters deliver sensitivities to nearly 100%. Scintillation counters absorb neutrons within a 

polymer or gl ass layer whieh is enriehed by 'Li and ZnS. Neutron absorption then leads to 

fluorcscence radiation which is registcrcd vi~ a photo .ll1ultiplayer or directly with a 

photographic film. Finally, fission chambers use the 11 + 23S U reaction and have generally only 

a low counting probability, They are mainly uscd in order to contral the bcam stability and are 

applied as monitors, 

Table 2.2: 
NlIclear rcactions used fOl' neutron dctection. 

The cross seelions are givenln barns (lb = 10.28 111 '). 

Rcaction Cross Scction for PartIeIes Energy Total Energy 
25mcV neutrons gencl'atcd [MeVI [MeVI 

11 + 3Hc 
P 0.57 0.77 

5333 b 
' T 0.2 

11 + 6Li 
' T 2.74 4.79 

941 b 4He 2.05 

11 + lOB 
4He 1.47 2.30 

3838 b 
' Li 0. 83 

Y 0.48 (93%) 

11 + 2J5U 681 b fission 1 - 2 
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2.5 Scatter ing amplitude and cross section, the Dorn approximation 

We now consider the scattering event by a fixcd nucleus. The geometry for sllch a scattering 

process is sketchcd in Fig.2.6. The incoming neutrons are describcd by plane waves eikr 

travelling in z-direction. At the target this plane wave interacts with a nuclcus and is scattered 

into a solid angle fldfl. 

IM;dtflL -MU1l0fli 

1: = (0,0, Z) 

Di,cClion .. , 

Figure 2.6: Scattering geomctry for an incident plane wave scattcred at a targct. 

The partial cross scclion is dcfincd by 

da current 0/ scattered neutrons into (n, dn) 
dO current 0/ illcidellt neutrons 

Quantum mechanically the curren! is given by 

(2.5) 

(2.6) 

For an incident plane wavc 1jI= ikr Eq.[2.6] leads immediately to j = t~'n . Yv, wherc V is 

the nomlalization volume. The scattered spherical wave has the form ~ [(0) e ikr IhereA.14 ,. 
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describes the solid angle dependent scattering amplitude. Inserting this fonn for the scattered 

wave into Eq.[2.6] for large r 

t,k' 2 
j, = - V(n)1 dn 

111
11 

(2.7) 

is obtained. Finnlly, inserting the ineoming and scattered eurrents into Eq.[2.5] we obtain for 

the cross sectiOJl 

du Jhk 11111 1/ (nll' dn 
dn Ir,k /1111 dn 1/(n)I' (2.8) 

~~ is also caJlcd differential cross section. Wc rcalize, that a scattering experiment delivers 

infomlation on the absolute value of the scattering amplil11de, but not on j(ilj itself. 

Informations on the phases are lost. Thc total cross section is oblaincd by an integration ovcr 

the solid angle 

u= J dn du 
n dn 

(2.9) 

Our next task is the derivation ofj(ilj in the so ealled Born approximation. We start with the 

Sehrödinger equatiou of the scattering problem 

--!!.+v(d If/=EIf/ [ 
h' ] 
2m 

(2.10) 

whcrc V(0 is the scattering potential. We note, that for scattering on a free nuclcus the mass 

term in thc kinetic energy has 10 be rcplaced by the redllced mass 
M ·111 

P = --'-. For large 
m,,+M 

distanees (r -> 00), V ~ 0 and we have E = h't?/2111,. Inserting into Eq.[2.10] leads to the wave 

equatioll 

2-10 



(6+k') V ~ "k) v 

11 (d ~ 2;,';" V (r) 

Thc wave equation is solved by the appropriate Greenfunction 

i :rk-tj 
Gk-r') ~ Ir-r'j 

11 (I) V(I) ~ f dl' 0 (I-I') 11(1') v(r') 

(2.11) 

(2.12a) 

(2.12b) 

(2.12c) 

where GÜ.:) is the Greenfunction solving the wave equation with the 5function as 

inhomogeneity. Using Eq.[2.12c] the wave Eq.[2.II]may be fomlally solved by 

f dl' G(r-r') lI(r') v(r') (2.13) 

In Eq.[2.13] the first part is the solution of the hOl11ogenous equation and thc seeond part the 

partieular solution of the inhomogeneous one. The integral Eq.[2.13] may now be solved by 

iteration. Starting with the incoming wave t/ = eikr as the zero order solution, the v+ 1 order 

is obtained from thc order vby 

4JT f Gk-r') 1I(r') V' (r') d'l' (2.14) 

In the Bont approximation wc consider the first order solution wh ich describes single 

scattering processes. All lligher order processes are then qualified as multiple scattering 

events. Thc Born approximation is valid far weak potentials. ( 0"/01 ) « 1 where a is the size 
a 2 , ff 

of the scattering object. Fm a single nucleus this cstimation givcs about 10,7 and the Bont 

approximation is weIl fulfilled. 
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We note olle import8llt exception, the dynamical scattcring thcory, which cOllsiders the 

scattering problem e10se to a Bragg reflection in a crystal. Then multiple beam intcrferences 

are important and the Born approximation ccases to apply. For most practical purposes, 

however, the Born approximation is valid. Undcr the Born assumptioll the scattercd wave 

function bccomes 

(2.15) 2m" 
tT v (() e

i
" 

In order to arrive at a final cxpression, we have 10 expand all express ions containing rand [' 

around [. Thcrcby, we consider Ihat [' is a sampie coordinate and small compared to r.. We 

have 

Ir-r'j - 1'-(. grad (r) 1' - [.' 

Inserting Eq.[2.16) into Eq. [2.15) gives 

!p ' 
eil, 2m. ( .. .. V r') e'''-tT I' 

direction oflhe scattered wave k' 

Eq.[2.17)lllay be written as 

m" 
2" n' 

/(!l) 

whieh leads to the final expression for the cross seetion Eq.[2.8) 
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I' 

(2.16) 

(2.17) 

(2.18) 



(2.19) 

We now also allaw for illclastic processes, where the sampie undergoes a change of its St8tc 

from 1...1) --t 12'). For the cross section wc now also havc to considcr the changcs ofstate as 

weil as different length of the wave vectors of the incoming and outgoing waves, wh ich lead 

to faetars k' and k in the eurrent calculation. 

(2.20) 

Thc scattcring cvent must fu1fill cncrgy and momenhlm conservatioll. With that we arrive 

finally at the double differential cross seetion 

a'(J' 
ao arv 

k' . (~)' L: P, L: (k',,i' lVi k,,i)' a(t"" + EJ. - E,,) (2.21) 
k 2Tr t, ..1 ..1' 

Thc summation aver A is carried out aver all possible initial states A of the system with their 

appropriate probability PA.. The sum over A' is the sum avef all final states, the 5function 

takes eare of the energy conservation, thereby fl (}) is the energy transfer of the neutron to the 

system. This double differential eross section will be discussed in detail in the lecture on 

correlation functions. 

2.6 Elemcntal'Y scattering pl'occsses 

2.6.1 Thc Fcrmi pseudo potential 

The interaetion of the neutron with a nucleoll oeeurs Ullder the strong interaetion on a Icngth 

scale of 1.5 . lO-15m. For that process, the Born criteriurn is not fulfilled and for the scattering 

proeess on a single nucleus the Born series would have to be sUlllmed Up. Fortunately, this is 

a problem of lluclear physics and for the purposes of neutron seattering a phenomenological 

approach suffiees. Considering that the wavelengths of thennal neutrons are in the order of 

lO·IOm we realize, that they are much larger than the dimension of a nucleus of about lO-15m. 
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Therefore, for any scattering event we may perfonn aseparation into partial waves and 

consider only the isotropic S-wave scattering. These scattering processes may be described by 

one parameter the scattering length b = b l + j . b 2. Thereby b1 describes scattering, while b2 is 

the absorption part. For thermal neutrons the seattering potential of a single nucleus becomes 

(Fermi pseudo potential) 

v([j = 21( tI' bö (r-li) 
111" 

(2.22) 

The scattering lengths b have been measured as a function of neutron energy. Far thermal and 

lower encrgies the real parts of these scattering lengths are constant and depcnd in an non­

systematic way on thc nu mb er ofnucleons (sec Fig.2.7). 

We realize, that there are positive as weil as negative scattering lengths. Following a 

convenlion mosl of the scattering lengths are positive. In this case, we have potential 

scattering with a phase shift of 1800 betwccn Ihe incoming and scattered wave. Negative 

valucs result from resonance scattering where the neutrons penelrate the nuclei and creatc a 

compound nucleus. The emitted neutrons da not undergo a phase shirt. We also realize strong 

differences in the scattering Icngths for some isotopes. In particular important is the difference 

in scaHering length between hydrogen and deuterium (bi, = -0.374, bd = +0.667). This 

significant difference in scattering lenglh is the basis of all contrast variation experiments in 

soft condensed maHer research as weil as in biology (see later lectures). We also note, that the 

scattering lengths may depcnd on the relative orientation of thc neutron spin with respect to 

the spin of the scattering nucleus. Again a very prominent cxample is the hydrogen. There the 

scaHering length for the triplet state, neutron and hydrogen spins are parallel, amounts to 

btriplet::: 1.04 . lQ-12cm whilc the scattcring lenglh for the singlet situation, neutron and 

hydrogen spins are antiparallel, is b5ingltl = -0.474 . IO-12cm. 
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Figure 2.7: Scattering length ofnuclei for thclTIlal neutrons as a function of atomic weight. 

2.6.2 Cohel'cnt :lud incohcI'cnt scatterillg 

The scattering of neutrons depends on the isotope as weil as on the relative spin orient at ions. 

We now will look into the consequcnccs in regarding the elastic scattering from an ensemble 

of isotopes with the coordinates and scattering lengths {R, ,b,}. The pseudo potential of this 

ensemble has the fonn 

L: b, S(c - fi,) 
I 

with Eq.[2.18] we may calculate the matrix element of V between k and k' as 

(k' lVi k) ~ 2". fl' L: b, fe -I,., s(1' - R,) e'!! d' c 
111 I 

(2.23) 

(2.24) 

The matrix element is just a Fourier sum aver the atomic positions dccorated with the 

appropriate scattering length b,. The scattering cross section is obtained following Eq.[2.19]. 
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Thereby we now also consider the spin states of the nuclei before and aller scattering sand s ·. 

The initial state probabilities are given by Ps, 

da 

dn 
(2.25) 

We commence with spin independent interactions and assumc timt spatial coordinates and 

scattering lengths are not correlated - that mcans different isotopes are distributed randomly. 

Then Eq.[2.25] may be evaluated to 

(2.26) 

[n order to evaluate Eq.[2.26] furt her, we introduee two seatlering lengths averages - the 

mean square average and the Illean scatterillg length. They are given by 

b' =~ L b,' 
N, 

- I ~ 
b =- L...b, 

N, 

With these definitions. the average product of b, and b/ becomes 

(2.27) 

(2.28) 

Finally, introducing Eq.[2.28] into the expression for the cross seet ion Eq.[2.26] we obtain 

der = L [(1- "11') /,' + ,,".1,' ] exp iQ(ßI - EI') 
dn 11' -

(2.29) 

= N(/" _1,')+ /,' L expi~(ßI - EI') 
11' 

Obviously, the cross sectiOll contains two contributions. A coherent one where we have 

COllstructive interference of the neutron waves eminating from the different nuc1ei. This 
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scattering is observed with the average scattering length b. In addition Ihere exists incoherent 

scattering as a result oflhe isotope disorder. It is not able ofintcrference and isotropie. 

Wo now consider spin dependent scattering from one isotope with Ihe nuclear spin}. Both Ihe 

nuclear spin as weil as Ihe neutron spin are statistically distributed. There exist two compound 

spin statcs: 

(i) neutron and nuclear spin are parallel : then 1= j + Yl. This spin state has Ihe multiplicity 

of 2j + 2. 1Is scattering length is b +. 

(ii) neutron and nuc\ear spin are anti parallel J = j - y, the l11ultiplieity is 2j and the 

eorresponding scattering length equals b- . The a priory probabilities for the eompound 

spin slates are given by the number of possibilities far their rcalization divided by the 

total number. 

+ 2j + 2 
P = 2j + 2 + 2j 

p - j -
2j + 1 

Thc corresponding average scattering lengtlls bccome 

~ 
2j + 1 

(2.30) 

(2.31) 

We IlOW consider the proton as an example. Here j = Y2, b + = 1.04 . lO'12cm, 

b- = -4.74 · 1O. 12el11, p+ = v.., p' = Y<. Inserting into Eq.[2.31] we find b = -0.375 . 1O.12el11 

and Ti = 6.49 . 1O,24cm2. These va lues lead to a coherent cross section 

- 2 -2~ 2 
a(()h =4tr·b = 1.77·10 cm. For the incoherent cross seetion, we obtain 

(Ji~(' = 4tr · ([;2 - b2 ) ;::: 79.8 .10-24 cm2 . This value is the largest incoherent cross seetions of all 

isotopes and makes the hydrogen atom Ihe prime incoherent scalterer which can be exploited 

for hydrogen containing materials. 

2-17 



2.7 COlllpal'ison bcfween X-ray anti neutron scattering 

Other than neutrons, X-rays are scattered by the electronsJ whieh are distributed in spaee 

around the respective nucleus. This spatial distribution leads to an atomic form [actor whieh is 

lhe Fourier lransformed of the eleelron density distribution .q([). It depends in pl'ineiple on the 

dcgree of ionisation of a nueleus but not on the isotope. 

(2.32) 

Sinee the atomie radii (about 104 limes largel' than the radius of a nucleus) are comparable 

wilh Ihe wavelenglh, Ihe scatlering amplilude Jj(Q) depends slrongly on Q. Thus, wilh 

increasing scaHering angle the scattering intensity drops significantly. Furthennore
J 

the atom 

fonnfactor depends on the number of electrons Z and is given by 

(2.33) 

Thereby, Z is the Illimber of eleetrons of an atom or of an ion. Fig.2.8 displays sehematieally 

1 . r r I· ~ . f sin 8 t 1e atolllle lonnlaetor Ilonna Ized to one as a ulnctlOn 0 - - . 
A 

f 

sin 8 
.l. 

Figure 2.8: Schematie representation of nol'malized X-ray aud magnetic neutron scattering 
form faetors as a fllnetion of sin (J..t 
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For a spherieal eleetron distribution pk), fk) depend only on the absolute value of Q. For 

neutral atoms and possible ionic states they has been calculated by Hartree·Fock calculations 

and may be found tabulated. 

Since the atornic rann faetors depend on the atornic number, the scattering contributions of 

light atoms for X-rays are only weak. Thereforc, in stmchlre detemlinations the precision of 

the localization of such important atoms like hydrogen, carhon or oxygen is limited in the 

prescnee of heavy atol11s. Neutrons da not suffer from this problem sincc the scattering length 

for all atoms are abatlt equal. 

In partieular important is the ease of hydrogen. In the bound state the density distribution of 

the only eleetron is typiealty shifted with respeet to the proton position and an X-ray strueture 

analysis in principle cannat give the precise hydrogen positions. On the other hand, hanrling 

effeets which are important for the understanding of the chemistry, may be preeisely studied 

by X-ray elcctron density distributions. 

Atoms or ions with slightly different atom number Iike neighbouring elements in the periodic 

table are difficult to distinguish in X-ray experiments. Again. neutron scattering experiments 

also by the lIse of the proper isotope allow a by rar bettel' contrast creation. Such effects are in 

particular important for e.g. the 3d-elements. 

The paramagnetic moment of an atom or ion /1j results fonn the UIlI)aired electrons. The 

density distribution of these electrons -0m(r) is also named magnetization density 01' spin 

densi ty and is a partial eleetron density compared to the total electron density Pi(/') . Beeause 

of the magnetic dipole interaction. the amplitude of the magnetic neutron scattering is given 

in analogy 10 Eq.[2.32) as the Fourier transformed of the magnctization density Pi.',(/'). The 

nomlalized scattering amplitude 

(2.34) 
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is also named magnetie fonn faetor. If thc spin dellsity distribution is deloealised as e.g. for 

3d-elemcnts, the magnetic form faetor deeays even more strollgly than the X-ray analoguc. 

2.8 Conclusfall: \Vhy al'e neutrons illtcrcsting? 

Modem materials research taget her with the traditional scientifie interest in the undcrstanding 

of eondensed matter at the atomie seale requircs a eomplcte knowlcdge of thc arrangement 

and the dynamies of the atoms or moleeules and of their magnetie properties as weil. This 

infonnation ean be obtained by inves tigating the interaction of the material in question with 

varies kinds of radiation such as visible light, X-rays or synchrotron radiation, elcetrons, ions 

and neutrons. Among Ihem, neutrons play a unique role duc to the inherent properties 

discussed above 

• their dynamic dipole moment aJlows the investigations of the magnetic properties of 

materials. 

• their large mass leads to a simultaneous sensitivity to the spatial and temporal seales that 

are eharactcristic of atOlnic distances and motions. 

• neutrons interaet differently with different isotopes of the same atomic speeies. This 

allows the experimentator to paint selected atoms or moleeules by isotopes replaeement. 

• neutrons ean easily penetrate a thiek material - an important advantage for material 

testing. 

• the interaction of the neutron with a Ilucleus has a simple fornl (Born approximation) 

wh ich faeilitates the direct unambiguous theoretieal interpretation of experimental data. 
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A more thorough introdllction to neutron scattcring may bc found in thc following 

books: 

[I] Bacon G.E., Neutroll Diffractioll, Clarendon Press, Oxford (1975) 

[2] Bacon G.E. (Ed.), Fifty Years 0/ Nelllroll Diffractioll: The advellt 0/ Neutroll 
Scallerillg, Adam Hilger, Bristol (1986) 

[3] Bee M., Quasielastic Neutron SCGttering: Principles mld ApplicGtiollS in Solid Stale 
Chemist,)" Biology alld Materials Sciellce, Adam Hilger, Bristol (1988) 

[4] Lovesey S.W. and Springer T. (Eds.), DYllamics 0/ Soihis alld Liquids by Neutroll 
Scallerillg, Topies in Current Physies, Vol. 3, Springer Verlag, Berlin (1977) 

[5] Lovesey S.W., TheOlY o/Neutroll Seallerillgji"om COlldellsed Maller, Vol. I: Nuclear 
Scaltering, Val. 2: Polal'izatioll Effecls alld Maglletic Scaflering, Clarendon Press, 
Oxford (1984) 

[6] Sköld K. and Priee D.L. (Eds.), Methods 0/ Experimelltal Physies, Vol. 23, Part A, B, 
C: Neutroll Seallerillg, Aeademie Press, New York (1986) 

[7] Springer T., QUGsielaslic Neutron Scattel'illglor Ihe Illvesligatioll 01 Diffusive Motiolls 
in Solids alld Liquids, Springer Tracts in Modern Physics, Val. 64, Springer Verlag, 
Berlin (1972) 

[8] Squires G.L., Illtroduelioll to the TheOlY 0/ Thermal Neutroll Scatterillg, Cambridge 
University Press, Cambridge (1978) 

[9] Williams W.G., Polarized Nelllrolls, Clarendon Press, Oxford (1988) 

[10] Willis B.T. (Ed.), Chemical Applicatioll 0/ Thermal Neutroll Scallerillg, Oxford 
University Press, Oxford (1973) 

[11] Windsor C.G., Pulsed Neutroll Scatterillg, Taylor & Francis, London (1981) 
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3. Elastic Scattering from Many-Body Systems 

Thomas Brückel, [FF, FZ-Jülich 

3.1 Intl'oductiOI1 

So rar \Ve have learnt about the production of neutrons and theie interaction with a single 

atom, ]n this chapter, \Ve will discuss the scattering of thermal neutrons from a sampIe 

containing many atoms. In the first part, \Ve will assumc timt the atoms are non-magnetic and 

only the scattering from thc llucJeus will be considered. In the second part, wc will discuss the 

scattering from the spin- and orbital- angular momentUll1 oflhe electrons in a magnetic solid. 

For simplification, we will assumc in this chapter that Ihe atoms are rigidly fixed on 

cquilibrium positions, i. e. they are not able 10 absorb recoH energy. This assumption is 

certainly no longer valid, if Ihe neutrons are scattered [rom agas, espccially in the case of 

hydrogen, where neutron and the atom have nearly the same mass. In this case, the neutron 

will change its veloeity. respcctivcly its energy. during the scattering cvent. This is just the 

process of moderation and without this so-ca lied inelastic scattering (i. e. scattering conneetcd 

with a change of kinetic energy of thc neutron) we would not have thermal neutrons at all. 

Also when scaltered [rom asolid (gi ass, polyerystalline or single erystalline material) 

neutrons can change their velocity for example by ereating sound waves (phonons). However, 

in the case of scattering from asolid, there are always processes in whieh the recoi! energy is 

being transfcrred to the sampie as a whole. so that the neutron energy change is negligible and 

the scattering process appears to be elastic. In this chapter we will restricl ourselves to only 

these scattering processes, during whieh the energy of the neutron is not changed. In 

subsequent chapters, we will learn how large the fraction of these elastic scattering processes 

is, as compared to all scattering processes. 

Quantum mechanics teils us that lhe representation of a neutron by a particle wave field 

enables us to dcscribe interference effects during scattering. A sketch of lhe scattering process 

in the so-called FrazmhoJer approximation is given in figure 3.1. 
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source 
Q = !s - k' 

28 "plane wave" 

sam pie 

Fig. 3. J: A sketch 0/ (he scaltering process in fhe Fl'mmhofer approximation, in which it is 

assllmed that plane waves are illcidenl 011 sampIe Gnd detector due /0 fh e flic' Ihal 

file distance sOlll'ce-sample {md sample.defeclol', I'espec/ively, is signijlcantly 

larger than fhe size a//he sampie. 

In the Fraullhofcr approximation it is assumed that the sizc of the s8mple is much smallcr than 

the distance between sam pie and samce and the distrulce betwecn sampIe and detector, 

respectively. This assumption holds in most eases for neutron scattering experiments. Then 

the wave field illcident on the sampie can be described as plane waves. \Ve wi ll furt her 

assume Ihat the source emits neutrons of one given energy, In a real experiment, a so-called 

monochromator will seleet a certain energy from the white reactor spectmm. Altogcther, this 

means that the incident wave can be complctcly described by a wavc vector k. The same 110Ids 

for the wave incident on the detector, wh ich can be describcd by a vector ~. In the case of 

elast ic scattering (diffraction), we have: 

k = 16:1=16:1 = k'= 2; (3.1) 

Let us define a so-ca lied scatterillg vec/or by: 

(3.2) 

The magnitude of the scattering vector can be calculated from wave length A and scattering 

angle 29 as folIows: 
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Q = lfil = ~ k 2 + k'2 - 2kk' cos2fJ 

Q 4".. fJ => =-5111 
A 

(3.3) 

During a scattering experiment, the intensity distribution is being determined as a function of 

the scattering vector: 

(3.4) 

The proportionality factors arise [rom the dctailed geometey of the experiment. OUf task is to 

determine the arrangement of the atoms in the sample from the knowledge of the scattering 

cross section dcr/dO(Q). Thc relationship bctween scattered intensity and the structure of the 

sampie is especially simple in thc approximation of the so-called killen/atic scaftering. In this 

ease, multiple scattering events and the extinction ofthe primary beam duc to scattering in the 

sampIe are being neglected. Following figure 3.2, the phase difference betwcen a wave 

scattered at thc origin of the co-ordinate system and at the position! is given by: 

(3.5) 

r 

k 

Fig. 3. 2: A sketch illustrating fhe phase differel1ce between a beam beillg scallered at the 

origill olthe co~ordil1afe system and a beam scatlered at fhe position [. 

The scattered amplitude at the position r is proportional to the scallering power density Ps (c). 

The meaning of Ps in the case of neutron scattering will be given later. The total scattered 

amplitude is given by a coherent superposition of the scattering from all positions! within the 

sampie, i. e. by the integral: 
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iQ·r 3 
A =!p,(O·e--d ,. (3.6) 

I.e. the scattered amplitude is COIUlccted with the scattering power density PsÜ.:) hy a simple 

Fourier transfonll: 

A F( Ps ( rl ) (3.7) 

A knowledge of the scattering amplitude for all scaltering vectors Q allows us to determine 

via a Fourier transform the scattering power density uniqucly. This is lhe complete 

information on the sampie, which can be obtained by the scattering experiment. 

Unfortunately, life is not so simple. There is thc more teclmical problem tllat OllC is unable to 

dctcrmine the scattering cross section for llil valltes of Q. The mOfe fundamental problem, 

howcver, is givcn the fact that nOTmally the amplitude of the scattered wave is not 

measurable. Instend only the scattered intensity 1 - IAI2 
can be dctermined. Thercfore, the 

phase infonllatioll is lost and the simple reconstruction of the scattering power density via a 

Fourier transform is no longer possible. This is the so-ca lied phase problem of scattering. 

The question what we can learn about the structure of the sampie from a scattering experiment 

despite this problem will be the subjeet of the following ehapters. For the moment, we will 

ask ourselves the questioll, which wavelength we have to choose to achieve atomic resolution. 

The distance between neighbouring atoms is in the order of a few times 0.1 nm. In (he 

following we will lIse the "natural atomic length unit" I A:::: 0. 1 nm. '1'0 ohtain infomtation on 

this length seale, a phase differenee of abollt Q . a '" 2 1t has to be achieved, compare (3.5). 

According to (3.3) Q '" 2; for typical scaltering angles (2 e '" 60°). Combining these two 

estimations, \Ve end up \Vith the requirement that the wavelength A has to be in the order of 

the inter-atOlnic distances, i. e. in the order of I A to achieve atomic resolution in a scattering 

experiment. This condition is ideally fulfilled for thermal neutrons. 
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3.2 Fundamcntal Scattc .. ing Thcol'Y 

In this chapter, we will give a simple formulation of scattering theory. Our purpose is 10 

dcrive (3.7) from fundamental principles. The conditions under which (3.7) holds and the 

limitations of kinematical scattering theory will thus become elearer. During a first reading 

this section can be skipped. More details can be found in [I]. 

In quantum meehanies, neutrons are deseribed as particle wave fields through the Schrödinger 

equation: 

( 
1i2 ) a H'I'= --- 6.+V 'f'=ili-'f' 

2m" 81 . 
(3.8) 

\f1 is the probability density amplitude, V the interaetion potential. In the case of purely elastie 

scattering E = E', the time dependenee cau be described by the factor exp( - i f/) . Assuming 

this time dependence, a wave equation for the spatial part ofthe probability dcnsi ty amplitude 

~I can be derived from (3.8): 

(3.9) 

In (3.9) wc have introduced a spatially varying wave veetor with lhe magnitude square: 

(3.10) 

Solutions of(3.8) in empty space can be guessed immcdiately. They are given by plane waves 

with k2 = 2 11~1I E . Thc relations between magnitude of the wave 
r, 

vector, wave length and energy ofthe neutron E can be \vritten in practieal units: 
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~ 0.695) E[me V] 

A[A]~ 9.045/)E[meV] 

E[meV]~ 81.8d[A] 

(3.11 ) 

Ta give an example, neutrons of wavelength A :::: 2.4 A have an energy of 14.2 meV with a 

magnitude oflhe neutron wave vector ofk = 2.6 A·1, 

Ta obtain solutions of the wave equation (3.9) in matter, we reforlllulate the differential 

equation by explicitly separating the interaction tenn: 

(6. + k2 }r = 2n~1I V . 1f' =: X 
r. 

(3.12) 

. Hefe k denotes the wave vector far propagation in empty space. The advantage of this 

fonnulation is that the solution of the left hand side are already known. Thcy are the plane 

waves in empty space. Equation (3.12) is a linear partial differential equation, i. e. the 

superposition principle holds: the general solution can be obtaincd as a linear combination of 

a comp!ete set of solution funetions. The coefficients in the series are detennined by the 

boundary conditions. To solve (3.12) one can apply a method developed for inhomogeneous 

linear differential equations. For the moment, we assume tllat the right hand side is fixed 

(givcn as X). We define a "Greens-fimcliol1" by: 

(3.13) 

We can easily verify that a solution of(3 .13) is given by: 

(3.14) 

IIII~ 
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The meaning of (3.14) is immediately clear: the scattering from a point-like scatterer (0-

potential) gives a emitted sphcrical W8ve. 

Using the "Greens-function" GC!:,['), a formal solution of the wave equation (3.12) can be 

given: 

(3.15) 

Here, we have taken the initial conditions of a incident plane wave \jIo inlo account. That 

(3.15) is indeed a solution of (3.12) can be easil)' verified by substituting (3 .15) into (3.12). If 

we finally substitute the definition o[X. olle obtains: 

(3.16) 

(3.16) has a simple interpretation: the incident plane \V.ve \jIo(r) is superimposed b)' spherical 

waves cmitted from scattering at positions r'. The intensity of these spherical waves is 

proportional to the interaction potential V(r') and the amplitude of the wave field at the 

position r'. Ta obtain lhe total scattering amplitude, we have to integrale aver the entire 

sampie volume. 

However, we still have not solved (3.12): our solution \l' appears again in the integral in 

(3.16). In other words, we have Iransfonned differenlial eqllation (3 .12) into an integral 

eql1ation. The advantage is that for such an integral equatioll, a solution can be found by 

iteration. In the zcroth approximation. we neglect the interaction V complctely. This gives 'V 

= \.V0. Thc next higher approximation for a weak interaction potential is obtained by 

substituting this solution in lhe fight hand side of (3.16). The first non-trivial approximation 

ean thtls bc obtained: 
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(3.17) 

(3.17) is nothing else but a mathematical formulation of lhe well-known Huygel1s Pl'i11c;ple 

for wave propagation. 

The approximation (3.17) assumes that the incident plane wave is only scattered Dllce from 

the potential Ver'). For a stronger potential and larger sampie, multiple scattering processes 

ean aceur. Again. this ean be deduced from the integral equation (3.16) by further iteration. 

For simplification we introduce a new version of equation (3.16) by wTiting the integral over 

the "Greens function" as operator G: 

(3.18) 

The so-called first Bom approximation, which gives lhe kil1emat;cal scallering tlte01Y is 

obtained by substituting the wave function ~,on the right hand side by \l: 

(3.19) 

This first approximation ean be represented by a simple diagram as a sum of an incidellt plane 

wave and a wave scattered Ollee from the potential V. 

--
The second approximation is obtained by substituting the solution of the first approximation 

(3.19) on thc fight hand side of equation (3.18): 

",2 = ",0 + GV",I 

=",0 + GV",o + GVGV",o (3.20) 

Or in a diagrammatic form: 
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I. e. in the second approximation, processes arc being taken into account, in which the neutron 

is scattered twice by the interaction potential V. In a siJlli1ar mmmee, all higher order 

approximations can be calculated. Iltis gives the so-ca lied Born sedes. For a weak potential 

and small sampies, this series converges rat her fast. Often, the first approximation. Ihe 

kinematic scattering theer)" holds very weil. This is especially the case for neutron scattering. 

where the scattering potential is Tathee weak, as compared to x-ray- oe eleetron- scattcring. 

Duc to the strang Coulomb interaclioH potential, the probability for multiple scattering 

processes of eleclrons in solids is extremely high, making the interpretation of electroll 

diffraction experiments very difficult. But even for neutrons, the kinematic scattering theory 

can break down, far example in the ease of Bragg scattering frol11 largc ideally perfect single 

crystals, where the Bom series does not converge. The wave equation has to be solved exactly 

under the boundary conditions given by the crystal geometry. For simple geometries. 

analytical solutions cau be obtained. This is then called the dynamica/ scattering IlzeOl)l. Since 

for neutrons, the kinematical theory holds in most eases, or multiple seattering events eau be 

eorreeted for easily. wc will 110 longer diseuss dynamieal theory in \Vhat follows and refer to 

(1,2]. 

Let 1.IS return to the first Born approximation (3.17). According to Fraunhofer, we assume in a 

further approximation that the size of the sampie is significantly smaller than the distance 

sample-detector. The gcometr)' to calculate the rar field limit or (3.17) is given in figure 3.3. 

~ 
~ ... detector 

k scattering volume 

Fig. 3. 3: Scallering geome/Jy /01' flie ca/cll/Miou 0/ flie /al' fie/d limit al Ihe defeclor. In fhe 

FrtlllllllOfer approximation, we aSSIlIlIe Ihal !EI» 1['1 . 
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Under the assumption IRI » Ir'l. we can deduce from figure 3.3 the following approximation 

for the emitted spherieal wave: 

exp~klr - d) " exp(ik(R - 1"'·11 l)" cxpikR . e-i~"( 
Ir-d R R 

(3.21) 

The probability density ampl itude for the scattered \Vave field in the limit of large distances 

from the sampie is thus given by: 

2 ikRf 'Q " 111" e Vl"')e" L d 3 , + - --- \! - r 
h2 4nR 

(3.22) 

This is just the sum of an incident plane wave alld a spherical wave cmitted from the sampie 

as a whole. rhe amplitude ofthe seattered wave is givcll according to (3 .22): 

- F[V(r)] (3.23) 

1. e. the amplitude of the scattered wave is proportional to the Fourier transform of the 

interaetion potential in the sampie. In the ease of pure nuclear scattering of neutrons, this 

interaction potential is the Fermi-pseudo-polenlial (see proceeding chapter). Finall y, the 

measured intensity is proportional to the magnitude square ofthc scattering amplitude: 

(3.24) 

3.3 Thc Pattcrson- or Pair-Correlation-Function 

As already mentioned in the introduetion. the phase information is lost during the 

measurement ofthe intensity aceording to (3 .24). For this reason, lhe Fourier transform ofthe 

scattering potential is not directly aecessible in most scattering experiments (note, however 

tllat phase information can be obtained in certain eases). In this section, wc will discuss, 

which infomlation can be obtained from the intensity distribution of a scattering experiment. 
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Thc same problem will be dealt with in a more general context in the chapter on correlation 

functions. Substituting (3.23) into (3.24), we oblain for the magnihlde square of tllC scattering 

amplitude, a quantity directly accessible in a scattering experiment: 

= Jj d 3rd3r'V(?JV' k'l</~(r-() 

= f d3Rfd3rV{R + r)V' (r),ig.[ 

t 
[. -r.'=: E. 

This shows that the scattered intensity is proportional 10 Ihe Fourier transform of a function 

PCR): 

(3.25) 

However, this function is not the interaction potential, but the so-called Palterson-jzmclioll: 

(3.26) 

This function caITelates the value of the interaction potential al position r, with the vaille at 

the position I + R. integrated over the entire sampie. If, avcraged aver the sampie, no 

correlation exisis between the vallIes oflhe interaction potential at position Rand [+ ß. then 

the Patterson function PeR) vanishes. If, however, a periodic arrangement of a pair of atoms 

exists in the sampie with a difference vector for the positions ß. then the Patterson function 

will have an cxtremUlll for this vector ß. Thus, the Patterson function reproduces all the 

vectors cOIUlccting one atom with an other atom in a periodic arrangement. In fact , the 

Patterson function is just a special case of the pair correlation functions accessible by 

scattering. 

The meaning of the Patterson function can be iIIustrated by a simple example. Figure 3.4 

shows an arrangement ofthree atoms in the form ofa tri angle. \Ve can construct the Patterson 

function by copying this original pattern and shifting the copy with respect 10 the original by a 

difference vector ß. In this case of a discrete distribution of the interaction potential Ver) (we 

also assume that Ver) is real). we can just count how many points of the original alld the 
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translated pattern coincide for this given difference vector R. On1y jf two or more atoms 

coincide, will we have a non-vanishing value for P(ß) according to (3.26) for this discrete 

distribution of potentials. In this malmer we can construet the Patterson functiol1 given in 

figure 3.4. 

Patterson function 
, Jt 

.-~~-~:. 
~ ~ I original pattern 

~ .. . 
Fig. 3. 4: Conslruc(iol1 oJlhe Pallerson JUllclion JOI' a pallem, whicll COllSiSls oJ Ihree atoms at 

Ihe corners oJ a Iriangle. 

It is this fUllction which we would obtain by Fourier transforming the diffraction pattern of a 

periodic arrangement of our original triangular pattern. One can easily see that in thc 

Patterson funetion all vectors eonnecting Olle atom with any other one in t.he original pattern 

ean be obtained. In our simple ease, the original pattern can be guessed. However. the guess is 

not uniqlle: we eould also ehoose the mirror image. 

3.4 Scattcring from a PCl'iodic Latticc in thne Dimensions 

As all example for the applicatioll of fommlas (3.23) alld (3.24), we will IIOW discuss Ihe 

scattering ofthermal neutrons from a single crystal. More precisely, we will restriet oursclves 

to the ease of a Bravais lattice with one atom at the erigill of the unit eel l. \Ve further aSSllltlc 

that there is only olle isotope with scattering length b. The single erystal is finite with N-, M­

and P-periods along the basis veeters !11 12 and ~. The scattering p'otential l which we have to 

use in (3.23) is a sum over the Fcrmi-pseudo-potent ials of all atoms: 

N- I M-I P- 12tth2 
v(d= L L L --·b·J(r-("·f!+I11 ·!!.+ p.~)) (3.27) 

1/=0 m=O p=O "'" 

The scattering amplitude is the Fourier transform ofthe scattering potential (compare 3.23): 
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A(Q) = IbJ e'(f"t5V: - (11' '1 + /1/' Q + p' !Jj/3,. 
lI ,m,p 

N - \ iIlQ.aM- 1 imQ.b P- \ ipQ.c 
=b I e -- I e - - I e - -

11 =0 ~mtO ~ p=O 

geometrical series 

Summing IIp the geometrical series, we obtain the scatlcred intcnsity: 

. 2 1 NQ . 2 1 MQ b fn) fn12 2 Sill '2 . '1 Sill '2 '-
I\g -IAIQ =Ibl · -. -

sin21 Q. a si1l21Q. b 2- - 2- -

sill21 pQ'C 
2 --

sin21Q . c 2- -

(3.28) 

(3.29) 

As expected, the scattered intensity is proportional to the magnitude square of the scattering 

length b. The depcndence on the scattering vcctor Q is givcn by the so-ca lied LOlle-fimclion. 

The latter is plotted along one lattice direction!! in figure 3.5. 

30 
"Laue" functlon N=5 and N=10 

N' - N = 10 

20 

-. 
10 

~"'Na 

~ = 5 

,~ru 11<> .~I 111<> ~I 1lI., 
o • 2 • 

o 
Qa ~ 

Fig. 3.5: Lalle-fimclioll along fhe taltke direc(ion f!. Jor a laltke with 5 alld 10 periods. 

respeclively. 

The main maxima are found at the positions Q = n· 2:r . The maximum intensi ty scales with 
(I 

the square of the Ilumber of periods. the half-width is given approximately by ~. The 
N·n 
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more periods contribute to coherent scattering, the sharper and higher are the main peaks. 

Between the main peaks, there are N-2 side maxima. With increasing number of periods N, 

their intensity becomes rapidly negligible compared to the intensity of the main peaks. Thc 

main peaks are of course the weil known Bragg-l'ejleclioJls, which we obtain when scattering 

from a crystal lattice. Froll1 the position of these Bragg peaks in 1l10mentum space, the ll1etric 

ofthe unit cell can be deduced (Iattice constants a, b, c and unit cell angles a, p, y). The width 

of the Bragg peaks is determined by the size of the coherently scatlering volume (parameters 

N, M and P), among other factors. Details will be givcn in sllbsequent chapters. 

3.5 Cohercnt nnd Incohcrcnt Scattcring 

In the last section, we assumed timt we have the same interaction potential for alllat1ice sites. 

In the case of x-ray scattering, this can be weil realised for a chernically clean sam pIe, for 

example a Ni single crystal. Howcver, neutrons are scattered from Ihe Illiclei and for a given 

atomic spccies, there ean exist several isotopes with different scattering lengths (five different 

isotopes for the case of nickel). Moreover, the scattering length depends on the orientation of 

the nuclear spin relative to the ncutron spin. In this section we will discuss Ihe effecls oflhese 

special properties of the interactioll of neutrons and nuclci for Ihe scatterillg from condensed 

matter. 

Let us aSSUllle an arrangement of atoms with scattering lellgths bj on fixed positions Ri. For 

this case, the scattering potential writes: 

(3.30) 

Tlte scattering amplitude is obtained from a Fourier transfonn: 

(3.31) 

When we calculate the scattering cross secHon, wc have to take into account that the different 

isotopes are distributed randomly ovcr all sites. Also the nuclear spin orientation is randorn, 

except for very low temperatures in external magnetic fields. Therefore, we have to average 

over the random distribution of the scattering length in the sampie: 
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~~ (Q) = IA(Q12 =l'Lbi e'(l1l, . 'Lbje -i(lßi ) , } 

av rage over the random distributl1 

= LL(bibjri(l(ß'-ßi ) 
, } 

(3.32) 

In calculating the expectation value ofthe product ofthe two scattering lengths at sites i and j, 

wc have to take inlo account tllat according to the above assumption, the distribution of the 

scattering length on the different sites is completely uncorrelated. This iIllplies timt for i :t. j, 

the expectation value of Ihe product equals 10 the product of the expectation values. Onl)' for i 

= j. we have a cOlTclation, which gives an additional term describing the mean quadratic 

deviation [rom lhe average: 

(3.33) 

Therefore. we can write the cross sectiOll in the following form: 

da (Q)= (b)2ILe'(l·ß' 1

2 
do. i 

11 colleren/" 
(3.34) 

+ N((b - (b)f) 11 illcoherelllll 

The scattering cross sectien is as a sum of two terms. Only the first term contains the phase 

factors e iQ
·
ß , which result from the coherent superposition of the scattcring from pairs of 

scatterers. This term takes into account interference effects and is therefore named coherenl 

scaller;ng. Only the scattering length averaged over the isotope- and nuclear spin- distribution 

enters this term. The second tenn in (3.34) does not contain any phase information and is 

proportional to the ntlmber N of atoms (alld not to N2 !). This term is not due to the 

interference of scattering from different atOms. As we can see from (3.33) (Iine i ::::: j), this 
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term corresponds to the scatterillg from single atoms, which subsequently superimpose in an 

incoherent manner (addillg intensities, not amplitudcs!). This is the reason for the intensity 

being proportional to the number N of atoms. Thcrefore the second term is called iucoherent 

seattering. Coherent alld incoherent scattering are iIlustrated in figure 3.6. 

k' 
V %-

; ; ; ; ; 

ScaUering from the 

= = = = = regular mean lalliee 
::::) Interlerence 

+ 

Nx 

+ 
Scattering fram randomly 

distributed defecls 

::::) isotropie seattering 

Fig. 3.6: Two-dimeusional illustration o[ the scattel'ing process /i'om a laltice o[ N atoms o[ 

a givell chemical speeies, [ar which hl'o isotopes (.wwll dotted eire/es aud large 

hatehed eire/es) exist. The area o[the cfrele represel1ts the seaftering cross seetiOlI 

oJ Ihe sillgle isolope. The illcidelll lI'al'e (Iop pari oJ Ihe figure Jor 0 special 

arrangement o[ the isotopes) is scallered coherently ol1ly /i'om the Q\'erage lalliee. 

This gives rise to Bragg peaks in certain direclions. In the coherent scattering 0111)' 

the average seal/ering lengtll ;s visible. Besides these intel/erenee phenomella, an 

isotropie background is obsene(/, whieh is proportional to the mal/bel' N o[ atoms 

and 10 the mean quadratie deviation /i'011l the average sealtering lellgth rhis 

il/coherent part o[the scattering is represellted by the lower part o[thefigure. 

The most prominent example for isotope illcoherellce is elementary nickel. The scattering 

lengths of the nickel isotopes are Iisted together \Vith their natural abundanee in table 3.1 [3]. 

The differences in the scattering lengths for the various nickel isotopes are enonnous. Some 

isotopes even have negative scattering lengths. This is due to resonant bound states, as 

compared to the usual potential sC8ttering. 

3-16 



Isotope Natural Abundance Nuclear Spin Scattering Length [fm] 

"Ni 68 .27 % 0 14.4(1) 

"'Ni 26.10 % 0 2.8(1) 

"Ni l.l3% JI, 7.60(6) 

"Ni 3.59 % 0 -8.7(2) 

"Ni 0.91 % 0 -0.37(7) 

Ni 10.3(1) 

Tab. 3./: Tlte scallering lellgths o[ fhe nickel isotopes and fhe resultillg scaflering lenglll 0/ 

/lalllral '8Ni [3}. 

Neglecting the less abundant isotopes 61 Ni alld 6-I Ni, the average scattering Icngth is calculated 

as: 

(b) '" [0.68 ·14.4 + 0.26·2.8+ 0.04· (- 8.7)Jfi/l '" 10.2ji/l (3.35) 

which gives (he total coherent cross section of: 

"" O'coll",,,, =4"(b}2 '" 13.1 barn (exacI: 13.3(3)barn) (3.36) 

Thc incohercllt scattering cross section per nickel atoms is calculated from the mean quadratic 

deviation: 

a:':~~~;;;"" = 4" [0.68 . (14.4 - I 0.2)2 + 0.26· (2.8 _10.2)2 

+ 0.04· (-8.7 - 10.2j2 ] jill 2 

'" 5.lba/'ll (exacl : 5.2( 4)ba/'ll ) 

(3.37) 

Values in parentheses are the exact values taking into accoullt the isotopes 61Ni and 64Ni and 

the nuclear spin incoherent scattering (see below). From (3 .36) and (3.37), we learn that the 

illcoherent scattering cross section in nickel amounls 10 more than one third of the coherent 

scattering cross section. 
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The most prominent example for IIIIe/ear Spil1 i11coJrel'em scaltering is elementary hydrogen. 

The nuc1eus of the hydrogen atom, the proton, has the nuc1ear spin] = Yz. The total nuc1ear 

spin of the system H + n can therefore adopt twa values: J = 0 and J = 1. Each state has its 

own scattering length: b. for the singlett state (J ~ 0) and b+ for the triplett state (J ~ 1) . 

compare table 3.2. 

Total Spin Sc"ttering Lengtll Abundancc 

J~O b. ~ - 47.5 fm 1 
-
4 

J - 1 b+ - 10.85 fm 3 
-
4 

<b> - - 3.739(1) fm 

Tab. 3.2: Scalferillg lellglhsjor hydrogell [3I 

As in the case of isotope incoherence, the average scattering length can be calculated: 

(3.38) 

This carrcsponds to a coherent scattering cross section of abatlt ~ 1.76 barn [3]: 

=> CI eoherelll ~ 41f(b)2 ~ 1.7568(10) banz (3.39) 

The nuclcar spin incoherent part is again given by the mean quadratic deviation from the 

average: 

III1e/ear spill ~ 4"[-4
1 

(- 47.5 + 3.74)2 +-43 (10.85 + 3.74)2]/1112 ~ 80.2 banz a illcoherellt 

(exael: 80.26(6) banz) (3.40) 

Comparing (3.39) and (3.40) , it is immediately c1ear that hydrogen scatters mainly 

incohercntly. As a result, we observe a large background for all sampies containing hydrogen. 
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\Ve note immediately that wc should avoid all organic glue for fixing our sampies to a sampIe 

stick. Finally, we note that deuterium with nuclcar spin I = I has a much more favourable 

ratio between coherent and incoherent scatterillg: 

a2,h. = 5.592(7)barn; af.c. = 2.05(3)barn (3.41) 

The coherent scatlering lengtlts of hydrogen (-3.74 fm) and deuterium (6.67 fm) are 

significantly different. This can be llsed for cant rast variation by isotope substitution in all 

sfimples containing hydrogen, i. e. in biological sampies or soft eondensed matter sampIes, 

see eorresponding ehapters. 

A further important element, whieh shows strong nuclear incohercnt scattcring, is vanadium. 

Natural vanadium consists to 99,75 % ofthe isotope SIV with nuclear spin 712. By chance, the 

ratio between the scattering lengths b+ and b_ of this isotope are approximately equal to the 

reciprocal ratio of the abundances. Thcrefore, the col~erent scattering cross sectiOll is 

ncgligible and the incoherent cross seetion dominates [3]: 

a~oll =0.01838(12)barn; 
v 

aincoll = 5.08(6) barn (3.42) 

For this reasen, Bragg scattering of vanadium is difficult to observe above the large 

incoherent background. However, since incoherent scattering is isotropie, the scattering from 

vanadium can be lIsed to calibrate rnulti-detector arrangements. 

Here, we will not diseuss scattering lengths for further elements and refer to the values 

tabulated in [3]. 

3.6 Magnctic Neutron Scattcl'iug 

So far, we have only discussed the scattering of neutrons by the atOlllie nuclei. Apart from 

nuclear scattering, the next important process is the scattering of neutrons by the magnetic 

moments of unpaired eleetrons. This so-called magnetic neutron scattering comes about by 

the magnetie dipole-dipole interaction between the magnetie dipole moment of the neutron 

and the magnetic field of the lInpaired elcctrolls, whieh has spin and orbital angular 

momentum contributions (sec figure 3.7). 
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Fig. 3.7: Schemalic iIIustratioll 01 the interaclioll process 01 a neutron with the atomie 

magnetie moments via fhe dipole interaclioll. 

This magnetie neutron scattering allows us to study the magnetie properties of a sam pie on an 

atomie level, i. e. with atOlllic spatial- and atOlnie energy- resolution. A typical problem 

studied is the detennination of a magnetic structure, i. e. the magnitudes and arrangements of 

the magnetic moments within the sam pie. Besides the well-knowll and simple ferromagnets, 

fer whieh all moments are parallel, there exists a whole zoo of complicated fcrri- and 

antiferromagnetie struetures, such as helical struetures, spin density waves, ete, (compare 

figurc 3.8). 

Fig. 3.8: 

16 cb CU G 

,6 16 "C:P-l I 

CD <8 G l---l \ Eb <:p <:? C? I 8 G 

<:pI CD '0/ 1 Eb Cl G 

~J Q\ Q cb C9 G 

r~ ~%' 6 C'J G 

cb 0 G 

60 16 6 G G 
16 16 lc9 c9 G G 

Tm Er,Tm E, HO,Er Tb,Dy,Ho Gd,Tb.Df ., b) <' " 
., 

" 

Schemalic illustration 0/ (he magnetic slruclllres 0/ (he hexagonal rare ear/h 

me/als. Within the hexagonal basal plane, all moments are parallel. The figure 

shows the seq/leJlce 0/ moments in sllccessive planes along Ihe hexagonal e-axis. 

Besides simple lerromagl1elie phases (j), helical (e), conieal (d) and c-axis­

modulated slruelures (b) eIe. are observed. 
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These magnetic structures can be understood on the basis of magnetic intcractions, which 

again can bc detcrmined by neutron scattering from measurements of the magnetic excitat ion 

spectra . Magnetic structures are only stable in a certain range of theromdynamic parameters, 

such as temperature, pressure or magnetic field. As we approach the limits of astability 

region, magnetic phase transitions into a different magnetic phase accur. An example is the 

transition from a long~range magnetic order at law temperatures to a paramagnetic high 

temperature phase. By means of neutron scattering, thc spectra of magnetisation fluctuations 

e10se to a magnetic phase transition can be detemlined. Such measurements provide the 

experimental foundation of Ihe famous renormalisation group theory of phase transitions. 

In what folIows, we will give an illtroduction into tlte formalism of magnetic neutron 

scattering. Again, wc will restrict ourselves 10 Ihe case of elastic magnetic scattering. 

Examples ror magnetic scattering will we givcn in a later chapter. 

To derive the magnetic scattering cross section of thennal neutrons, we consider the situation 

shown in figure 3.9: a neutron with the nuclear moment ~t N is at position ß with respect to an 

clectron with spin S, moving with a velocity Ye. 

lin 

/ 

Fig. 3.9: Geome/IJI JOI" the derivation 0/ /he {nterac/ion belween neutroll ami electl"on 

Due to its magnetic dipole moment, the neutron interacts with the magnet ic field of the 

electron according to: 

v", =-)1 ·B -n -
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Here, the magnetic moment of the neutron is given by: 

(3.44) 

SI denotes the spin operator, JIN the nuclear magneton and YN = -1.913 the gyromagnetic factor 

of the neutron. The magnetic field R of an electron is due to a spin- and orbital- part R = .fu + 

!2L. The dipole field ofthe spin moment is given by: 

(" XR) !l.s =~x -;3-

The field due to the movement ofthe electron is given according to Biot-Savart: 

-e v xR B - _=..!!.......... 
-L - c R3 

(3.45) 

(3.46) 

The magnetic scattering cross sectiOll far a process, where the neutron changes its wave 

vectar from k to k' and the projection of its spin moment to a quantisation axis z from O'z to a z' 

can be exprcssed within the first Born approximation: 

da = (...!'!lL)2
1
(k'a jv Ika t 

dO 2trh2 - Z 111 - Z 
(3.47) 

As mentioned. we only cOllsider the single differential cross sectiOll for elastic scattering. 

Introducing the interaction potential from (3.43) to (3.46) in (3.47), we obtain after a iot of 

algebra [4, 5]: 

(3.48) 

The pre-factor y,ro has the value y,ro = 0.539 . 10'" cm = 5.39 fm. Here, Mi(Q) denotes the 

component of the Fourier transform of the sam pie magnet isa ti on. which is perpendicular to 

the scattering vector Q: 
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Ml. (Q)= Q x M(Q)x Q 

M(Q)= f MV)/fl rdJr 

(3.49) 

(3.50) 

The total magnetisatiOll is given as a sum of the spin- and orbital-anglllar- momentulll part 

according to: 

M(r)= M s0:)+ M L 0:) 

M s0:)= -2118 .~(r)= -2I1BL0V: - r;1):j (3.51) 

(3.48) teils HS lhat with magnetic neutron scattering. we are able to determine lhe 

magnetisation M(r) in microscopic atomic spatial co-ordinates !. Tltis gives a lot more 

information as a simple macroscopic measurement, where we obtain the ensemble average of 

the magnetisation over Ihe cntire sampie. \Ve also see from (3.48) that the orientation of the 

nuclear spin momenhllll of the neutron (represcnted by <Jz) plays an important role in 

magnetic scattering. This is not surprising, since magnetism is a vector property of thc sam pie 

and obviously there should be an interaction with the veetor property of the neutron, its 

nuetear magnctie momcnt. Therefore, the analysis of the change of the direction of the 

neutron nuclear moment in the scattering proeess should give us valuable additional 

information as compared to adetermination of the change of energy and momentum direction 

of the neutron alone. These so·called polarisation analysis experiments are discussed in the 

following chapter. For our present purposes, we will completely negleet these dependencies. 

Finally, to obtain an idea of the size of magnetie scattering relative to Hudear scattering, we 

ean replace the matrix element in (3.48) for a spin Y2 particle by the value I ~B. This gives us 

an "equivalent" scattering length for magnetie scattering of 2.696 fm for a spin Y2 particle. 

This value corresponds quite weil to the scattering length of cobalt, which means that 

magnetic scattering is comparable in magnitude to Iluclear scattering. 

In contrast to nuclear scattering, we ohtain for magnetic scattering a directional teml: neutrons 

only "see" the component of the magnetisation perpendicular to the scattering vector (see 

figure 3.10). 
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M Q 
Js' 

M, 

Fig. 3.10: Fo,. magJlelic neu/roll scallering. on/)' the compollenl M.J. o[ the magnetisatiOll 

pelpelldicular 10 fhe scaflering vecto1' Q is o[releVGl1ce. 

TImt only M.L gives rise to magnetic neutron scattering, can be understood from the nation 

that neutrons are scattered from lhe dipolar field of the electrons. This is depicted for {wo 

different geometries in figure 3.11. For the case that the magnctisat ion is parallel to the 

scattering vector, the planes for equal phase faetor cut though the dipolar field in such a way 

that duc to synullctry reasans, the field averaged over these planes vanishes. This is 110 langer 

lhe case, ifthe magnetisation is perpendicular to the scattering vector. This special directional 

dependence allows it 10 detenhine the oricntation ofmagnetic moments relative to the lattiee. 

M 11 Q M.lQ 
M 

Planes M 
with equal 
phase 
factor 

Q 

Fig. 3. J J: Illustralion oj Ihe directional depelldence jor {he scallerillg jrom a dipolar fielt!: in 

(he case where M 11 Q fh e dipolar field averaged over planes wifh equal phase 

jactors is zero, so ,hol 110 magnelic scatterillg oppears. 

A seeond speeiality of magnetie seattering as compared to nuelear seattering is the existenee 

of the so-called jO/'1II jacto/'. The fonn factor dcscribes the fact that the scattering amplitude 

drops with inereasing momentum transfer. This oeeurs because the objeet, from which we 

scatter, namely the electroll cloud of an atom, has a size comparable to the wave length of 

thermal neutrons. Sinee the distribution of the magnetic field for spin and orbital angular 

momentUll1 is completely different (eompare figure 3.12 for the ease of a cJassical Bohr orbit), 

different Q-dependencies ofthe corresponding form faetors result (compare figure 3.13). 
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Fig. 3.12: Schema/ie illustration o/Ihe magllelic field distribution dlte 10 spin - (S) (md 

orbital- (L) angular momelllum in/he case 0/ a Bohr orbit. nie magnetic jie/d dlle 

10 ,he spill moment ;s milch more spread out I/um fh e one due 10 lhe orbital angular 

momenlllJ1l. 
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Fig. 3.12: FOl'm-jactol' oj CI' {7, Bj. Due to the different distribution oj the magnetie jield jol' 

S aud L accordil1g /0 figure 3.11, a more rapid decl'ease 0/ (he scaltel'ing amplitude 

os a [lmclioJ1 0/ mamell/WJl transfer results [01' fhe spill mOmel1{1II1l. Fa/' the x-rny 

[Drill factar, Ille inner electrolls play Oll impor/ant role, tao. There!ore, Ihe x-ray 

fOl'11I factor drops slowe,. as compared to fhe magllelic form factot. Fillal/y, Oll the 

A lengtll seale 0/ the thermal nelltron wave lellgtlJ, the IIllcleus is poilll-/ike. 

Therefore, III1c1ear scatterillg is independent olthe momen(lI1t1 trans/er. 
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Since thc scattering amplitude is proportional to a Fourier transform of the seattering power 

density in direct space, the scattering amplitude deereases faster with momentum transfer if 

the scattering oeems from a larger objeet in direct space. Sinee the unpaired magnetie 

eleetrons are loeated in the outermost eleetronie shells, the magnetic form factor drops faster 

than the x-ray form factar. Compared to the naturallength seale of the neutron wave length, 

the nueleus is point~like, whieh results in a seattering amplitude being indepcndent of 

momentllnl transfer. Finally, we want to mention tllat the magnetic fonn factor can in general 

be anisotropie, if Ihe magnctisatiOJl density distribution is anisotropie. 

How the form faetor eomes about is most easily understood in the simple case of pure spin 

scattering, i. e. for atoms with spherical symmctrie (L = 0) ground state, such as Mn2
+ or Fe3 

.... 

Moreover, the derivation is simplified for ionie erystals, where the electrons are located 

around an atom. In figure 3.13 we define the relevant quantities for a derivation. 

Atom i 

Fig. 3. J 3: Definition o/Ihe relevant qualllities for a derivation o/the spin-only form factor. 

\Ve denote the spin operators of the electrons of atom i with ~k. The spatial co-ordinates of the 

electron number k in atom i are Bk = ß i + !ik. where ßi denotes the position vector to the 

nucleus of atom i. Now we proceed to separate the intra-atomic quantities. \Ve can write the 

operator for the magnctisat ion density as: 

(3.52) 

The Fourier transform ofthis magnetisation density is caleulated to: 
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_ '" iQ·t, _ '" iQ·ß , '" iQ·1ik (3 53) - "e - ~ik-L.e- L.e - '~ik . 
ik k 

To calculate the scattering cross sectioll, we now have to determine the expectation value of 

this operator for lhe qU8ntlllll mechanical state of the sampie averaged over the 

thermodynamic ensemble. This leads to 

In) In) iQ·R · MI{]. = - 2PB·J,III{].·2: e - -' ·§.i (3.54) 

Tlte single differential cross section for elastic scattering is thus given by: 

(3.55) 

Here, f.n(Q) denotes ~he form faetof, which is COllncctcd witlt the spin dCllsity ofthe atom via 

a Fourier transform: 

1",((;1)= J p,!xl</ßtd 3, (3.56) 
Atom 

With the fonn (3.55), wc have expressed the cross sectiOIl in simple atomic quantities, such as 

the expectation values of the spin moment at the various atoms. The distribution of the spin 

density within an atom is reflected in the magnetic fenn facter (3.56). 

For ions with spin and orbital angular momentum, the cross section takes a signifieantly more 

eomplicated fonn [4, 5]. Under the assumption that spinM and orbitalM angular Illomentmn of 

each atom eouple to the total angular momentum Ji (US-coupling) and for rather sm all 

momentum transfers (the reciprocal magnitude of lhe scattering vector has to be small 

compared to the size of the eleetron orbits). we can give a simple express ion for this cross 

section in lhe so-called dipole approximation: 

(3 .57) 

3-27 



Here the magnetie form faetor writes: 

(3.58) 

2 
&J denotes the Lande g-factor, C, ~ - -I and 

gJ 

'" (h(Q)) ~ 4" Uf(Qr)R2(r)r 2dr (3.59) 
o 

are the spherieal transforms of the radial density distributions R(r) with the spherical Bessel 

functions i,(Qr). For isolated atoms, thc radial part R(r) has been determined by Hartree-Foek­

ealculalions and the functions (io(Q») and (h(Q») in (3.58) have been tabulated [6]. 

After having introduced the principles of magnetic scattering, we will diseuss applications in 

ehapter 16. 
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4. Polarization analysis 

W. Schweika 

4.1 Intl'oductiOll 

Most typical neutron experiment.s are conccrned only with thc intcnsities related to a 

specific change in momclltum and cncrgy of the neutron in a scattering process yieldillg 

information about thc structure and dynamics of the considered system of interest. How­

cver, since thc neutron has a spin it interacts with thc magnetie moment of thc electron 

shells, and the scattering amplitude depends also on the nuclear spins of a sampie. There 

are cases where olle is able to distinguish magnetic from nuclear scattering, either frorn 

thc different form faetar dcpendence cr from a temperature variation aefass a magnetie 

phase transition. Hcre wc shall discuss the technique of using polarized neutrons and the 

analysis of their final polarization after the scattering process. It is a powerful method 

for distinguishing the various possible scattering scattering contributions, - i.e. mag­

netic, nuclear coherent, and nuclear spin-incoherent scattering - , and to separate them 

from each other by experimental meaTlS witlLOu t further assumptio1ls. Its application to 

neutron spin echo techniques will be discussed in chapter 11. 

The theoretical foundation for polarized neutron studies has essentially been set by the 

early works of Halpern and Johnson[l], Maleyev[2[, and Blume[3]. A good introduetion 

is given in the classical work of Moon et al [7], see also [4, 5]. This leeture will not treat 

the full eomplexity of magnctie seattering (sec 12, 3]). Emphasis will be given rather to 

basic ideas following Refs. Schärpf [6] and Moon et al [7]. 

4.2 The lllotion of thc neutl'on in magnetic fields and experimental devices 

The essential characteristics of the motion of a neutron in a magnetic field is the pre­

cession mode, which for simplicity can be considered in a classical t rcatment[6). In fact, 

even the quantum mcchanical treatment, wh ich introduces Pauli spin matrices into the 

Schrödinger equatioll, is cffectively a classical treatment considering the origin of these 

matrices. Tbe)' result from the problem of mapping three dimensions onto two by intro-
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ducing a complex component and were treated by Cayley and Klein (1897) 18J desCl·ibing 

the classical problem of a spinning top. 

Classical mechanics shows that a torque exerted on a magnetic moment l!. by a mag­

netic field H inclined at an angle 9 relative to thc magnetic moment causes the magnetic 

moment of the neutron to precess about the direction of the field with the Larmor fre­

queney WL. The precessioll frequency is independent of the angle (), Different to the 

motion of a spinning top in a gravity field the neutron's motion shows nQ nutation, its an­

gular momentum L. = fiS,. and it.s energy is a constaut. S (= V denotes the spin quantum 

number of thc neutron and n is Planck's COllstant divided by 27r. Thc relation betwecn 

angular momentum L. and magnetic moment!!:. defincs the gyromagnetic ratio 7 

( 4.1) 

An applied magnetic field will tend to align this magnetie moment and cxerts a torque. No 

force is exerted by a homogeneous field, so that thc resulting equation of motion simply 

says that thc change of L. in time is normal to L. and H, i.e. a precession: 

t. = - "I L. x R = L. X !!1L 

with - "IR = !!!.Land "1/2". = -2916.4Hz/Oe. 

(4.2) 

A magnetie guide field defines a quantization axis and can be used to maintain the 

dircction the spin and thus the polarization of the neutron beam, see Fig. 4.1. Thc 

neutron moment.s will align either parallel or anti-parallel. Guide fjelds are typieally weak 

so that the sampie magnetization is not significantly inßuenced, hut sufficiently stronger 

than for illstance the magnetic field of thc earth or any other stray magnetic fields from 

the surrounding. Such a guide field may vary is space and two important limits are of 

interest (see Fig. 4.2): 

• slow jield change: this so-called adiahatie casc means that H slowly changes its 

direction with a frequency that is small compared to the Larmor frequency, w «WL, 
such that a neutron moving with a velocity '1l.N keeps its precession mode around the 

spatially varying R. This can be achieved by sufficiently long path for the variation 

of the field or by a sufficiently strong the field H (IX WL) . 

• sudden field change: If the field direction changes suddenly, the polarization of the 

neutron cannot follow. Two opposite gllide fields can be separated by a current 
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Gulde fhld for lon9ltudiNI 
polarlSitlon, P I! H , tl'Ie 
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neutrons 

Gulde fleld for trlnsverSiI 
pohrlutlO1'1, f. plNlle! !! 

Gulde fleld for tr.nsVflrul 
pohr1u.tton, f. Intlplrllhl !! 

Figure 4.1: Neutrons in a guide field.!i with spins parallel or anti-parallel[6]. 

sheet, for example, and polarized neutrons parallel to the first guide field will be 

kept in an anti-parallel oricntation to the second field when passing the sheet. This 

ease W » WL is also used in eoils operating as spin flippers. 

"·H-t:'Rtil 

»~ ]fs# c 
..,. 

~~ tl#s ·~ """s. 
~ # '" -0. > 

tl 

Figure 4.2: Lcft: W « WL (adiabatic ease), the orientation of the neutron spin follows 

the field direction; right: w :» wL, tbe neutron spin keeps its oricntation for sudden field 

changes.[6] 

In neutron seattering experiments with polarized neutrons, the principlc of slow field 

changes is used, for inst.ance, to align the polarization along a particlllar direction at the 

sampIe position. As will bc seen in the examplcs below, the polarizations perpendicular 

and parallel to the scattering vector and the magnetization of the sampie are of particular 

intercst. Usually, wc assume that tbc field at thc sampIe position is sufficiently weak so 

that the magnetization of thc sampIes remains undisturbed. Using thrcc (orthogonal) 
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pairs of coils the polarization can be turned arbitrarily iuto any direction at the sam pie 

position to probe the oricntation the magnetization of a sampie. 'Vhile turning the 

neutron polarization at the sam pIe position by an additional field Hand thus keeping the 

neutrons moments in guide fields one can only distinguish scattering processes in wh ich 

thc spin direction is preserved (non-spin flip) or reversed (spin-flip) for a given direction. 

In general, there may be an arbitrary angle of rotation of thc neutron polarization, arid 

it can be measured only if the sam pie is in a field-free space. Super-conducting sheet.s 

are ideal for shielding the sam pie environment from extern al magnetic fields (sudden 

field changes). Such an samplc environment with zero-field is realized in a device called 

cryopad ([9] F. Tasset, ILL). It allows one to exploit all possible scattering channels with 

independent initial and final polarizations along xyz in spin-flip or non-spin flip mode 

(wh ich takes 3 x 3 x 2 = 18 mcasurements). 

110 turns 
1 mm If AI lURE (l!nl.'l"el1td) 

Figure 4.3: Neutron 1T-spin flipper (Mezei-Aipper). The neutrons perform half of a Larmor­

precession inside a lang rectangular coil. The field H1r is perpendicular to spin orientation 

and to the travel direction of the neutron and has to be adjusted to the speed of thc 

neutrons. In order to compensate the guide field one may either tilt thc flipper or use a 

correction coil[10]. (Fig. from [6].) 

An important device for working with polarized neutrons is a spin flipper, see Fig. 4.3. 

üne can use the Larmor precession in a coil to turn the neutron spin. The so-called 

Mezei coil is a long rectangular coi!. The field inside (H = N· I/I) is perpcndicular 

to the polarization and the travel directioll of the neutron. Guide fields outside are 

necessary to avoid depolarization by the earth field or undefined stray fields, but need to 

be compcnsated inside thc coil. Monochromatic neutrons passing through the coil they 

experience a sudden field changes at the wires and perform a precession inside. A rotation 

of 180 degrees (,,-flip) is realized by field R. determined by "IR, . d/v = ", wh ich gives 
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H, = 67.825 Oe· (A cm)/(>. d) '" 20 Oe for ,\ = 3.4 A and d = 1 cm. There are other types 

of spin flippers using for instancc radio-frequency resonators. 

By experim.ental means it is possible to choose the ini tia l polarization of the neutron as 

either spin-lIp or spin-down, and the polarization analysis requires also the experimental 

ability to determine the final polarization of thc neutron after the scattering process. In 

practice, there are three types of polarizing deviees: 

• a crystal monochromator and Bragg reflection, where the interfcrence of the mag­

netie and nuclear part of the scattering amplitudes is constructive for one spin state 

and dcstruetive for thc oppositc spin statej 

• super-mirrors with a magnctic laycred structure which shows total reflection for one 

spin state onlYi 

• filters that produce by absorption or extinction a polarized beam in transmission. 

3He is of particulaI' importance. It exhibits high absorption for neutrons having 

their spins anti-parallel aligned to the spin of the 3He nucleus. 

Same polarizers using Bragg reflections, for instance the (200) reflection from COO.92Fco.08 

aBoy crystals, exhibit a very high degree of polarization ('" 0.99 for the whole set-up: 

initial polarization - spin-flipper - final polarization) . However, only a narrow band of 

w3velengths can be used and also the accepted divergcnce is smaH, whieh could be de­

manding in terms of scattering intensitics. An experimental set-up for polarization anal­

ysis using the total I'eflection of long super-mirrors or shorter bendcl's (a stack of such 

super-mirrors) perforI11 also reasonably weil in terms of polarization (typically ::::::::: 0.95 

or better), and in addition a comparatively wide band in wavelength or energy of cold 

neutrons is aecepted (particularly useful for tirne-of-flight spectrometcrs). For thermal 

neutrons 3He-filters seem to be a very appropriate choice. The devicc does not interfere 

with the divergence, which has been set othcrwise in the experiment. The bcam trans­

mission and degree of polarization can be optimized hy varying the gas pressure and can 

be matched to the spectrum of neutron energies. The most efficient performance is, how­

e\'cr, a compromise between intcnsity and a modest degree of neutron polarization (say 

about 50%). Of course, this requires to perform corrections due to the finite degree of 

polarization. However, such correct,ions can easily be performed and the final rcsult for 



the scattering intensities depend just on the accuracy with which OIles knows thc degree 

of polarization. 

4.3 Polarization and scattering pro ces ses 

4.3.1 Coherent nuclear scattering 

Within thc first Born approximation the scattering cross-section is determined by 

(4.3) 

First, we calculate the matrix element of the interaction potential V between the 

initial and final states for pure nuclear scattering at a nucleus with spin 1= 0, i.e. the 

scattering amplitude A(9) (see chapter 3) . With b(9) = ~,b,e'g·" the matrix element is 

b(9) { +--t+ 
}NSF 

A(9) = (S; Ib(9)1 S,) = b(9)(S; I S,) = 
---t -

{ }SF 

(4.4) 
+--t-

0 
---t+ 

It foJlows timt the nuclear scattering fOT nuclei with zero spin 1s purely ttnon-spin-jlip" 

scattering, i.e. there are 110 scattering processes that turn t he neutron spin around. In 

particular this is valid for all isotopic-incoherent scattering and coherent nuclear scatter­

ing. Since thc coherent scattering amplitude represents the average non-fluetuating part 

cf the total actual scattering amplitude, it is the part that is also independent cven of 

any possibly existing nuclear spin. 

4 .3.2 Magnetic scattering 

The matrix element cf the interactioIl potential for pure magnetic scattering between the 

states k and k' has al ready been introduced in the previous chaptcr 3. The scattering 

amplitude results to 

Here 'Yn = - 1.913 denotes the magnetic dipole moment of the neutron expressed in 

nuclear magnetons MN = 5.051 . 10- 27J/ T, and 1'0 = ~ is the classical eleetron radius. 
m~c 
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ga denotes thc Pauli-spin matrices: 

a = =, (0 1) ,g = (0 -i) 
1 0 y i 0 

(4.6) 

Writing brieAy the spin-up and down states as 1+) = ( ~ ) and 1-) = ( ~ ) respectively, 

we obtain thc following relations: 

g,I+) = I-) 

g,I+) = iI-) 

g, I+) = 1+) 

g,1-) = 1+) 

, g)-) = - i 1+) 

g,1-) = - I-). 

(4.7) 

Inserting these relations into Eq. (4.5) we obtain the matrix elements (scattering am pli­

tudes) for spin-flip and non-spin flip scattering: 

A(Q) = -'nro X 
- 21'B 

- M,,(g) 

+Md9) 
-(Mü(g) + i M~y(g)) 
-(Mü(g) - iM~u(g)) 

for 

+ -> + (NSF) 

- -> - (NSF) 

+ -> - (SF) 

- -> + (SF) 

(4.8) 

Different to the coherent nuclear scattcring DOW we can also observe "spin-flip" pro­

cesses that reverse the neutron spin direction. Recall that Ml.(Q) is thc perpendicular 

component of M with respect to tbc scattering vector g, and thc neutron polarization 

has been chosen parallel to an external field Hz . VI/e obtain two rules for thc magnetie 

scattering: 

The IIspin-fiip" processes aJ'e obse1'ved fot' tILe component M1. (Q) that is perpendicular to 

fhe neutmn polarization. The lInon-spin flip" processes are observed Jo,. the component 

0/ M ~ (g) Ihat is pm·allel to the neutron polarization. 

4.3.3 Nucleru: spin-dependent scattering 

Ir the neutron is scattered from a nuc1eus with non-zero spin the compound may form 

a singulett or triplett statc where the neutron spin Q. is anti-parallel or parallel to the 

nuclear spin I with different scattering lengths b_ and b+ respectively. The case of nuc1ear 

spin-depenclent scattering can be formally treated in analog}' to the magnctic scattering 
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by introducing the scattering length operator 

b =A+ Ba · 1 (4.9) 

. I A (1+ 1) b+ + I b_ d B __ b+ - b_ 
Wlt 1 = I an 2+1 21+1' 

where land adenote the nuclear spin operator and the neutron spin operator respectively. 

The scattering amplitude A(Q) will have the same form as given in Eq. (4.8) only 

Md9) has to be replaced by the nuclear spin operator I. 

A(9) = (S;,) IA + Ba· IIS(,)) = 

A + BI, { 

B(Ix+ily ) { 

+->+ 

- -> -

+->­

-->+ 

}NSF 

}SF 
(4.10) 

\Vhile in Eq. (4 .5) M.l is assumed to represent the thermodynamic expectation value, the 

thermal average has to be calculated now for the different nuclear spin orientations and 

for the first matrix element in Eq. (4.10), Except for some unusual cases, we may expect 

that the orientation of nuclear spins is given by a random distribution, i.e. 

(Ix) = (ly) = (I,) = 0 (4 .11) 

Therefore the non-spin flip matrix elements equal to A, and (as derived before) thc co­

herent nuclear scattering is proportional to thc square of b~oh' identifying A = l} = bcoh ' 

(4.12) 

Thc non-spin flip matrix elements vanish, however, for the incoherent scattering, whieh 

is proportional to b2 - l}2, and we have to consider the thermal average of the squares of 

the matrix elements, Sinee 

(4.13) 

from Eq. (4.10) one obtains the spin-incoherent scattering (per atom): 

(~::~ ,NSF) 
da = ('" _ li')NSF = ~(B'I(I + 1)) 
dO .spin-illcoheren/ 3 

(4.14) 

(+-i- SF) 

da -~+, = ('" _ li')SF = ~(B'I(I + 1)) 
d0'5pin-incoherent 3 

( 4.15) 
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1/3 0/ Ihe spin-incoherenl pari 0/ Ihe nuclear scallering is non-spin flip scattering and 

2/30/ il is spin-flip scaUering independent o/Ihe (direclion) 0/ an exlemal field H. 

In analogy to the coherent scattering amplitude bWhl one may define the (spin-) inco­

herent scattering amplitude bin, = JB2I(I + 1). 

4.3.4 Rules for separation 

From the preceding discussion we can summarize same userul rules for separating different 

scattering contributions. If wc may neglect magnetic scattcring, thc coherent and spin­

incoherent scattering is obtained from the spin-flip and non-spin Aip scattering: 

du dO
NSF 1 du sF 

(4.16) 
dflcoherelll dfl 2dfl 

du 3 du SF 
(4.17) 

dO ~pill - incoh e rell ! 2dfl 

If apart of the scattering is of magnetic origin, a field variation is required (perpendicular 

and parallel to g) to separate thc magnetic cross-section: 

field/polarization spin-flip intensities non-spin flip intensities 

whcre aBG danotes the background. 

Hencc, the magnetic cross-sec ti on is separated by 

da = 2 (dU
NSF 

_ dU
NSF

) = 2 (du
SF 

_ du
SF

) 
dflm,. dfl ~ dfl ll dflll dfl~ 

(4.18) 

and a11 nuclear scattering contributions and the background cancel in thc differences of 

Eq. (4.18), sinee they are independent of the magnetie field[ll] . 

For a multi-detector instrument it is possible to fuHm tha condition E...L .Q with E. = P" 

perpendicular to the scattering plane, howevcr, .eil 9 cannot be realized simultaneously 

for all different scattering anglcs. Howevcr, a similar expression has been obtained for 

paramagnetic scattering [12] . Thcrefore, two measurements are required with thc two 

polarizations P x and P y Iying in thc scattering plane perpendicular to each other. Usillg 

(Mx Mx) = (MyMy) = (M,M,) and cos2 Cl' + sin2 
Cl' = 1, we may substitute (valid for both 

spin-flip and non-spin flip term) 

du du du du - +- = - +­
dflll dfl~ dflx dfly 
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{trivial, if x lies in direction of g). Henee, the paramagnetic scattering is given by [12]: 

dOdw parllfnllgllelic 
(4.20) 

Furthermore, the coherent scattering and the spin-ineoherent seattering ean be separated 

from eaeh other and from paramagnetic seattering by the following useful combinations 

[121: 

d'a 
dOdweoh erent 

1 d'a 
2 dOdw pllrafnagnelic 

1 d'a 
3 dfldw $pin - incoherent 

d'a 3 ( d'a SF _ d'a SF _ d'a SF) 
dndw~pill-incoh e rent ="2 3 dOdwz dOdwx dOdwy 

(4.21) 

(4.22) 

Olle may note, however, that - different from the separation for (para-)magnetie seat­

tering - the above relations do not compensate for possible background contributions. 

Furthermore, the above equations hold for ideal experimental eonditions for polarization 

and flipping ratio. In general, depolarizing effeets may oceur at a11 experimental devices, 

and appropriate correetions need to be taken into aeeount. Fig. 4.4 illustrates that the 

eorrections for the ideal easc ean easily bc performed. The example is given for the ease 

of coherent scattering and spin-incoherent scattering. From the ftipping ratio of non-spin 

flip seattering to spin-flip scattering from either a purely eaherent scatterer 01' a purely 

incoherent scatterer the palarizatian factar of the experimental set-up can be determined. 

One should note that multiple scattering may alter thc expected ideal final palarization as 

soon as spin-flip proeesses are involvcd. Since from polarization analysis the information 

on bath scattering channels is available, the possible eorrections for multiple scattering 

are more reliable as compared to unpolarized experiments. 

Furthermore, one should mention thc possible interferenee of nuclear and magnetic 

scattering amplitudes; an example will be given below. The interference properties are 

especially of importance for polarizers. Since coherent nuclear scattering is only observcd 

in non-spin ßip scattering, the intcrference term eanccls as weil far thc spin-flip scattering. 

For specific cases such as spiral ordering, non-collinear ordering, etc., we refer to thc 

literature [2, 31. 
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Figure 4.4: Non-ideal experimental conditions for polarization analysis shown for coherent, 

spin-incoherent and paramagnetic scattering. The polarization factor of the instrument, 

P < Pideal = 1, can be determilled from the ßipping ratio SF:NSF for a coherent scatterer, 

alld Olle can extrapolate to the ideal conditions. 

4.4 Applications 

vVe now consider examples of experimental studies with polarized neutrons and polariza­

tiOlt analysis[7j. A scheme of the experiment is shown in Fig. 4.5. 

Thc first example (Fig. 4.6) shows thc isotopic-incoherent scattering from Ni. Sincc 

the Ni-isotopes do not produce nuc1ear spin-dependent scattering it serves as an example 

for pure non-spin flip scattering. Appareutly there are uo relevant spin-flip scattering 

processes. 

Actually, this example is not trivial, and it is not so straightforward to reproduce this 

result. Since at room temperature Ni is a ferromagnet, additional magnetic scattering 

is to be expected if the magnetization has any component perpendicular to ,9, and a 

saturating magnetic ficld has to be applied to avoid any magnetic domain structure. Such 

inhomogeneities typically cause depolarizatiol1 effects. A much simpler example for pure 

non-spin Hip scattering would be Bragg scattering which is due to the coherent nuclear 

scattering amplitude from a non-magnctic material, for instance the Debyc-Scherrer rings 

of aluminum or other materials. In practice, the ratio of NSF- to SF-intensities (jlipping 

1'atio) for such a measurement is useful to determine the degree of polarization for the 

experimental set-up. 

Fig. 4.7 probably represents the first vcrification of the spin-flip and non-spin ftip scat-
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POLARIZER 

Figure 4.5: The original experimen­

tal arrangement of MooH, Riste and 

Koehler at the Oak Ridge reactor 

(HFIR): a tripie axis instrument with 

additional equiprnents for polarization 

analysis. Co-Fe crystals rnounted in the 

(L(':OW~~~~f gap of a permanent magnet are used on 

JW the first and third axis for the produc-

SA.UPlE tiOIl of the polarized, monochromizcd 

- .: "' AHAlYlER , 

bearn and for analysis of scattered neu­

trons in energy and spin. At the sec­

ond axis with the sampie an electro­

magnet is located with a horizontal 

rotation axis so that the field is eas-
\ 
\ , ,-, 
(' \ , ' , ~ 

\ --,,-

ily changed from vertical to horizon­

taL Radio-frequency coHs with a verti­

' cal field are used as ßipping devices.[7) 

Figure 4.6: Isotopic incoherent scattering from 

nickel obtained by rocking the analyzer crystal 

through the elastic position. Essentially all seat­

tering is non-spin flip scattering (++) measured 

with "flipper off'l. In flipper on mode thc spin­

flip data (+~) are taken, In contrast to rnagnetic 

seattering the result is independent of the neutron 

polarization with respect to the scattering vector 

g.[7) 
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terillg from a spin-incoherent scatterer. The examplc is Vanadium a typical material used 

for absolute ealibrations of neutron measurements. The scattering above the background 

level shows nearly the ideal intensity ratio 2:1 for spin-flip to non-spin-flip intensities. In 

particular I hydrogenous materials have large spin incoherent cross sec ti ans. 

\Ve recaU timt for a magnetic system the spin-flip and non-spin flip seattering should 
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Figure 4.7: Nuclear-spin illcoherent scattering from vanadium obtained by rocking thc 

analyzcr erystal through the eIastic position . Thc flipper off data are proportional to the 

(++) cross section and the flipper on data are proportional to the (-) cross section . In 

contra5t to magnetic scattering the result is independent of thc neutron polarization with 

respect to the scattering veetor g.[7] 
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Figure 4.8: Paramagnetic scattering from MnF,.[7] 

depend on the polarization of thc neutron with respcct to g. This field dependence is 

illustrated in Fig. 4.8 showing thc paramagnetic scattering from MnF2 . In general, we 

expect that the final polarization to vary betwecn 0 and - Einitial- It is obvious that 

th is scattering ean bc distinguished from spin-incohcrent scattering. Indeed, one can 

easily verify that the differenee between the spin-flip scatterings with polarizatioll E 11 Q. 

and E .1 Q. is proportional to the (para-)magnetic scattering only, free from any other 

scattering contributions like coherent nuclear scattering, spin-incoherent scattering and 

possible background. The same is true for the difference of non-spin ftip scatterings with 

E. II Q. and E. .1 Q., and Fig. 4.9 shows such aseparation of the paramagnetic scattering 

from MnF2 powder diffraction data. Measurements with the unpolarized beam show a 

background intensity decaying with Q. and various Bragg peaks on top. The Bragg peaks 

occur only in the non-spin flip channel, wh ich verifies their non-magnetic origin. In the 
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spin-fl ip chaHnel wc see the paramagnetic seattering with a decay that is eharacteristic 

for thc form faetor of the ion Mn2+. 
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F igure 4.9: Separation of thc paramagnetie seattering from MnF2 in a powder diffraction 

pattern.[7] 

Thc next example in Fig. 4.10 shows thc separation between nuclear and magnetic 

Bragg peaks for Q - Fe20a . The magnctic Bragg peaks appeal' in the spin-flip ehannel 

only, while only nuclear Bragg peaks appear in the non-spin-flip channel, if E 119: 
So fa r we have diseussed the nuclear and magnetie seattering separately. However, 

in general there are possiblc nOIl-zero matrix elements for both contributions. Therefore 

interfcrence phenomcna may oeeur but only in thc non-spin Hip ehannel. In order to 

maximize the magnetie signal one ehooses thc magnetization perpendicular to the scat­

tering plane. In cases where thc magnetie scattering amplitude is much weaker than thc 

nuclear amplitude the interferenee term may bc large eompared with the pure magnetie 

intensity. Sinee thc polarization of the scattcred beam is not changed, and thus already 

determined we do not necd to perform the polarization analysis in thc experiment. A 

useful applieation of th is effect is the determination of the distribution of magnetization 

dcnsities. For instance, the form faetor of chromium can be mcasured in the paramagnetic 

phase, inducing a magnetization by an external magnctic field, as shown in Fig. 4.11 . The 

results for the magnetization density distribution are obtained by Fourier-transformation 
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and in comparison by a so-called maximum entropy Illcthod . 
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Figure 4.10: Separation o~ magnctic alld nudear Bragg peaks for powder diffraction data 

from C> - FC203.[71 

1.0 ""-__ ~ __ -_~--. 

0.' 

~ 0.6 

! 
-! 0.4 

t 
~, 

0.0 

0.0 , . 

Figurc.4.lI: Indueed magnetie form fae­

tor of Cr at a field of 4.6 Tesla. Open and 

filled eil'eIes are experimental data, Hnes 

denote thcoretical calculations for spin­

orbital-, and total magnetie moments 1131. 

-~~ .. 
w "'-... _._.~ ...... ,~ 

. _~~ - ~ _., .. -- "'--- .., - - ,. 

Magnctization dcnsity in the (110) plane ob­

tained by Fourier transformation (top) I alld 

by flMaximum-entropyll reconstruction (bot-

tom). 

\Vith tri pIe axis instruments one can mcasure only step-by-stcp spccific dYllamic struc-
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Figure 4.12: The D7 at the ILL, a multi-detector instrument for polarization analysis. 
On the right hand side one bank is shown in ·the non-pölarizing version with analyzers 
removed by pneumatic elevators and the collimators inserted instead of the guide fields. 
With the spin turner coils the polarization of the neutrons can be rotated into the x,y, or 
z direction.[14] 

' 0 I 2 3 4 o I 2 3 
Scatlcri~g Veclor [;(- '] S78tlering Vec:lor [X-') 

Figure 4.13: Contour plots of (a) the (spin-)incoherellt scattering and (b) coherent scat­
tering from liquid sodium at T = 840 K over the plane of energy and moment um transfer 
as separated by polarization analysis on D7. The incoherent scattering is related to the 
single particle motionj the coherent scattering is related to the collective motion. (14). 

tu re factors S(Q"w) ofinterest. However, multi-detector instruments are more efficient for 

measuring powders, for time-of-ftight spectroscopy, or if larger regions in reciprocal space 
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need to be measured. The first instrument for such purposes is the D7, see Fig. 4.12, at the 

high ftux rcactor at thc ILL in Grcnoblc; 32 dcteetors are cquipped for polarization anal­

ysis. The polarizers are benders, curvcd stacks of polarizing supermirrors, which exhibit 

good polarization and transmission properties for subthermal neutrons. In order to cover 

a large solid angle with polarizers in front of the detectors an enorIllOUS amount (6000) 

of magnetie multi-Iayers had to be produccd. A 7r-ftipper (Mezei-type with a Brookhaven 

correction coil) is used in the incident beam. 

The following example [14J of a measurement at D7 demOIlstratcs the capabiJities of 

such an instrument: the dynamic structure factor of liquid sodiuIll, is se para ted into 

the coherent and (spill-)incoherent parts. The quasi-elastic incoherent scattering gives 

information about the single particle motion in space and time, while coherent quasi­

clastic scattering is related to collective relaxations of thc ensemble. Thc measurement.s 

shown in Fig. 4 .13 have been measured on the D7 instrument in time-of-ftight spectroscopy, 

while the presentation is given in the coordinates of encrgy and moment um transfer. The 

~ I 
Figure 4.14: The DNS instrument at Jülieh equippcd for 3-dim polarization analysis. The 
detector bank to the right of thc incoming beam is for unpolarized experiments thc one 
La the left fol' polarization analysis. A focusing layout has beeil used for thc initial and 
final polarizers. 

4- 17 



instrument DNS (see Fig. 4.14) at the research reactor in Jiilich is similar to the D7. 

Different to the present version of the D7 (there are plans for an upgrade) the polarizers 

have a geometrical design to use beam focusing on the sam pie with a substantial gain in 

intensity, In studies of structural pl'opertics of polymer glasses, polarizatioll analysis call 

be quite useful. Besides separating the cohcrcnt and (spin-)incohercnt contributions, but 

the separated incohcrent scattering intcnsities can be used for an intrinsic ca libration. 

An example is shown in Fig. 4-15. In this experiment[15J one has also used partial 

isotopic substitution of H by D to mark and to cantrast the side-chains and thc hackbene 

of different polymers (polyalcylmethacrylates). 

I 11 . u 
.S 

1" f~~fJi-! ifJ 
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.<: 0 
0 0 2 3 0 u 2 3 
~ 2 0' 
~ co, 
ifJ ff. -fco,j-+. 

o' 'O<II,<:II,<:H,<:U,<:U,CIIJ 

o ~-----~--~---' 
o 2 3 0 2 3 

Q W'j 
Figure 4.15: Coherent structure factor of a partially deuterated polymer. Note that 
by separation of the coherent and incoherent scattering one obtains a precise absolute 
intrinsic calibration. Two measurements are displayed in the figure (bottom right) (with 
), = 3.3Ä (diamonds) and)' = 5.3Ä (circles)] denlOnstrating the excellent reproducibility 
of the data. The peak at lower Q is due to inter-chain correlations between different 
polymer Clbackbones" and the pe-;k around Q ~ 1.4Ä -1 can be relatcd to intra-chain 
correlations along thc polymer, the ones between the side-chains of a polymer. 
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Appendix 

Units: 
magnetie field H: 

Ampere/meter (SI) = 4" x 10-3 Oersted (egs) 
magnetie induction 11 = l'oIlH, 1'0 = 1.2566 x 1O-6m kg C-' (=1 in cgs-units): 

Tesla (SI) = kg / (sec' Ampere) = 10' Gauss (egs) 
For cgs-units and vacuum (J.l = 1), H in Oe corresponds to 12. in Gauss. 
Earth magnelic field: "" 15 A/m "" 0.19 Oe. 
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5. Correlation Functions Measured By Scattering 

Experiments 

Reiner ZOl'l1, Dieter Richter 

In this Jecture statie and dynamic correlation fllnctions will be introduced. Vvc will start by 

introducing probability densitics, relate these to the scattering cross scctiOll and define the 

pair correlation function. Two examples will be given, one from thc physics of liquids and 

one from polymer physics. The concept of dynamic correlation functions will be explained 

firstly by the cxample of corrclation spectroscopy. Then thc Van Hove correlatiol1 function 

will be introduced whieh is thc basis for the calculation oftlte double differential scattering 

cross sectioH. Final1y, t.hc concept will be applied to thc example of an ideal gas. 

5.1 Probability Densities 

We start by cOl1sidering a homogeneous monatomic liquid with N atoms in a volume V. 

We denote thc probability to find a certain atom in a volume element d3,. at L by P(t)d3,.. 

Because of the homogeneity P(t) is constant and el'idelltly 

1 
P(t) = V· 

Then the number density of atoms at r. is 

N 
p(!:) = N P(!:) = V == Po . 

(5.1) 

(5.2) 

\Ve call the probability density to find a certain atom at LI and another at 1:2 P(Ll,r.2)' 

This function fulfills the basic re lations 

P(tl.r,) 

L d3,·,P(r" t,) 

P(r,.td and 

If there is 110 interaction betwcen the atoms P(LI,r.2) factorizes into 
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(5.3) 

(5.4) 

(5.5) 



In realliquids however usually an interaction exists which depends (only) on the distanee 

of the atoms :[12 = :[2 - LI' '\'e exprcss t.he deviation from (5.5) by a pair correlation 

function defined b)' 

(5.6) 

With the pair distribution function n(1:,,1:,) = N(N - I)P(1:,,1:,) wh ich expresses the 

probability density for any pair of atoms to oceupy positions LI and r2 we obtain 

( ) nh,1:,) 
9 r12 = 2 

Po 
(5.7) 

because in the limit of large N we have N(N - 1) '" N'. 

The qualitative features ofthe pair eorrelation function are shown in figure 5.1. For 7' ~ 0 

one Ands g(7') = 0 because twü atoms eaunot bc at the same position. Usually, this is 

also true for distanees 7' < 7'0 because the atollls eannot pCllctrate each other and have a 

"hafd core" radius 7'0' Für 7' -+ 00 thc limit is g(1') = 1 beeause the interactions decay 

with distanee and the P(rld:2) reverts to it.s default value 5.5. At intermediate distanees 

g(1') shows a peak beeause the probability density whieh is laeking at l ' < 1'0 must be 

compensated. Hs loeation is usually elose to the minimum of the interatomic potential, 

Le. elose to the average next neighbour dist.anee 1·nn . 

Using the pair correlatioll function one can formulate the differential neutron cross section 

for a mOllatomie liquid I 

(~~) = IbI' if: exp (ie{. (1:i - 1:;))) . 
coh \1,;=1 

(5.8) 

Here (da/dO)coh denotes the angle dependent coherent scattering cross section and b is 

the average scattering length of the liquid atoms. Q.. is the scattering vector, i.e. the 

difference between incoming and scattered wave vector of the radiation, Q = k - k'. The 

average in the expression ean be evaluated using the pair correlation functiOIl (5.7): 

1 Exactly speaking, this expression is valid only for mOllisotopic liquids. Otherwise, 

there would be an additional ineoherent term like thc one diseussed for the dynamic 

correlation function in section 5.3. Nevertheless, this term is just a constaut and therefore 

on I)' visible as a nat background in the experiment. The Q dependellt (cohereIlt) part of 

the cross sectioll is still correctly represented by (5.8). 
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Figure 5.1: Schematic representation of interaction potential V(r), pair corrclation func­

(ion g(r), and scattering function S(Q). 

= lbi' (N + fv d3
r, fv d3

"'''(L''L') exp (iQ. (L' -L'))) 

= lbi' (N + Po' lI fv d3r"g(L") exp (iQ 'L")) 

= lbi' N (1 + Po fv d3r"g(L") exp (iQ 'L")) . (5.9) 

This equation states timt the scattering cross secHon cau be representcd as the Fourier 

t.ransform of the pair correlation function. Assuming isotropy (as is found in thc homo­

geneous liquid discussed here) one can rep!ace 9(1:.12) by the radial correlatioll function 

g(,'): 

(der) -, ( ( OO , 3 sin Qr) - = Ibl N 1 + 41fpo Jo r cl rg(r)--
cln <Oh 0 Qr 

(5.10) 

Equation (5.10) follows from (5.9) by radial averaging of exp (iQ 'L") (Le. an average 

aver aH possible orientat ions of L.12)' 
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The term in big parentheses o[ equations (5.9) and (5.10) 

(5.11 ) 

is usually called stfucture [actor or scattering law'. S(Q) is soleI)' determined b)' thc 

properties of the sampie and does not dcpend on the radiation used in examining thc 

sample. 

For Q -t 00, exp (iQ.' [12) becomes a rapidly osci llating fUllction and the integral van­

ishes. Then olle has 

lim S(Q) = 1. 
Q->oo 

(5.12) 

For Q -t 0, S(Q) measures onl)' thc overall deusit)' fluctuation, Lc. thc fluctuation o[ thc 

particle Bumber: 

lim S(Q) = jI'(op') = (N') - (N)' = PokuT"'r. 
Q->O 

(5.13) 

Here, kn denotes thc ßoltzmanll factar, T thc tcmperaturc and IV[' thc isothermal com­

pressibility. At intermediate Q, thc structurc factar of liquids shows a diminishillg series 

of brand peaks, remainders of thc Bragg peaks of a crystalline structure. The first peak 

occurs at a scattering veetor roughly corresponding to thc Hext neighbour distance by 

2 The usual definition of thc structure factol' found in thc li terature is 

subtracting the long distance limit 1 from g(1') , Decause the Fourier transform of the 

constant 1 is the delta function the two definitions differ only by a. delta functioll, 

S(Q) = S'(Q) + Poo(Q) in lieu o[ the loeal dcnsity itself. This means that apart [rom the 

unobscrvable seattering at zero angle (Q = 0) both are thc same. 

The reason for this alternative definition is to avoid the singularity. Another way to 

accomplish this is to usc the densit)' ftuetuation op(r) = p(r) - Po [rom the start (cqua­

ti on (5.2)). From this approach it becomes clear tImt the structure [actor at Q # 0 

depends on I)' on the fluetuation o[ thc density but not on its absolute levcl. 
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Detector 

Figure 5.2: Schematic set-t1p of a diffractioll experiment. The inset shows the relation 

beLween incident and final wave vectors k, k~ and the scattering veetar Q. 

5.2 Experimental Examples: Static Scattering 

5.2.1 Placzek corrections 

Figure 5.2 shows the sehematies of a scattering experiment for the determination of S(Q). 

By using a monochromator the incident neutron energy Of the wave veetar k is fixed. After 

scattering the intensity is recorded as a function of the scattering angle 20 without cnergy 

discrimination . This means that the diffraction setup fixes only the direction of Kr but 

Hot its magnitude. Thereforc, for a given angle different scattering vectors Q are mixed 

as figure 5.3 shows. 

Strictl)' speaking, this invalidatcs thc relation (d"jdfl),oh = IbI'NS(Q) betwecn (angle) 

differential cross scctiOll and structure factor. 

Neverthelcss, for high incidcnt energies it is an excellcnt approximation as long as the 

ellcl'gy transfer due to inclastic scattering is small compared to the incident energy E. 

This condition is always fulfilled for x-ra)' scattcring because the incident energy lies in 

thc keV range thcre and the inelasticity of scattering is Iimited mainly to thermal energies 

kBT which are of thc order of meV. 
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Figure 5.3: Scattering vectors Q accessed by a diffraction experiment with the detcctor 

at scattering angles 20 = 10 ... 115° vs. the energy transfer nw (incident wavclength 

.At ~ 5.1 A). 

Für neutrons on thc other hand, incident energies are just in the latter range. Fortunately, 

the errors which Geeur due to neglect of inclasticity are still not toD large. Therefore, it 

is possible to derive a correctioll formula by expallding the true differential cross sectioH 

under constant angle iuto aseries in the ration of the mass of the scattering nucleus and 

the neutron mass 1Hn /msc • In this way Placzek obtained: 

(~~)20 ~IWN(S(Q)+fr(Q)) withfr(Q)~ ;;:: (k~T _ (~)2) (5.14) 

Here, E is the incident energy and k = V2mnE/n the respective wave vector, 

5.2.2 Experiments on Liquid Argon 

As an example of the structurc facto!' 8(Q) of a monatomic liquid wc consider the neutron 

scattering results of Yarnell et al. [61 from liquid Argon. The result of the experiment is 

shown in figure 5.4, Thc wavclcngth of the incident neutrons was). = 0,978 A, Under 

this condition the Placzek correctiol1s vary betweell 0.0012 near Q = 0 and - 0,0426 at 

Q = 9.08 A -1. Thc pair correlation function 9(1') was obtaincd by numerical inverse 
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Figure 5.4: Strueture faetor Q( Q) of liquid 3' Ar at 85 K. The points are from a neutron 

scattering experiment} the curve is generated by a molecular dynamics calculation using 

a Lcunard-Jones potential [6J . 

Fourier transform of S(Q) - 1 and is shan in figure 5.5. The oscillatiolls at small ,­

are a consequence of cut-off effect.s on the Fourier transform. They occur helaw the 

atomic diameter 1'0 and therefore da not impedc thc interpretation . Thc determination 

of 9(7') is important for the calculation of equilibrium properties of the liquid and allows 

scrutinization of theoretical models for the interatomic forces. 

Two methods of theory based caleulation of g(1') have to be emphasized: (1) In Monte 

Carlo (MC) calculations a large number of possible atomic configurations is created. 

Their probability is determined by the Boltzmann f8ct01' on the basis of interatornic 

potentials. Finally, thc ensemble average is ealeulated. (2) In Moleeular Dynamies (MD) 

calculatiolls one starts from an initial cOllfiguratioll and solves (numerically) the equations 

of motions using thc interatomic forces. These calculations yield the time average3 . The 

solid curve in figurc 5.5 shows thc result of an MD calculation with a Lcnnard-Joncs­

Potential (V(1') €X (a/l·)12 - (a/l·)6)-thc agreement is cxecllent. 

Unfortunately, thc pair correlation function is comparatively insensit ive to details of the 

pair potential. To obtain cxact inforrnation on \1(1') it is neccssal'Y Lo do extremely 

accurate measuremellts with crrors in the per mille range. 

3 The ergodie hypothesis ensures that the rcsults of both methods are the same. 
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Figure 5.5: Thc pair correlation function 9(1') of liquid Argon calculated by inverse Fourier 

transform from the data in figure 5.4 [6J, 

5.2.3 Scattering from a Polymer Chain 

\;Ye consider a polymer) i.e. a lang chain moleeule cOllsisting of equal building blocks, the 

monomers. In the melt the spatial arrangement of the monomers is simply given by a 

random walk4 • The mean squared distance between monomers i amI j for such a coiled 

chain is proportional to the difference of indices 

(r;;') = e'[i. - jl (5,15) 

where Tij denotes the monomer distance and f is the characteristic monomer length. This 

is the same expression as for a random walk but with the time t replaced by li - j l. 
Because for not tao small distances 1'ij is the sum of many random variable the central 

limit theorem is applicablc and the final distribution of the distance is a Gaussiall: 

( 3 )3/' (3"'" ) 
g(1"j) = 211'("'j') exp - 2(1',;') (5.16) 

~~~----~~------

4 This is a result by no means trivial. H was actually confirmed for the first time by 

the neutron scattering results shown here. 
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Application of equation (5.8) (radially averaged as (5.10)) yields the so-ca lied form factor' 

af thc monomer 

1 N J sin Qr· N (Q2 ) P(Q) = -, L 4rr r;;'d''-'j--.. -' ghj) = L exp( - - li - jl,2 
N iJ=1 Q1 1) iJ=l 6 

(5.17) 

where N is uaw thc number of monomers , Analogaus to the preceding derivation of (5 ,9) 

we take the diagonal part out of thc sum and convert the double sum into a single sum 

over all diffcrences k '" li - jl: 

(5.18) 

Here it is taken account that in contrast 10 (5.9) not all pairs are equally probable but an 

index distance k aceurs 2{jI./ - k) times in the chain . Converting this surn into an integral 

one obtains 
2 Q'IVe' 

P (Q) = Z2 (e-' - I + z) '" D(z) wilh z = -6- ' (5.19) 

Thc expression D(z) is usually called the Debye function. It describes the scattering of a 

single polymer coil in the melt which is labeled e.g. by isotopic contrast . Figure 5.6 shows 

t.he scattcring cross scction of protonated polystyrene in a deuterated polystyrene matrix. 

The solid curve represents a fit with equation (5.19). At large scattering veetors the lead­

ing asymptotic term of D(z) is 2/z and P(Q) becomes proportionall/Q'- characteristic 

for a Gaussian random walk. In a so-ealled Kratky plot (Q' . da / dS1 vs. Q) one expects 

a plateau at high scattering vector Q. Figure 5.7 shows this plateau for polystyrenc. 

At very large Q values deviations aceur again which signalize the breakdown of Gauss 

statistics for small distances. 

5.3 Dynamical Correlation Function 

5.3.1 Correlation Spectroscopy 

Vve considcr an observable A of a system which fluctuates randomly becausc ofthe thermal 

motion of thc system . A could be e.g. the pressure on the wall exerted by a gas in a cylindcr 

6 Here thc monomers are simply considercd as "big atomsll neglecting their inner struc­

ture. One has to keep in mind that the thus obtaincd results only rcpresent the actual 

scattering la\\' for sruall scattering vector when 2n/Q is larger than the sizc of a monomer. 
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Figure 5.7: Kratky plot of the data from figure 5.6. 

01' the particle density in a liquid. Figure 5.8 shows exemplarily the time-dependcnt valuc 

of a quatitity A ftuetuating around its average value (A). 

If one takes a t.ime average over a long time interval as compared with the fiuctuation 

periods olle obtains a stationary result which is independent of the start of the time 

interval 

11tO
+

T 
lim -T dtA(t) = eonst. == (A) 

T-+oo 10 
(5.20) 

but in general A(t + T) # A(t). Jf T is very small eomparcd to typical times of the system 
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Figure 5.8: Fluctuating observable lI(t) of an ensemble of molecules as a function of time. 

The time axis is subdividcd into discrete intervals of length ~t. Für simplicity the average 

(A) is set to zero. 

A(t + T) approaches the value of lI(t) wh ich means that the both are con elated in time. 

As a mcasure of this correlation thc autocorrelation fnction is introduccd: 

11tO+
T 

(II(O)II(r)) = lim -T dtll(t)lI(t + r). 
T-H)O to 

(5.21) 

This function correlates the observable A with itself in a certain time displaccmcnt T and 

then averages aver all starting times. 

In a real experiment (figure 5.8) this ean be done by sampling values Ai at equidistant 

times ti = iot . Let j denote the index of the starting time (t = jot), n the distance counted 

in time intervals (r = not), and N the number of intervals to be averaged (T = Not.). 

Then equation (5 .21) ean be converted iuto a surn: 

1 N 

(II(O)II(r)) = jim 1'1 L: IIjllj +n . 
1\ - H:oO 1 j=l 

(5.22) 

In optical correlation spectroscop)' sums like (5.22) are calculated from the photodetector 

5- 11 



signal by special purpose computers. In t.his case A is the l1\unber of photons det.ected 

per time interval, Le. the light intensity. 

It is easy to see that the autocorrelation function has the following properties 

(A(O)A(r)) < (A(O)A(O)) '" (A') 

lim (A(O)A(r)) (A)'. 
7->00 

(5.23) 

(5.24) 

As an experimental example we want to consider light scattering experiments on 

polystyrene spheres in an aqueous dispersion. Figure 5.9a shows the ftuctuating illtensity 

scattered from such a dispersion. Figure 5.9b present.s the autocorrelatioll function cal· 

eulated by (5.22). The eorrelation funetion usuaUy deeays foUowing a simple exponential 

law: 

(A(O)A(r)) = (A)' + ((A') - (A)') exp (- r/r,) (5.25) 

where Ir is the correlation time of the system. In general, also more complicatcd decays, 

e.g. involving multiple characteristic times, are possible. But the decay always takes pi aces 

between the limits given by (5.23) and (5.24). 

Alternatively, one ean eonsider the ftuctuations oA(t) = A(t) - (A), i.e. the deviations of 

the observable from its average. For it.s autocorrelation function follows: 

(OA(O)OA(t)) (A(O)A(r)) 

= (oA') exp (-r/r,) . (5.26) 

The general result is that the ftuctuation autocorrelation function decays starting from 

the varianee of the observable, (oA') = (A') - (A)' to zero. 

Thc time-dependent autocorrelation function describes the temporal Auctuation be­

haviour of the system. In the case presented here of a polymer colloid the characteristic 

time is directly connected to the diffusion constant: Ir -1 = DQ2. 

5.3.2 The Van Hove Correlation Functioll 

In order to consider inelastic scattering generalizes thc differential cross section da /dn 

with respect to its dependence Oll t.hc energy transfer nw. This leads to the double 
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Figure 5.9: (al Intcnsity of the light scattered from an aqcolls solution of polystyrene 
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function of tho scattercd intensity showll in (a) as a function of correlntion time r, In 

bath eases thc units are al'bitrary. 

differential cross section in quantum mechanical notation: 

8'(J k' 1 1
2 

arw = k l:: p,p. l:: l::(A', (J'lb; exp(iQ.' [;)1>-, (J) 0 (liw + E, - E,,) 
W ).,0 >.',0' I 

(5.27) 

Here, ,\ and a describe the relevant space and spin qU8ntmll number respectivcly in thc 

initial state and)..' and (l those in the final state. P).. and Pu are thc respectivc probabilities 

far the initial states'\ and a. The inner surn rcfcrs to all particles witll scattering lengtlls b; 
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and sillgle-particlc coordinate operators rio k and 1..:' are the wave vectors of the incident 

and scattered neutrons. The delta functiOll expresses energy conservation: the energy 

transfer of the neutron nw is exactly cOIupensated by the energy change of the quantum 

state of thc scattering system E).I-E).. In the following we willncgleet the spin coordinates 

for the sake of simplicity. 

The route from expression (5.27) to thc Van Hove correlation funetion start.s with an 

integral representation of the delta function: 

1 100 

(( E, - E") ) o(r.w + E, - E,,) = 21Th - 00 dtexp -i w + h t (5.28) 

whieh results from the fact that the delta functioll is the Fourier transform of a constallt 

one. 'Vith this expression the matrix element in cquation (5.27) can be written as a 

Fourier transform in time: 

1~(X'b, exp(if{. K,)'A)I' 0 (Iiw + E, - E,,) 

= 2~h i: dtexp( -iwt) exp ( - i ~,'t) exp ( -i~~' t) 
L b,(XI exp(if{· K,)IA) Lbj(AI exp(- if{ · rj)IX) 

j 

= ~ 100 

dtexp(-iwt) Lb,bj(AI exp(- if{ · Kj)IX) 
27T"a -00 iJ 

(XI exp(iE"t/h) exp(if{. K,) exp(-iE,t/h)IA) (5.29) 

If H is the Hamiltonian of the scattering system, the fact that IA} are energy eigenstatcs 

is expressed by 

HIA} = E,IA} . (5.30) 

Iterating this equation 11 times yields: 

RnIA} = E,"IA}. (5.31) 

By expanding the exponential into apower series one finally obtains from this relation 

exp(iHt/h}IA} = exp(iE,t/h}IA} . (5.32) 

',Vith this result ancl the analogous olle for ).,' it is possible to replaee the eigenvalues EA 

in (5.29) by the Hamiltonian R: 

... (A'I exp(iHt/h) exp(if{· r;} exp( c-iHt/h)IA}. (5.33) 
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In the picture of time dependent Heisenberg operators the application of the operator 

exp(iHt/h) and its conjllgate jllst mean a propagation by time t: 

exp (iQ. r,(t)) = exp(iHt/h) exp(iQ' r,(O)) exp(- iHt/h) (5.34) 

where we ean arbitrarily set !:i = !,'.j(O) because of t ranslation of time invariance. Using 

this rcsult the fin al expression for the double differential cross secUon is obtained: 

D
2

" 

DD.Dw 
(5. 35) 

This equation averages over the scattering lengtll distribution (which may depend on the 

spin orientation distribution with respect to the incident neutron's spin). T his produces 

cohcrent and incoherent scattering as explained in lecture 1. In addition the initial slates 

of the scattering system are averaged weighted with thc probability of their occurrencc 

P>., . The latter is given by the Boltzmann distribution 

P, = ~exp(-E,/kBT) with z= L, exp(-E,/knT) . , (5.36) 

" re HOW denote this thermal average by angular brackets ( .. . ) while that over thc scat­

tering lengths be ,,'ritten as an overline ~. I<eeping in mind that for equal indices 

bibi = Ibi l2 has to be averaged while for unequal indices the scattering lcngths itsclf will 

be averaged we end up wi th thc usual separation into incohercnt and coherent part: 

{)2" 

DD.Dw = 

k' 1bJ' - lbi' 00 
k 27rh [ 00 dtexp( -iwt) L, (,,\ Icxp(- iQ ' r,(O)) exp(iQ ' r,(t)) I ,,\) , 

k' 1iiJ' / 00 + k 27rh -00 dt cxp(- iwt) L, (,,\ lexp( - iQ' r;(O)) exp(iQ' r,(t))I"\) . 
>., 

(5.37) 

The first tenn is the incoherellt scattering. It iuvolves the coordinate veetol' operators of 

the same atom at different times. The second, the cohcrent term correlates also di.1Jerenl 

atoms at different t imes. Thc material dcpendent parts are HO\\' dcfined as thc scattering 

functions 

_ ; " /00 dtexp(-iwt) L,(exp(- iQ . r;(O))cxp(iQ· r,(t))) (5.38) 
21fIUv -00 i - -

_ ;fI' / 00 dt exp( - iwt) L,(exp(-iQ . r,(O)) cxp(iQ' rj(t))) . (5.39) 
2m! - 00 iJ 
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In terms of the scattering functions the double differential cross sectiOll can be written as 

(5.40) 

In addition it is often useful to define the intermediate scattering functiOll which denotes 

the time dependent parts of definitions (5.38) and (5.39) before Fourier transform: 

1 
- N 'L(exp( - iQ' [i(O)) exp(iQ ' fi(t))) , 

(5.41) 

1 
- N 'L(exp( - iQ' [i(O)) exp{iQ' !:;(t))) . 

'J 

(5.42) 

If one compares this result with the definition of the structure factor (5.8- 5.11) one 

recognizes that Scoh (Q, w) is in an analogous way the Fourier transform in space and 

time of a dynamical pair correlation fUllction G(r., t): 

G{1:, t) = C~) 3 J d3Qexp (-iQ. 1:) ~T 'L (exp (-iQ. dO)) exp (iQ' [j{t))). (5.43) 
'J 

The derivation ofthe relation between the coherent dynamical structure factor Scoh(Q,W) 

and the generalized pair correlation function requires a strict quantUlll mcchanical calcu­

lation. This problem results [rom the fact that the coordinate vector operators COInmute 

only at identical times. Therefore, in all algebraic manipulations tbe order of rAD) and 

[i{O) must not be interchanged. 

To begin, one writes the operator exp ( - iQ . !:j(D)) as the Fourier transform of thc delta 

function: 

exp (-iQ. [i{O)) = / d'r'6 (1:' - dO)) exp{ - iQ . 1:') . 

Using this expression equation (5.43) can be rewritten as 

/ d3Qexp (-iQ. 1: - iQ '1:' + iQ !:;(t))) 

= {21T)36 (1: +1:' - !:;(t)) 

(5.44) 

~'L/ d'r'(6{1:-1:' +dO))6 (1:' - [;(t))) (5.45) 
'J 

without changing the order of the operators at different times. 
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Now the particle density operator is introduced as a sum ovcr delta functions at thc 

particle position operators: 

p(t, t) '= L 0 (t - I:i(t)) . (5.4G) 

With this definition the pair correlation functiOJl can be written as time-depcndent 

density-density correlation function: 

G(t, t ) = ~ J d3
,.' (p(z:' - z:, O)p(z:', t)) . (5.47) 

With this form of thc dynamic pair correlation function the dynamical structure facto1' 

can bc- analogously to equation (5.11)- writtell as thc double Fourier transform of thc 

cor1'elato1' of thc particlc density: 

S'Oh(Q,W) = i: dt exp(-iwt) J d3
, ) d3

,.' exp (iQ ' t ) (p(t ' - t, O)p(t', t). (5.48) 

We uow define the dcnsity operator in reciprocal space as thc Fourier transform of (5.4G): 

P9.(t) '= L exp (iQ . I:i(t» ) (5019) 
, 

and obtain for thc dynamic structure faeto1' 

(5.50) 

Corrcspondingly, thc intermediate scattering fuuction is 

(5.51) 

whieh after inser t ion of (5.49) turns out to be equivalent to (5.42). 

Analogously, oue can define a self correlation functiOIl by setting i = j in the preceding 

equations leading to 

G,(r, t) = ~ L J d3
,. ' (0 (z: - [ ' + t i(O)) 0 (z:' - I:i(t))) , 

(5.52) 

as the equivalent of (5.45). 

Thc pair corrclation function has some general properties: 

1. For spatially homogcneous systems the integrand in (5.47) is independent of t ' whieh 

cau be arbitrarily set to the origin Q: 

V 1 
G(L, t) = " (p( -1:, O)p(!!, t) = - (p(Q, O)p(z:, t) . 

" Po 
(5.53) 
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2. The pair eorrelation fllnctioll has the following asymptotie behaviour: For fixed 

distanee and t -). 00 01' fixed time and r -). 00 the avcragcs in equation (5.47) ean 

be exeeuted separately ancl in eonsequenee 

G(1:,t) --> ~ / d3
1" (p(1:' -z:,0)) (p(1:',t)) =Po. (5.54) 

3. For t = 0 the operators eommute ancl the eonvolution integral of cquation (5.47) 

ean be earried out: 

G(1:, 0) = ~ 2:: (0 (1:+ .1:,(0) - .l:j(O))) . 
'J 

(5.55) 

Für indistinguishable particles the relation to thc statie pair eorrelation funetian as defincd 

in (5 .6) can be drawn. Because of the identity of the partieies we can set i = 1 in (5.55) 

and drop t.he average aver i : 

G(1:, 0) = 2:: (0 (1:+ [, (0) - .l:j(O))) = 0(1:) + 2:: (0 (1: +.1:, (0) - [j(O))) . (5.56) 
j j't-I 

'vVc now eonsider the average number of particles oN(r) in a volumc 8V at a vcetor 

distanee r from a given particle at rl. It is obviously given by the integral over the second 

term in the preceding expression whieh for sm all OV ean be written as 

oN(1:) = OV 2:: (0 (z: + [, (0) - [j(O))) . (5.57) 
#1 

Using thc definition (5.6) anel the expression for the nu mb er density in homogeneolls 

fluids (5.2) one can relate oN(1:) also to the statie pair eorrelation funetion: 

oN(:c) = Pog(:c)OV . (5.58) 

FinaJly, by eomparison of the last three equatiol1s we get a relation between the dynamic 

eorrelatioll functioll at time zero anel its statie counterpart: 

G(1:, 0) = o(:c) + Pog(1:) . (5.59) 

This eqllation expresses the fact that the eliffraetion experiment (g(T)) gives an average 

snapshot picture (G(1', 0)) of the sam pie. 

In the classical approximation the operators commute always, especially also at different 

times. Thcn the integrals of equations (5.45) and (5.52) can be carried out and yield 

1 
N 2:: 0(1: -1:;(t) + 1:.(0)) and 

'J 

(5.60) 

1 
= ,, 2:: 0(1: -1:,(t) + 1:;(0)), 

h i 
(5.61) G~l (1:, t) 
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respectively. The formel' equatioll expresses thc probability to find any particle at a time 

t in a distanee r. from another at time O. The lutter equation denotes this probability 

for the same particle. It therefore dcpends only on the particle's displaeement during a 

time interval C.[;(t) = [;(t) - [;(0) leading to a simple expression for the intermediate 

ineoherent seattering funetion: 

8;';,(9., t) = ~ L (exp (-i9. . C.[;(t))) . , 
(5.62) 

In eertain eases this expression ean be further simplified using the uGaussian approxima-

Hon": 

8;~~""'(Q, t) = exp ( _~Q2(c.r2(t))) . (5.63) 

6 Here (c.,.2(t)) is the average mean squared displacement wh ich often follows simple 

laws, e.g. (c.,.2(t)) = 6Dt for simple diffusion. Because one of the prerequisites of the 

Gaussian approximation is that all particles move statistically in t.he same wal' (dynamic 

homogeneity) the particle average and the index i vanish. An 3nalogous expression ean 

be derived for the coherent seattering. 

In order to dccidc whether thc classical approximation ean be used the following rule has 

to bc taken into account: Quantum effects playa röle if the distanec of two particles is of 

t.he order of the DeBroglic wavelength ).B = nh/2msckBT or if thc times eonsidered are 

smalleI' than tl/kDT. 

Figure 5.10 sehematically shows on thc left side the behaviour of the correlation funetions 

G(r-, t) and G,(,·, t) for a simple liquid (in c1assical approximation). On the right side the 

corresponding intermediate scattering functions SCOh(Q, t) and Sinc(Q, t) are displayed: 

• For t = 0 the self eorrclation functioll is given by a delta function at 'I' = O. The pair 

correlation function follows the statie correlation funetion g(r). The intermediate 

scattering functions are cOl1stant one for the ineoherent and the statie structure 

factor for the eohcrent . 

• For intermediate times thc self correlation function broadens to a bell~shaped fune~ 

tion while the pair eorrelation function loses its structure. The intermediate seat-

GFor solids t.he long-time limit of t.his c«uatioll is callcd the Lamb-Mößbauer factor. Its cohcrent 

counterpart. is the Debye-Waller factar. 
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Figure 5.10: Schematic Comparison of the correlation functions G(1', t), Gs(T, t) and the 

intermediate scattering functions Scoh(Q, t), Sinc(Q, t) for a simple liquid at different times. 

The solid lines denote the cüherent ease, the dashed lincs the selfjincoherent. 

tering functions decay with respect to the t = 0 value. The decay is faster for higher 

Q and (in the cüherellt ease) less pronounced at the structure factor maximum . 

• The long time limit of the pair correlation function is the average density Po- while 

the self correlatioll simply vanishes (in a liquid). In consequence both the coherent 

and the incoherent intermediate scattering function decay to zero for lang times and 

any Q. 

5.4 Scattering frol11 an Ideal Gas 

\Ve considel' agas of N atoms in a volume l' neglect.ing thc spin coordinates a and assume 

that all scattering lengths are identical bi = 1. The wave function of a free atom confined 
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ta a volume l' is simply a plane wave with wave veetar !i: 

\j1 ~(1:) = (Llß) = Jv exp(i,,·1:) . (5.64) 

Using this expression, tha matrix element in the double differential cross section (5.27) 

cau immediatel)' be calculated: 

(dl exp iQ . riß) = ~ l, d3
, . exp(i(Q + Ii - t;,') .1:) = J(Q + Ii - d) . (5.65) 

The resulting delta funeUOIl expresses thc morncntum conservation. Onl)' if momentum 

is conserved thc matrix element is l - otherwisc zero. 

In tha second step wo have to consider encrgy conservation. The energy of thc atom with 

wave vector n. is 
1i' 

E" = - ,,' 
m" 

(5.66) 

where msc is the mass of thc scattering atom. For thc evaluation of lhe delta functiOil 

in (5.27) we need thc energy difference between thc states K, allel K,'. Because of thc delta 

function factar (5.65) only slich states with ö.!.. = !f - 9.. havc to be considered allel for 

those the energy difference is: 

(5.67) 

With this result one can calculate the scattering fUllction: 

(5.68) 

In the limit of a lal'ge volume V , &. becomes a continuous variable. In addition only 

the component of ~ parallel to Q is relevant. Therefore, (5.68) can be written as a one­

dimensional integral: 

(5.69) 

The probability of a momentum state K, follows from the Boltzmann distribution: 

(5.70) 

with the state sum beillg 

(5.71) 
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Insertion of this result into (5.69) yields: 

h 100 (h'''') (h ) S(Q, w) = ";2 k T d" exp 2 k T b nw - - (Q' + 2Q,,) 
7rmsc ß - 00 mse ß 2msc 

(5.72) 

Substitution of W '= nw - -," (Q' + 2Q,,) into this integral allows the evaluation of the 
r1I " 

delta function: 

S(Q ,w) = 
y!2ml1scknT 

100 dW~;Q"'exp( 2 n: T(";"'Q(nw - w) - 9.)')O(W) 
-00 It - msc ß t~ 2 

~ exp ( (nw - Eel') 
V~ <lEekBT 

(5 .73) 

with Er = n2Q2/2msc being thc recoil energy cxpcrienced by the atom during the scat-

tering evcnt. Thus, the dynamical structure factor of an ideal gas is a Gaussian ceu­

tred around the recoil energy for a given Q. Thc width of thc Gaussian J2ErknT = 

JkBT/mscliQ incrcascs witl~ temperature and scattering vectal' Q. 

Double inverse Fourier transform with respcct to wand Q gives the correlation function 

G(r, t): 

S(Q, t) 

G(r, t) 

= h i: dweXP(iwt)V 47fE~knT exp ( 

exp --- (koTt' - iM) , ( 
Q' ) 

2msc 

(liw - Eel') 
4EekBT 

= (~)3 Jd3Qexp( -iQ '1:) exp (-~ (knTt' - ilit)) 
2n 2msc 

= ( lnsc . ) 3/2 exp ( m sc1:
2 

) 
27fkBTt(t - In/knT) 2kBTt(t -lt!jknT) 

(5.74) 

(5.75) 

Because of thc quanturl1 mechanical nature of thc undcrlying dynamics büth S(Q, t) and 

G(r, t) have an imaginary part. 

The same result can be obtained via the Van Hove correlation fUllction. For this route 

we start with equation (5.39) for which we have to calculate exp(iQ' 1:(t)) for a free atoll1. 

This can be done using the equation of motion 

where 

ill :t exp(iQ· r(t)) = [exp(iQ' 1:(t)), H] 

H= _ l_p' 
2111 sc 
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js the Hamiltonian of a free atom and p thc momentum operator. In the following thc 

time dependent operator exp(ii{' K(t)) shall be ealclilated. This is done IIsing the cquation 

of motion 

in :t exp(ii{' K(t)) = [exp(ii{. dt)), H] . (5.78) 

Here, the bracket on the right hand side is the eommutator. In analogy to equation (5.34) 

_1_ [exp(iQ . dt)), p'] = _ 1_ exp(itH) [exp(iQ . K(t)), p'] exp( -itH) (5.79) 
2msc - 2msc -

holds. Thc COlllmutator at equal times on thc right hand side of the last equatioll can 

casity be calculated. For this purpose olle uscs the co ordinate repl'csclltation E = - ih.2. . 

By calculation of the derivatives 

[exp(ii{. dt)),p'] = -ftexp(ii{· K(O)) (hQ' + 2i{·!Ü (5.80) 

follow8. Sillce E commutes with thc Hamiltoniall in thc equation of motion the Hamilto~ 

nian ean be applied directIy on K(O): 

ift
d
d 

exp(iQ · dt)) = _ _ li_ exp(iQ. r iO) ) (hQ' + 2Q· p) (5.81) 
t - 21716(; - - -

This differential equation can be solved immediatel)' and one obtains for the time depen­

dent operator: 

exp(ii{' dt)) = exp(ii{' riO)) exp C~'" (hQ2 + 2i{' E)) . (5.82) 

With this result t he eorrelator in the scattering funetion (5.39) ean be calculated: 

( ) ( ihQ' ) ( (in.Q. p)) exp( -ii{' riO)) exp(ii{' r(t)) = exp -2 - exp 2- - . 
m sc 11lsc 

(5.83) 

As in equation (5.72) thc average is taken by using thc Boltzmann factor yielding 

/ (ittQ ' p)) ( \ exp 2-;;l
sc 

- = exp (5.84) 

Insertion into (5.83) gives 

(exp( - iQ . riO)) exp(ii{ ' r (t))) = exp ( - 2~': (t'knT - iM)) . (5.85) 

idcntical to equation (5.74). Thus using the Van Hove correlation fUll ction we obtain 

the same result a5 was originally derived directly from the definition of the scattering 

fu nction. 
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vVith this example we can also demOlIstrate that neglecting the operator character of the 

position vectors leads to a wrang result. If we write the scattering functioll using the 

classical expression (5.60) 

S"(Q,w) = ~ 100 

dtexp( -iwt) (exl' (-iQ. (r(t) - r(0)))) 
27rfl. -00 

(5.86) 

is obtained. For a free atom we have r.(t) = dO) + t'f!./1H sc . Inserting this expression 

into (5.86) and averaging leads to: 

S"(Q,w) = J 47rE~knT exp ( 
w'm", ) 

2knTQ' . (5.87) 

Comparison with (5.73) shows that this result is wrang by neglecting the recoil energy 

term. Instead of being centred at Er the expression (5.87) is symmetrie with respect to 

w=O. 
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6. Continuum description: 

Grazing Incidence Neutl'On Scattering 

O.H. Seeck, IFF8, FZ Jiilich 

6.1 Introductioll 

When studying solids Of soft matter the explicit molecular structure is 110t always cf 

particular importance. Quite often the properties investigatcd are long ranged and not directly 

connected with the atoms or their positions. One exarnple is a material with a continuolls 

ferromagnetic phase transition: Far below a weil defincd temperature (thc critical temperature 

called Curie temperature) the material is in a complete fcrromagnetic stale. Far above 110 

fcrromagnetic behavior can bc detected. e lose to the critical temperature magnetic fluctuat ions 

appear. Thc typical width of the magnetic arcas is in the range cf several nanometers up to 

macroscopic distances depending on the temperature (see Fig. 6.1a). The width is basica lly 

independent of the lattice spacing or the particular kind of atoms. Thereforc, the knowledgc of 

the detailcd molecular structure is not necessary to explain the physical properties of 

ferromagnets. 

Other examples are surfaces or layer systems. Thc properties of the sampies such as film 

thicknesses o r in-plane cOlTelation lengths are usually also la ng ranged compared to the atomic 

distanccs and the infonnation about the exact atomic positions is not relevant (see Fig. 6.1b) . 

.. 

Figure 6.1: Sketch of systems with relevam l1Iesoseopic or macroscopic propel1ies. (a) 
Ferromagllet dose to the Curie temperature. Ordered regions with a cottelalion length ~ 
exist. (b) MOllolayer system. The layer thicklless d amlthe in-plane eorrelatioll lellgtli of the 
rough surfaee ~ (I re IlIliCh Jarger than the atOll/ie spacing. The left pieture of eael! example 
shows the real atOJllie strueture fh e right part the approximation as a eOlJtillilOIlS system. 
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A straightforward rnethod to investigate rnesoseopie length seales without taking into 

account the exact moleeular structure ofthe sampies is the small angle scattering. 'Small angle' 

in this ease means that the mean value of the wave vector transfer IQI of the scattered bcam is 

much smaller than the typical reciprocal spacing of the atoms in the sampie Ce.g., the reciprocal 

lattke vector Irr'l for a crystal with cubic symmetry) . In this case the effects of the atOlnic 

stnlcture on the scattered signal are negligible. This is schematically explained in Figure 6.2. 
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Figure 6.2: Pri1lciples 01 small a1lg/e seaueri1lg. The me/fl od ;s nol sensilive 10 Ihe exaet 
atOll/je struelure but ollly to 11lesoseopie or1llaeroseopie lellgth sea/es. Therelore, sampies eall 
be treated as eOlllinuous systems. Th e operator ® dellotes tlie eOllvolutioJl 01 two fimeliolls. 
A more detailed explanation ;s g;ven in tlie text. 
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Starting point is the exact atomic structure of the sampie. In this section a crystal with 

some density modulations is chosen (Fig. 6.2 top row). Thc potential V(r) of such a system can 

bc written as a product of the undisturbed infinite crystal lattice potential V!Ju(r) and the 

modulation Vmod(r). As it was shown in prcvious sections in Bom approximation the scattered 

inlensity 

/([J) -I A([J)I' -IJ V (r) exp(i[J· r)d'rl' = IJ V,,,, ([)V""" (r) exp(i[J· [)d ' rl' 

= IF{V,," (r)V"", (r)}([J)I' 
(6.1) 

of thc sampie can be calculated by performillg a Fourier transformation F ( V(r)} of V(r). The 

convolution theorem for Fourier transformations can be used 10 modify equation (6.1). This 

theorem states that the convolution ® oftwo Fourier transformed fllllctions ji=F{gd gives the 

same result as the Fourier transformation of the product of both funclions gi. Thus, 

F{g, · g, } =F{g, }®F{g, } =!, ®!, = J !'('l.)!' ('l. - [J)d ' q (6.2) 

where the integral is the definition of the convoilition. 

It is also known from previous sections that for an infinite periodic crystal the lattice 

potential Vlau(r) can be wriHen as a sum of delta-functions weighted with the scattering length 

and located at the position of the atoms. The Fourier transformation of Vlau(r) also yields delta­

functions: the Bragg peaks at the reciprocal lattice positions. In contrast, the Fourier 

transformation of Vmod(r) is usually a 'smoolh' function which is strongly decreasing for large 

IQI. The result of the convolution is depicted in the second row of Figure 6.2. 

By doing a small angle scattering experiment only wave vector transfers Q with a mean 

vaille elose to 0 are cOllsidered. All other vallIes are omitted. Thc result of the magnification 

around Q=O is shown in Ihe Ihird row of Figure 6.2. In good approximation it is identical 10 a 

convolution of jusl a single della-function at r=O wilh the Fourier transformation of Vmod(r). In 

real space (Fourier backtransformation) a single delta peak corresponds to an infinite sampie 

with homogeneous potential which turns out 10 be the averaged va lue of V1all(r) . The fourth 

row of Figure 6.2 proofs timt no information about the atomic structure is necessary 10 explain 

a small angle scatlering pattern. 
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Ta study the marphalogy of surfaces or interfaces of thin layer systems such as polymer 

Films on silicon substrates or magnetic multilayer systems same specific kinds of small angle 

neutron (or x-ray) scattering experiments can be performcd. Especially for buried interfaces 

these surface sensit ive methods are thc only way to investigate the film properties without 

destroying the sampie. Therefore, they are very freqllently applied and have an enormOllS 

impact on solid states and soft condensed matter physics in general. 

The so-called speculal' reflectivity is a sean with a wave vector transfer Q perpendicular 

to the sampie surface which is defined as the z-direction in this sec tioll . Because of the Il"llssillg 

Q.c and Q)'-component the reflectivity is only sensitive to the thickness, the potential und the 

roughness of each film. In-plane properties of the interfaces such as latera l correlation lengths 

are accessible with different kinds of diffuse scattcl'ing experiments where at least one of the 

components Qx 01' Q). are not vanishing. 

In the following, the spccular reflectivity and the diffuse scattering are explained in more 

detail. The usual experimental setup will be shown and the basic thcory of specular and diffuse 

scattering will be presented with some examples . . 

6.2 Experimental Pl'incipals of Surface Sensitive Neutron Scattcring 

A sketch of a typieal neutron surface seattering experiment is displayed in Figure 6.3, a 

more detailed description is given in other sections. The direction of the primary bearn is 

defined by some slits. Before the primary beam hits the sampie the flux is usually monitored. 

The incident angle 6 which is determined with respect to the sarnple surface is set by rotating 

the sampie in the beam. The scattered beam is deteeted al an angle 9' (also with respect to the 

surface) which is detennined by 0 and the scattering angle $=6'+9. In the literat ure $ is 

sometimes callcd 20 (which is actually inaccurate because $ is not necessarily equal to 2·6). 

Stils 
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sampie' ',..p 
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Figure 6.3: Sketch oi a t)'pical 
sIlIface sensitive lIewton 
scallering experiment. The 
i"cidenl angle is delloted by 
S, tlle outgoing angle witll 
respect to 'Ire sll1face by S'. 
Tlle scatterillg angle ;s called 
<1>. 



For specular reflcctivity measurements the condition 8=8' llOlds which is usually not tme 

for diffuse scauering cxpeIiments. The mean value of the wave vector transfer is givcn by 

411 (<I» IQI=-sin --).. 2 (6.3) 

with the de Broglie wavelength of the neutrons A=h/(2mE)1I2. As it was mentioned befoee for a 

small angle scattering experiment IQI has to be much smaller than the typieal reciprocal 

distance of the atoms in the sampIe. Therefore, $ also has 10 be smalI. Depending on the 

chosen wavelength the angle $ is almost never larger than a fe\\' degrees. For a surface 

sensitive experiment, which is performed in reflection and not in transmission (see Fig. 6.4), 

this means that 8 and 8' are also small aod positive. 

z(x) 
-0 

Vo=O o 
x 

Fig. 6.4: Sketch of the wave 
vectol'S /01' a swiace sensitive 
experime1ll. The parameters 0/ 
the trOllSfllitted beam are 
labeled witll the index t. The 
potelltial 0/ air is delloted by 
Vo that Olle 0/ the substrate 
with VI. 

From simple geometrical considerations the components of the wave vector transfer can be 

dedueed. They are defined by 

2n 
Q, = T(eosW- eos8) Q, =0 (6.4) 

und can be used to estimate the accessible Q-range of surface sensit ive cxperirnents. At a 

typieal wavelength of the neutrons of about 0.2nm=2Ä and angles not larger than 1.0 degree 

Q, would always bc less than o.lk'. IQ.I would cven bc restrieted to 5·1O·'k'. For 

cornparison: A simple cubic crystal with 3A lattice spacing has a smallest rcciprocal lattice 

veetor of 2.1 k'. 
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6.3 Specular Neutron Reflectivity in Born Approximation 

For specular reflectivity measurements the exit angle B' is always identical to the incident 

angle B. Therefore, the Q,-component is equal to zero and the retlectivity data does not contain 

any particular information about the in-plane structure of the sampie. In first order Born 

approximation [1] the scattered intensity is given by 

1 If dV(z) I' I(Q, ) - Q: ~exp(-iQ, z)dz (6.5) 

which means, thaI the specular reflectivity is basically determined by the Fourier transformation 

of the gradient of the potential profile perpendicular to the sampIe surface. The averaged 

(continuous) potential of a particular material with N components is defined by 

(6.6) 

where the bj are the scattering lengths and the pj are the particle number dcnsities of the 

components. A one-component sampIe with a perfectly smooth and flat surface which is 

oriented in the (x,y)-plane would yield a step function for the z-dependent potential: 

2ntl ' bP(1 1 ) { 0 V(z ---- - --0 z -
) - 111, 2 2 () - 2nh ' bp/lII" 

z >O 
z $O 

(6.7) 

The derivative of V(z) is a delta-funetion dV(z)/dz-8(z). With Eq. (6.5) one gets I(Q,) - Q; ' 

because the Fourier transformation of a delta-function at z=O is identical to 1. 

However, a perfectly smooth und flat surface da es not ex ist. Instead surface roughness or 

density gradients have to be taken into accotmt [2,3]. As shown in Fig. 6.5 roughness means 

that the z-position of the surface is locally different from the mean position at z=O. Averaging 

the density in the (x,y)-plane at eaeh z-eoordinate gives a smooth profile V(z) perpendieular to 

the surface. The exact shape of the profile depends on the actllal physical and chemical 

properties e10se to the surface. For simple rough surfaces in good approximation an error­

fllnction 

6.6 



with 
2 ' 

erf(l) = c J exp(- I ' )dl 
v" 0 

(6.8) 

is sufficient to model thc profile. Thc parameter Cl' is called rms-roughness and is a measure for 

the root mean square width of V(z) given by the gaussian probability function 

dV( l) I ~ l') - - - P(l) = = ex - - , . 
dl '12"0 20 

(6.9) 

Figure 6.5 also shows that the profile does not contain any information about the lateral 

structure of the rough surface. Therefore. the reflectivity is insensitive 10 different in-plane 

length seales l;.". It even cannot be used to distinguish between a rough interface Of a density 

gradient caused by e.g., interdiffusion. It will be explained later th at this can only be dOlle by 

lI sing diffuse scatteling expeliments. 

Sp<E------7 

~"""!'\/Ay<' 
,.~, ., 
, 

z'" 
+-""'-~s:?-7V (Z) 

v 
Figure 6.5: Three differem s/llfaces wir" file same rllls-ro/lgll1less cr detenllilled by fhe root 
meall sqllare widlh of Ihe probabilily fllllelioll (dashed lilie) of Ihe profile V(z) (solid lilie). 
The ill·plalle sll1lclUre is detemlilled by the lateral correlatioll leng'h l;p wh ich ;s large Jor ,he 
velY leJt example quite small JOl" ,he rough surJace showll ill the center alld 1101 de[med Jor ,he 
dell sity gradiellt example (right). 

The refleetivity of a rough surfaces with an error function profile can eas ily be ea1culated. 

The derivative of V(z) is determined by the probability function P(z) [see Eq. (6.9)]. With Eq. 

(6.S) this yields /(Q,) - Q;'exp(-Q.'o'). Compared with the perfectly smooth surface the 

reflected intensity is damped by a Debye-Waller factor: The rougher the surfaces the less 

intensity is reflected at large Q, (see Figure 6.6 left). 

Refleetivity seans are not only extremely sensitive to surfaces roughncsses but also to film 

thicknesses of layer systems. If a thin film with thickness d and an averaged potential V, is 

deposited on a substrate with potential V, the density profile V(l) is given by 
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z>d 
d?z>O 

O?z 

(6.10) 

if the interfacial rms· roughnesses (J\ and 0'2 are neglecled. The derivative yields two deha­

functions: dV(z)/dz-(b,p,-blpl)B(z)+blp,B(z-d). Usillg Eq. (6.5), the specularily reflected 

intensity of a petfectly smooth monolayer system is given by 

(6.11) 

This means that films callse oscillations in the refleclivity. The pcriod is determined by the film 

thickness the strength (usually called 'contrasI') by the difference of the potentials V, and \lz 

(see Fig. 6.6 right). 
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d=JOOÄ, 
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b2P2=4, b,p ,=2 

b2p2 = 4 , b,p,=} 

b2P2=4, b,PI=J 

Figure 6.6: The lefl graph displays file effeel 0/ fhe suiface rouglllless 011 fhe spec//larily 
reflected intensity: fhe ml/gher fhe swiace the fess imensit)' is refleCled allarge Ql' The right 
figure shows refleetivities 0/ pelfeetl)' s11100tll mOllolayer systems. 111e CU nies are shifted in 
imellsit)' Jor elarit)'. The thieker the film ,he smaller the distallee oJ fhe so-ealled Kiessig 
jri1lges. The less fhe contrast (giveli b)' [b1p2-b1pl]) the less prolloullced the oscillafiolls are. 

In this way every additional layer appears as an oscillation in the reflcctivity curve. 

Interface roughnesses can also quite easily bc included in the theory and yield a typical 

damping of each oscillation. Multilayer systems with different parameters for each layer 

generally show very complicatc reflectivities. They are usually difficult to analyze especially 

because of the so-called 'phase problem' which prevents an unambiguous solution cf Eq. (6.5). 

The "phase problem" appears when performing the mcan square of the complex function 
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F(dV(z)/dz) to calclilate the reOected intensity [see Eq. (6.5)]. Thc loss of thc phase 

information may end up in identical reflectivities evcn though the potential profiles are 

different. E.g., using Eq. (6.11) it can casily be shown, thai a Illonolayer system with b1P2=4 

and b l Pl;;3 exactly results in the same retlectivity as b1pl:::4 and bI PI=1. if the film thicknesscs 

are identical. 

6.4 Diffuse Neutron Scattering in Born Approximation 

Performing a surface scattering experiment it tums out that some intensity is also 

scattered in directions with BotS'. In this case the wavc vector transfer Q has a carnponent in 

Q.--direction (see Fig. 6.4). This off-specular signal is called diffuse scattcring and is caused by 

lateral structures (in-plane, in the (x,y)-planc) of the samplc [4]. If the sampies are perfectly 

Sl1100th Of if there is no lateral Slructure (see Fig. 6.5 light) no diffuse scattering is expccted. 

]n general, for rough layer systems the diffuse scattering is sensitive to the correlation 

function Cj!(B.) between two interfaces j and k wherc B. is an in-plane vector (x,),). Thc 

correlation fUllction is defined by 

(6.12) 

with the loeal deviation zir) from the avcraged position of the interface j. The corrclation 

function between two different interfaces is usually called 'cross-correlation'. If j=k IlOlds 

q.(!D=Cjj(ß) is called 'allto-correlation' . Qualitatively, Cj.(!D is large if two areas of the 

interfaces j and k, which are B.. apart from eaeh other, 'look similar'. E.g., if the two interfaces 

contain a periodic structure with the same periodic distance D the correlation fllnction exhibits 

maxima al D,2D,3D .... For an auto-correlation function of a single rough surfaces olle gets a 

monotone decreasing function: For very small distances the parts of the surface look similar, 

the larger the distance the more different they beCOlTIC. The width of the curve is connected to 

the lateral con'elation length I;" of thc interface (see e.g., Fig 6.5) [5]. 

The diffuse scattering can be llsed 10 investigate periodic in-plane structures, in-plane 

correlation lengths of a single rough interface and correlations between two different 

interfaces. Figure 6.7 depiets some examples. Thc complete mathematical formalism to deduce 

the diffusely scattcred intensity is quite complicate [6]. Therefore, the full theory is ornitted in 

Ihis section. Instead, the diffuse scattering is explained using a simple monolayer system. 
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Figure 6.7: Same exa1llples 0/ mono/aye,. systems will! rough sw/aces. a) BOlh illtelfaces (Ire 
not correlated at all. b) Pelfeet cross-corre/arioll betweell fhe lower aud Ihe lIpper inteljace. 
c) A cross-correlafioll is visible but if is 1/01 petfeet: The infel/aces da 1101 exactly look Ihe 
same. d) Pelfeetl)' aJ/ti-correlated intel/aces. 

In Bom Approximation the diffusely scattered intensity of a monolayer system with the 

inlcrfacesj=1,2 and the film thickness d can bc calculatcd by 

[dirf (Q"Q,) - ~; [(b,P, -b,pJ e,p( - Q; anS" (QJ + (b,p,)' exp( - Q; anSlI (Q, ) 

+ 2(b,p, - b,p , )(b,p, )exp( - Q; [a; + an I 2 )S" (Q, ) cos(Q,(1) 1 

Thc rms-roughnesses are given by 01.2 und the so·called stmctllre faetor by 

(6.13) 

(6.14) 

Eg. (6.13) obviously looks similar to Eg. (6.11) which describes the specular reflectivity. The 

exponential Debye-Waller functions would also appear in Eg. (6.11) if roughness is taken into 

account, the only difference are the additional structure faelers 5jt(Q,) which modify the 

scattering due to the in-plane structure of the interfaces. 

Same examples of diffuse scattering experiments are depicted in Fig. 6.8. They show that 

the in-plane correlation length I;, of a rough surface (see Fig 6.5) is directly connected with the 

width of the diffuse scattering in Q ... -directioll . Furthermore, a Qt-scan al fixed Q~ contains the 

infommtion about cross-correlations of two interfaces. If cross-correlations are present with 

Sj("'O for IFk the last term of Eg. (6.13) leads to characteristic oscillatiolls of the diffuse 

scattering which are in-phase with the specular reflectivity in the ease of correlated interfaces 

and out-of-phase in the ease of anti~correlation. 
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Equation (6.13) also shows that the diffuse scattering can be detected in the whole Q­

space even at QT=O which is actually the position of the specularily reflected signal. Trus means 

Ihat rcflectivity measurements (Qcscans at Ql=O) ahvays contain both thc specular reflcctivity 

and the diffuse scattering at QrO. Ta extract the specular reflec tivity from the reflectivity 

measurement the diffuse scattering has 10 be subtracted. This is usually done by performing a 

Q{-scan wi th a small offset .6.Q. so that the specular condition is not exactly matched. This so­

caUed longitudinal diffuse sean is subtractcd from the measured rcOectivity 10 gel thc truc 

specular reflectivity. 
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Figure 6.8: Examples 0/ diffuse scatterillg experimellfs. LeI!: Q 1. -SCW1 at jixed Qzfrom a single 
rough swfnce. The solid C/01'e corresponds 10 tl sampie wif" an in-plane correlatioll lellgt" 0/ 
~p=50ooA Ihe dashed lilie 10 s,=lOooA. The peaks al Ihe cOlldilioll Q,=O (where 9=9') are 
lIot diffuse sCflllerillg bw caused by fil e specular reflectivity. Right: Speclliar ref1ectivil)' 
(symbols) alld diffuse scattering QcSCW1S at Qx=O (solid fines) 0/ a mOllo/ayer system willl 

d=30oA, b,p,=4, cr,=5;\' b,p,=3 alld o,=5A. The diffllse sams show Ih e effecl of cross­
correlatiolls. The m eas"1'ed rejlectivity ;s detenllined by Ille SWll o/Ille specular ami Ille 
diffuse seall. 

U nfortunately. the intensity of the diffuse scattering is usua ll y o rders of magnitude 

smaller than the specularily reflccted signal. Ta get good statistics and rcliablc data a very high 

primary flux is necessary. This ean easily be achieved with synchrotron radiation x-ray sources 

but is hardly possibly for neutron sources (see sect ion 6.5). Therefore, it is extremely difficult 

to extract quantitative information from the neutron diffuse scattering data. 
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6.5 The Regime of thc Total External Ref1ection: Exact Solution of the Wavc Equation 

It is obvious thatthe Bom approximation [Eqs. (6.5) and (6.13)) fails for Q,-->O beeause 

the intensity would became infinite at Qt=O. The reasan is that multiple scattering processes are 

neglected within the Born approximation. For surfacc sensitive experiments multiple scattering 

processes become essential at very small angles [7]. An exact description of the scattered 

intensity can be deduced for a perfectly sl1100th surfnee from qU3ntliln theory. 

Starting point is the Schrödinger equntion 

[ 
h' ] - - f> + V([} 'l'([) = E'l'([} 

2mll 

(6.15) 

for the wave function of the neutrons 'l'([). The energy of the neutrons is given by 

E = f12 k 2 / (2mll ) \Vith the mean value k=2rr1). of the wave vector k (the ineidcnt and the 

outgaing beam have identical k because elastic scattering is assllmed). For a homogeneolls 

sampie thc potential is delennined by Eq. (6.6), thus 

(6.16) 

wilh Ihe wave veetor k, inside Ihe medium (see Fig. 6.4). From Eq. (6.16) it is juslified 10 

introduce the refraetion index lI,=k,/k of the matetial. In very good approximation oße yie lds 

(6.17) 

for the refraetion index wh ich is a number elose to 1 for neutrons of approximate lÄ 

wavelength (the corrcction 5, is called dispersion und is on the order of 10'5 ... 10'6) 

By introducing the refraetion index the basic prineiples of opties ean be applied for all 

further considerations. First of all it is remarkable that for many materials 11, is smaller than 1 

(because bj is usually and pj always positive, thus 5/ is usuaUy positive). This means that the 

transmitted beam is refracted towards the sampie surface (8/<8, see Fig. 6.4). For va lues of e 
belO\v the so-called cl"itical angle 8c the incoming beam cannot penetrate the sampIe surface 
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but is completely reflected. The critical angle can be estimated by Oe=(20,)112 and is on the order 

of same 0.1 degree depending on the density, the scattering lengths of the atoms and the 

wavelength of the neutrons. For 0 values beyond Oe the beam can penetrate the sampie and is 

only partly reflected. At the sampie surface the reflection and transmission coefficients rl and 11 

are obtained by the Fresnel fonnulars 

'i 
k : - k',l 

k z +k,.l 
and 

2k, 
(6.18) 

with k! =ksinS and k,.<. = k,sinS, = k(n,2 _COS
20)1f1 (see Fig. 6.4). The specular reflected intensity 

1=I'jf is detennined by the absolute square of the reflection coefficient. It shows the typical 

plateau below the critical angle, the regime of the total extemal reflection, and the rapidly 

decreasing intensity beyond Sr. \Vith appropriate approximations one gets 1~//(4sin4e)-Q<.·4 

for incident anglcs 0 larger than 30/ which is the confLfmation of the Born approximation (see 

Fig.6.9). 

~ 

'" -4 o 

: cri tico l 0 1 0 l.e 

Figure 6.9: Effect of the 
total extemal rej1ection. 
The [arge Jig/lre shows a 
refleclivilY of a smoolli 
slll/ace in Bom approxi­
mation (symbols) mut the 
exact Fresnel J01m (solid 
line). The dashed line 
marks the critical Qz. 
The left insel displays 
abs01ption eJfects in fhe 
reflectivity 011 a linear 
scale. The same is depic­
ted Jor tlie transmitted 
intellsity in the right illset. 

Not addrcssed yet in this section is the absorption ß, of the neutrons inside the sampIe. 

For most materials such as silicon the absorption is negligible but this is not the ease for e.g. 

cadmium or indium. Most straight forward, it ean be introduced by ineluding an imaginary part 

to the refraetion index 

6.13 



(6.19) 

The effect of thc absorption is shown in Fig. 6.9. It basically smoothes thc sharp features of the 

intcnsity elose the critical angle and also restricts the penetration depth of the neutrons 10 finite 

valucs. 

The diffuse scattering is also modified in the regime of the total extemal reflection [8,9]. 

In good approximation one gets 

(6.20) 

for a single rough surface. For layer systems this expression becomes much more complicate. 

Eq. (6.20) shows, that the transmission functions of the incoming and the outgoing beam have 

·to be taken inta account. The transmission function f/exhibits a maximum at the critical angle 

(or the critical QH respectively, see Fig. 6.9) becausc far incident angles 0 ;::; Oe an evanescent 

wave appears which runs parallel 10 the surface (0' ;::; 0) [10] . Therefore, the diffuse scattcring 

also has maxima called Yoneda wings at thc positions 8=8" and 8'=8" (see Fig.6.1O). 

.~ 3 -

c 

~1 

O _L~4~~~_~2~~~~O~~~~2~~~~4 

Q, [O.OOtÄ-' J 

Figure 6.10: Diffuse scatterillg 
sean at jixed Ql. The symbols 
eorrespolid fo the 80m 
approximation (dashed lilie in 
Fig. 6.8). The solid lilie displays 
fhe better approximation 
illcJlldilig the scattering effeets 
dl/e to the total extemal refleetioll 
at 8=8c ami 8'=8c. 111e)' are 
visible as the Yoneda-maxima at 
IQ,I~0.0032J.:'. 
The peak at the center is the 
speclt/ar refleeted intensity (8=8'). 

In summary. the optical properties of the sampIe affect the scattering only if the incident 

or the exil angle is comparablc or smaller than the critical angle which is usually smal1er than 
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0.4°. The full dynamical Iheory can only be dcduced for Ihe specular reflectivily. For Ihe diffuse 

scattering no exact solution exist right now. 

6.6 Imporlant Applicalions of Neulron Reflecll'Ometry 

For many standard scattering experiments on layer systems x-rays are much more suitable 

lhall neutrons because of the lligher flux , the better collimation and the less divergence. ln 

I1umbers: A standard syncluolron radiation source has a primary beam intensity of about 1010 

counts/sec at a typieal spot size of (O.2xl)mm2
, The beam divergence which determines the Q­

space resolution is less thall 11100 of a degree. Fer a modem neutron sollt'ce olle gels less than 

107 counts/sec in an area of (0.5x20)nun2 with a divergence of larger thall 0,02°, 

However, for same topics of research neutron scattering is superior. Olle example is the 

investigation cf materials whieh mainly conlain hydrogen, carbon, nitrogen or oxygen such as 

organic molecules. In this case the electron density (whieh for x-mys replaces the potential 

V([)] is very low und the x-ray cant rast becomcs very smal!. In contrast, for neutron V(r) 

strongly depends on the isotope of the elements. Therefore, by using deuterated or 

hydrogenated organic materials the scattering contrast ean easily be tuned without changing the 

chemical propertics of the sampies. Figure 6.11 shows an example of a polymer bilayel'. 

h-PS 

d P2VP 
~'SiIR».~~ 

z: 
:: 0 .6 

'1 0.4 

}-roys 

g 0.2:; ~ t 
~ 0.0 "'~ 0:c-..;~~7., oo",7.""'o"'~ -;;,oo"'<:""'o""JOO 

1' 1 

" " 'g '0 

e 8 
.e-

6 

E 
f 

" 'g 10 

1 8 

20.00 0.0S 0.10 0.1~ 0.20 02S0.JQ 

Figure 6.11: COlllparisoll 
of all x-my (Ieft COIIlIllIl) 
alld a neutron (rigllt 
COIUIllII) reflectivit )' 0/ a 
polYlller bilayer (21011 
polystyrelle (PS] Oll 7011 
dewerated polyvinylpyrri­
dille fd-P2VPj Oll a silicon 
substrate). Tlle x-ray 
cO/urast between tlle two 
polymers g;vell by tlle 
electroll densi!y is 0111)' 
abollI 5%. 

It can c1early be seen that the x-ray reflectivity only exhibits one signifieant oscillation 

period which is duc to the whole film thickness. The x-ray contrast at the polymer interface is 
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too smallto modulate the intensity. Advanced analyzing methods have to be used to extract the 

information of the polymer-polymer interface [111. This is different for neutrons: By 

deuterating the bottom polymer the contrast is enhanced dramatically. The reflectivity shows 

separate oseillations: a long period duc to the thin d-P2VP film and a short period whieh is 

eauscd by the hopS film . The analysis is straightforward and usually very reliable. 

Allother very important applicalion is the magnetic neutron scattering. Neutrons have a 

spin of 1/2 which means that they are sensitive 10 the magnetization of the sampie. A sketch of 

a magnet ic neutron reflectivity experiment is depicted in Fig. 6.12. The sampIe is illuminated 

with polarized neutrons. The polarization is determined by the direction of the neutron spins 

with respec! to an extern al fjeld 11: They are usually either parallel or anti parallel to 11. 

Figurc 6.12: Sketch of a 
neutron reflectivity experi­
ment 011 a maglletic layer. 
The spillS oi fh e illcident 
neu trolls § are oriewed paral­
lel (either up or down) to an 
extemal field H. After the 
scalterillg fhe direc/ioll oi fh e 
spillS §.' mal' have flipped 
depelldi',g 011 I! whkll is 
given by file magnetil.atioll 0/ 
thefillll and H. 

After the scattering process the spin direction of the neutrons may have flipped . Thus, 

four different reflectivities can be measured: 

• RH: The spins of the incident neutrons are parallel to 11. Thc spins of the scattered neutrons 

are also parallel to tl. (non-spin-flip process). 

• R.. : The spins of the incident neutrons are antiparallel to H. Thc spins of the scattered 

neutrons are also antiparallel to!i (non·spin-flip process). 

• R+-: The spins of the incident neutrons are parallel to H. The spins of the scattered neutrons 

are antiparallel to tl. (spin-flip proeess). 

• R.t-: The spins of the incident neutrons are antiparallel to 11. The spins of the seattered 

neutrons are parallel to tl. (spin-flip proeess). 

The four reflectivilies ean be deduced from the Schrödinger equatioll eonsidering the extemal 

field, the magnetization of the sampie and the spin direction of the neutrons [12] . ]n the 

followin g only some qualitative descriptions are given. 
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1) If 110 magnetic induction !1 (which is determined by the external field fi and the 

magnetization of the sampie) is present one yields R++ = R. and R+- = R.+ = O. Thus, there is 

no dependencc of the scattering on the spin orientation of the incoming neutrons. 

2) If !l.. = !b. (magnetic induction perpendicular to the surface) na magnetic scattering is 

expected either. The reason are the Maxwell equations which da not allow a change of the 

mean value of n. in field direction (.y:. . l1. = 0). This means that 11. does not change at the 

sampie surfaces. Therefore, R++ = R.. and R+- = R.+= O. 

3) If !1 = Eh only non~spjn~t1ip processes appear (~ = ~'). The reason is the vanishing cross 

product between $.. and l1.. This means that no interaction between the spins and the 

induction is present so that the spins cannot flip. However, a magnetic contribution to the 

refraction index has to be added for R++ and subtracted for R .. . Thus, R++ :/: R.. but still R+- = 

R..= 0. 

4) If!l =!lJ. the spins can flip du ring the scattering process. Therefore, non~spin~flip processes 

appear with R+- :/: 0 and R.+ :/: O. In contrast to point 3) the non-spin~flip reflectivities are 

identieal (R .. = R .. ). 

In sununary, [rom all reflectivities RH , R.., R+- and R-+ the exact magnitude and orientation of 

the magnetization profile of thc sampie can be detemlined with polruized neutron reflectivity. 
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7. Diffractometer 

G. Heger 

7.1 Introductioll 

For pure elastic scattering the scattering function S(Q,oo) is reduced to the special case 

without energy transfer (Eo ~ E, and tl (jJ ~ Eo - E, ~ 0) and equal length of the wave vectors 

of the incident and scattered beams (i klil ~ I !ü l). S(Q.w ~ 0) and henee the scattering 

intensity is only depending on the scattering vector Q = kQ - kJ.. The coherent elastic neutron 

scattering (5; neutron diffraction) yields information on the positions (distribution) of the 

atornic nuclei and the arrangement of the localised magnetic spins in crystalline solids, the 

pair corrclation function ofliquids and glasses, and the conformation ofpolymer chains. 

Depending Oll the scientific problem to bc investigated adequate diffraction methods may be 

quite different. For fluids and glasses diffraction data of high statistical relevance over a very 

large IQI range are required. The direetion ofthe scattering vector Q is not defined for these 

non-erystalline states and a good resolution I!!QI/IQI is of no importanee. Besides of the 

pure elastic scattering also inelastie contributiolls are involved. 

Completely different are the needs for a diffraetion study of erystalline sol ids. The diffraetion 

at the crystal lattiee gives rise to pure elastie scattering loealised at the nodes of the so-ealled 

reciprocal lattice. The scattering vectors Q for the different "Bragg-reflcctions" are weil 

defined. For the separation of refleetions with similar Q values a good resolution MJ../Q is 

very important. A measured data-set of Bragg-intensities (integrated intensities of Bragg­

reflections) as complete as possible ovcr a large IQI range is required. An experimental 

stability and accuracy leading to aprecision of the intensity data of abotlt 2% is desired and 

may be achieved. 

Diffraction measurements on polycrystalline sampies dcpend only on the length of the 

scattering vector I Q I. Very small line widths (aeeording to an exeellent resolution I!!Q 111 Q I) 
combined with weil defined reflection profiles are prerequisites for a quantitative line-profile 

analysis. The complete powder diagrams resulting from overlapping reflections are described 

and analysed by means of the Rietveld method. 

For all diffraction methods firstly the energy of the incident neutron beall1 (expressed in 

allOther way as its wavelength or velo city) must bc specified. In the case of angular dispersive 

diffraction. the 2-axes diffractometer (see Fig. I) is equipped with a crystal monochromator to 
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select a special wavelengths band (1.. ± 6'IJ1c) out of the "white" beam according to the Bragg 

condition for its scattering plane (hk/) 

2dhk/"sin9hk/ = A, (1 ) 

with thc interplanar spacing dhkf and thc monochromator scattering angle 2911.1:1 = 29M. The 

width of the wavelengths band /j.')J'A, which is importrutt for the Q-resolution, depends on the 

divergences ofthe be am before and after the monochromator (collimations 0.1 and C(2), on the 

mosaic spread of thc monochromator crystal 6M, and on the monochromator angle 29M. In 

order to increase the illtensity of the monochromatic beam at the sampIe position the 

monochromator crystal is often bent in vertieal direction perpendicular to the diffraction plane 

of thc experiment. In this way the vertieal beam divergence is increased leading to a lass of 

resolution in the reciprocal space. The diffracted intensity from the sampie is measured as a 

function of the scattering angle 29 and the sampie orientation (especially in case of a single 

crystal): 

for a single crystal --> I(Q), and for a polycrystalline sam pie --> I( I Q I). 
26 is defined by the collimators 0.2 and 0.3. As there is no analysis of the cncrgy of the 

I source l 

Detector 

~~ ------
~~ 
~ ---,'.= 29 . ~Ilfl/[) 

Sampie 

Q=.k.ho 

L':.E =0 (ko= '" ) 
k ---_0 

Fig. 1, Schematic representation of a 2-axes diffractometer. 
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scattered beam behind the sampIe, the energy resolution ßEIE of a 2~axes diffractometer is 

not weil defined (typically of the order of some %). In addition to the dominant elastic 

scattering also quasi~clastic and some inelastic scattering contributions are to be taken into 

account. The name 2-axes-diffractometer results from its two axes of rotation, the 

monochromator axis defining 28M and thc sam pIe axis (28). 

In the case of energy dispersive diffraction, the time-of-flight diffractometer uses the 

completc encrgy spectnlln of a pulsed neutron beam and the wavelengths of the scattered 

neutrons are determined by velocity analysis. rite measurement of the neutron intensity as a 

fUl1ction of velocity at fixed scattering angle 28 has to be calibrated according to the energy 

spectrum of the neutron beam. AssUlning no cnergy transfer at the sampie the time-of-flight 

diffract ion yields again I(Q) (and for a polycrystalline sampie l(i QI). 

7.2 Recipl'ocal lntticc and Ewald constl'uction 

Bragg scattering (diffraetion) means coherent elastic scattering of a wave by a crystal. The 

experimental infomlation consists of the scattering function S(Q,ro = 0) with no change of 

energy or wavelength of the diffracted beam. For an ideal crystal alld an infinite lattice with 

the basis vectors äh gz, !!J., there is only difTraction intensity lUD at the vectors 

H = h!!l *+k§!1*+/ä}* (2) 

of the reciprocal lattice. Iz,k,l are the integer Miller indices and fh *, ru. *, ßl *, the basis vectors 

ofthe reciprocallattice, satisfying the two conditions 

or in tenns of the Kronecker symbol with i, j and k = I , 2, 3 

5jj = 0 for i:F j and Ojj = I for i = j wilh 5 ij = ~t· ~*. (3) 

The basis vectors of the reciprocal latticc can be calculated from those of the unit cell in real 

space 

~t = (ilix~N c, (4) 

where x means the cross product, and V c = !!1'@z.x!U,) is the volume of the unit tell. 

Here is a compilation of some properties of the reciprocal lattice: 

• The reciprocallattice vectors are perpendicular to those in realspace: ßt.l ~j and!!li (i:F j,k) 

• rhe lengths ofthe reciprocallaUice vectors are Im"1 = INd~jl·Illl;I·sinL(m,!!0. 

• Each point hkl in the reciprocal lattice refers to a set of planes (hk!) in real space. 
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• The direction ofthe reciprocallattice vector tl is normal to the (hkl) planes and its length is 

reciprocal to the interplanar spacing dhk/: IBI = I /d'lkl . 

• Duality principle: The reciprocal lattice of llte reciorocallattice is the direct lattice. 

Frol11 the positions of the nodes of the reciprocal lattice obtained by diffraction experiments 

one can determine directly the parameters of the unit cell of a crystal. 

Although somcwhat abstract, the concept of the reciprocal space provides a practical tool to 

express geometrically the conditioll far Bragg scattering in the so-called Ewald construction. 

In this way the different diffraction methods can be discussed. 

We consieler the rcciprocal lattice of a crystal anel choose its origin 000. In Fig. 2 the wave 

vector kll (defined in the crystallographers' convention with Ikll l = 1/1..) of the incident bearn is 

marked with its end at 000 and its origin P. We now dra\\' a sphere of radius IkQI = 11), around 

P passing threugh 000. Now, if any point hkl ofthe recipreeal lattiee lies on the surface ofthis 

Ewald sphere, then the diffraction condition for thc (hk!) lattiee planes is fulfilled: The wave 

vcctor of the diffracted bearn k (with its origin also at P) for the set of planes (hk!), is of the 

same length as kll (Ikl = IkQ[) and the resuhing vector diagrarn satisfies k = kll +!:!. Introducing 

the scattering angle 28 (and henee the Bragg angle eh,,),we can deduce immediately frern 

2lkl·sine = I!:!I the Bragg equation: 

(5) 

29 
=d"'ir.::,ec::;t"'io"'n:..;o::;f_---l'-____ -4'-' ____ --l 000 
incident beam 

Fig.2. Ewald cOllstructioll in reciprocal space, showing the diffraction cOllditioll rar the 

hkl reflection. 
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In the ease of single crystal diffraction a rotation of the crystal and Iherefore also of the 

eorresponding reeiproeal latliee (whieh is rigidly atlaehed to the erystal) is often used to set 

the diffraction conditiolls for the measurement of inlensities I(H). 

If l!:ll > 2/)" (then d"kI < ),,12) the refleetion hkl ealUlot be observed. This eondition defines the 

so called limiting sphere, with center at 000 and radius 2/)..: only the points of the reciprocal 

lattice inside the lillliting sphere ean be rotated into diffraction positions. Vicc versa if I~ > 

2dmax• where dma,( is the largest interplanar spacing of the unit cell, theu the diameter of the 

Ewald spherc is smaller then IHlmin. Under these conditions 110 Hode of the reeiprocal lattiee 

ean intereept the Ewald sphere. That is the reason why diffraetion of visible light (wavelength 

:; 5000 A) ean never be obtained from crystals. Amin determines the amount of information 

available from a diffraetion experiment. In ideal· eonditions I_min should be short enough to 

measure all points ofthe reeiprocallattice with significant diffraction intensities. 

For areal crystal of limited perfection and size the infinitely sharp diffraction peaks (delta 

functions) are to be replaeed by broadened line shapes. Olle reason ean bc the local variation 

of the orientation of the erystallattice (mosaic spread) implying some angular splitting of the 

veetor !:l. A spread of interplanar spaeings t,d/cI, whieh may be eaused by some 

in..homogeneities in the chemical composition of the samplc, gives rise to a variation of its 

magnitude l!:ll. The ideal diffraetion geometry on the other hand is also to be modified. In a 

real experiment the primary beam has a finite divergence and wavelength spread. The detector 

aperture is also finite. A gain of intensity, which ean be accomplished by increasing the 

angular divergence and wavelengths bandwidth, has to be paid for by some worsening of the 

resolution fUllction and hence by a limitation of the ability to separate different Bragg 

refleetions. 

All of these influences can be studied by the Ewald construction. The influence of a 

horizontal bearn divergence on the experimental conditions for a measurement of Bragg­

intensities of a single crystal is illustrated in Fig. 3 where strictly mOllochromatised radiation 

(only one wavelength ).. with t,)..I1.. ~ 0) is assumecl. A so-ealled co-sean, where the erystal is 

rotated around the sampie axis perpendicular to the diffraction plane, may be used for a 

reliable collection of integrated intensities in adapting the detector aperture 629 as a function 

of the scattering angle 29. Jt is obvious that larger t,29-values will give rise to a higher 

background find may lead to difficulties for the separation of neighbourcd reflections with 

similar H-vectors in the reciprocal lattiec. It is shown by this example that a larger bearn 

divergence with an increase in intensity ean restriet the resolution conditions. 
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Bragg-intensities ofsinglc crystals are recorded in general by co/n·2S-scans (0:::; n ,:5; 1) with a 

coupled rotation of the sampie alld the detector. The mainly used bisectie special case eonsists 

of (0 = 8. Thc horizontal and vertieal detector aperture must be chosen in a way to avoid 

systematic errors from eutting some intensity of a reflectiol1. The pure (O-sean (rocking-sean) 

reeords an intcnsity distribution of reflection ahnost perpendicular to lhe scattering vecter 

Q = 21tH - Le. almost eOITesponding to a transversal seall. The ro/29-scan represents a 

longitudinal sean in reciproeal spaee reeording re fleet ion profiles along H. 

w-Scan 

Fig.3. Ewald-eonstruetion: Influence ofthe horizontal beam divergence on the experimental 

conditions for the measurement ofBragg-intensities 

diffraction 
cone 

~di~re~C~I~io~n~O~I __ -4 __________ ~~ __ ~ ____ ~OOO 
incident beam 

Fig.4. Ewald-construction in case ofpowder diffraction 
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Powdcr diffraction also may be discussed on the basis of the Ewald-constructiol1. An ideal 

palycrystalline sampie is characterised by a very large number of arbitrary oriented small 

crystallites. Therefore, for a powder only I H I is defined without preferred orientation. In 

Fig. 4 the eorresponding sphere with radius IHI ~ lid"" is drawn arOlmd the origin of the 

reciprocallattice at 000. For each Bragg-reflection the circle of intersection with thc Ewald­

sphere yields a diffraction cane. All reflections with equal interplallar spacing are perfectly 

superposed and cannat be separated. 

7.3 Pow<!e .. diffractomctc,' 

There are two principally different powder diffraction teclmiques: the angular-dispersive 

ADP-method and the cncrgy-dispersive EDP-mcthod, better known as time-of-flight method 

in the ease of neutron diffraction. In the ADP measurcmcnt the sampie is irradiated by a 

monochromatic beam O~ = const.). Ta each dhl:l belongs a Bragg-angle 8hH.Most of the 

neutron powder diffractometers at steady-state reactor sources work according to the ADP 

method (e. g. the D2B-instnllnent at the HFRlILL in Grenoblc). Thc angular resolution of a 

powder diffraction dia gram depends on the beam divergences befere and behind the 

:;:: 

:. 
J: 
5: .. 
"" ~ 
~ 

0.6,-------------.-------------r------------, 

0.4 

0 . 2 

Oiffraction Angle (,) 

, , 

, 

" , / 

Fig. 5. Comparison of the half-widths of pawder lines far selected neutron powder 

diffraetometers: D2B at the HFRJILL in Grenoble(F), HRPD at NBSR in Lueas 

Heights (USA), SEPD at ANL in Argonne (USA) - the time·of-flight data of this 

instrument with .1d/d .0::: 1.5·10-3 are converted in 28-values - and X-ray powder 

difTraetometers: eonventional and synchrotron faeilities (CHESS, USA) [I] 
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monochromator, on the mosaic spread of the monochromator crystal , and on the 

monochromator's scattering angle 29M. In Fig. 5 for several X-ray- and neutron powder 

diffraclomelers Ihe half-widlh of powder lines (Bragg-reflections) 620 is given as a fl.lnclion 

oflhe scanering angle 29. A large 20M-valne can be favourable 10 realise smaller line widlhs 

628 al lügher diffraclion angles as can be seen for Ihe D2B-inslrumenl (28M = 135°). 

The plan of Ihe E9 inslrumenl al Ihe HMI-reaclor BER 11 in Berlin is shown in Fig. 6. The 

typical teclutical daln ofthis new powder diffractometer are: 

• collimations al = 10', 0.2 = 20', (Xl = 10' 

• germanium and graphite monochromators with mosaic-spreads t!.M(Ge) ::::: 20' and 

6M(PG) '" 30' 

• mOllochromator's scattering angle 40° S 29M ~ I-40° 

• 64 high pressure gas deleclors (,He, 8 bar) arranged wilh an angular inlerval of 628 = 2.5° 

64 collima!ors and deleclOfs 

monocht'omator I beam tube 1
V€IOCi ly 
selector 

Fig. 6. Plan ofthe E9 powder diffractomeler al BER IUHMI in Berlin. 
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For a ADP-powder di ffractometer the measuring time can be reduced substantially by the 

simultaneous usc ofmany single dctectors or oflinear Illultidetector systems. 

As an example for a 2-axes diffractometer specially designed for the investigation of 

amorphous systems and Iiquids the 7C2-instrumcnt installed at the hot neutron source of the 

ORPHEE-reactor in Saclay (F) is shown in Fig. 7. Combined with an exchange of 

monochromator crystals there are three different standard wavelengths available: A(Ge( 111 » 

= l.l A, A(Cu( lll» = 0.7 A, A(Ge(3 11» = 0.57 A. The linear muItidetector allows a 

continuous intensity measurcment over a range in seattering angle of 128°. The angular 

resolution of this instrument is limited as Ihere is no eollimation in between the sampie 

position and the detector. But the I Q I-range is very large. For thc shortest wavelength 

Ä(Ge(3 11 » = 0.57 A the accessible values extend up to I Q Im., = 2n I!::! I m" = 20 A·' . 

__ SOURe r CHAUOE 

Ci ··------· ,,--] TYPE, OE COlllUAl IO/I (BARIIIEl ) 

, - .J MOllOCHROI.tA1EIJRS UlililABlES 
Ge 11 1: Cu 111: Ge 31 1 

SOUS V,OE 

~fltlRE 1../2 / ... /< .... / -I"mlIIEuR 

.. ______ ~WHRAG'.lr 

1~"' --. . ~--COLUlIAl [UR ItIi ERNf 
- --[NCOIII [ A V10( POUR PA$S(UR O'[ CHAfHlllON 

fOUR DU CRYOS1AI 
------._ ECHAljill lOti 

r-Mul'. IIIIJlI[C1 EUR 640 ClLLUlE I 

Fig. 7. Plan of the 2-axes diffractometer 7C2 at the hot source of the ORPHEE-reactor in 

Saclay (F) 

In the ease of the EDP method a polyehromatic white beam is used with the scattering angle 

being fixed (28 = col1st.). The dhk,-values result from the time-of-flight measurement of the 

neutron velocities ~ eOllverted to wavelengths - for the hkl reflections. This technique is 

specially suitable for pulsed neutron sources. Moreover, it offers some advantages for 
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complex sampIe envirorunents, such as extreme temperatures, magnetic fields, external 

pressures, etc. due to its fixed scattering geometry. The resolution of the time-of-flight 

analysis ßtlt depends on the wavelength-dependant pulse structure of the moderator, on the 

length of the flight path, and on the scatlering angle 28 (a back-seattering geometry is 

recommended). As there are normally relatively short wavelengths in the beam, too , also 

lligher indexed reflections with shorter dhkrvalues rnay be reached. Some typical technical 

data ofthe HRPD installed at the spallation source ISISfRAL in England are shown in Fig. 8. 

A special feature of this instnunent consists in the very long flight path of about 100 m, 

D\.;~;~< 
';':'l":; 6m 9m 

• ........ choppers 
95K liqv;d 
methane moderatO( 

bockscatlering 
deteclor 

somple 
(96m! 

Fig. 8. HRDP (high-resolution powder diffractometer) at the spallation sauree ISISfRAL, 

England, Aresolution of ßd/d ~ 4·10-4 is achieved with a sampIe position at 95 m. 

60~-----------L-----------L----------~---r 

1II1111111111Jllill lilURIIIIIlllllllllilii 1111111111111111 111111 ~ l llI lI l lll llll il llll 11111111111 

10 

O~-----------r-----------r----------~---L 

0.8 0.9 t.O 

d spoc;ng (Angstroms) 
ti 

~ l"'·';'r··· · ·· ·· · ·ll~,· · ·"I'· · I~' u,'y~h('ihiÄ'C?~ i; 0 .h .\Ii!'\>'l"" ""1f~"" . f,,~\1I! ~l .. 'CI<I:Ii· JV}l\?4r"· N"'t' '." ... 
'U 

0.8 0.9 1.0 

Fig.9. Pawder diffraclagram afbenzene: (a) seclion from 0.72 A ,; d ,; 1.03 A 
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§ 
l5 -lj 0,1 

~ 

~ 0.075 
E 

~ 
0,05 
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0,73 0,74 0,75 0,76 0,77 

d spacing (Angstrams) 

~ ° ß~;v~~~;b·;~~q>;;~;~;y:t<J:9~;iA;;~;p'~;Y1 
0,73 0,74 0,75 0,76 0,77 

Fig, 9, Powder diffractogram ofbenzene: (b) enlarged section from 0,73 A,; d,; 0,78 A 

The calculated d"'l'values are indicated by the small lines at the top of the upper 

graph, The quality of the refinernent can be judged from the difference in between 

experimental data and profile calculation in the lower graph . . 

The excellent resolution of this time-of-flight diffractometer is demonstrated by seetions of 

the powder diffractogram of benzene shown in Fig, 9, The complete rage of 0,5 ,; d ,; 2,0 A 

was analysed by means of tlte Rietveld profile method in order to refine the crystal structure 

of lhis moleeular eompound [2) (spaee group Pbea; lattice parameters: a = 7,3551 A, 
b = 9.3712 A, e = 6,6994 A), 

7.4 Single e .. y,tal dirr .. actomctc .. 

For neutron diffraction studies on single crystals actually there afe in tlse the Laue-method 

with 2-dim. positional sensitive detectors (e.g. LADI-instrumcnt with an image-plate detector 

at HFRlILL in Grenoble (F» and 2-axes diffraetometers with single detectors, New 

developments with 2-dim. detection systems become more and more important. 

To fulfil the diffraction condition for all vectors !:! of the reciprocal lattiee (within 2sin9/A < 

IB lma.'() single crystal diffractometers are equipped with a special goniometer consisting of 

three independant rotations. The eularian cradle in Fig. 10 has in addition to the ro-axis (.L to 

7-1 1 



the diffraetion plane) two fm1hcr rotation axes X and <p , which are perpendieular to each other. 

The X-axis is also perpendieular to the oo-axis. Together with the rotation axis of the deteetor 

29 (11 to the ol-axis) this meeh.nie.1 unit is ealled 4-eircle goniometer (Jeading to the name 

4-eircle diffraetometer far this type of single crystal diffraetometers). The measurement of 

integrated intensities I(!:!) of individual Bragg-refleetions is performed aeeording to the 

oo/n·2a-sean teehniques described in chapter 7.2. For a computer-controlled automatie data 

eolleetion a detailed knowledge of the erystal lattiee is needed. Therefore, a single erystal 

diffraetion experiment starts by a systematic search of reflections in varying X and ep, with the 

restriction 00 = e (bisected condition). From the accurate angular positions of typically 20 

indexed reflections the lattice constants and the arientation matrix are determined. 

As an example far a single crystal neutron diffractometer the PlI 0/5C2-instrument installed 

at the hot neutron souree of the ORPHEE-reaetor in Saclay (F) is shown in Fig. 10. The 

monochromatic neutron flux at the sampie position is increased by a monocluomator system 

with vertieal focussing. The tlse of small wavelengths allows the measurement of Bragg­

intensities up to large I BI-vaiues (I BI m" ~ 2sin9maJ), ~ 2.8 k '). 

sam """ 
ctl.llW./{Ij 

---- o..~T.211'.1 

COUPIEUR 

Fig. 10. Single erystal diffraetometer PllO/5C2 at the hot neutron souree of the ORPHEE­

reaetor in Saelay (F) 

Attention: The lengths of both the veetor B or the reciproeal lattiee used in erystallography 

and the scattering vector Q of solid state physics are expressed in A -I. But there is a factor of 

2n whieh means that IBI ~ 2.8 k ' eorresponds to IQI ~ 17.6 k ' . 
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The influence ofthe primary collimation a\ on the half-width of Bragg-reflections of aperfeet 

Ge crystal is shown in Fig. 11. Thc resolution curves for two different wavelengths 

).(ClI(420)) ~ 0.525 A and 1>.(ClI(220)) ~ 0.831 Aare plotted as a fllnelion ofsin sn .. 

2 

Ul 
.Q) 
~ 

Cl 
Q) 

a, = 5B ' ............ 

~ 
~ 
I 
3: 

Cli = 58-=-" '-0" .525 A 
Cu (420) 

LL 

....... a,= 14' 

0 
0.0 0.2 0.4 0.6 0.6 1.0 1.2 1.4 

Fig. 11. Resolulion ellrves of Ihe single eryslal diffraelometer Pli 0/5C2 al Ihe hol neulron 

souree ofthe ORPHEE-reaetor in SacJay (F) 
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8. Small-angle Scattering and Reflectometry 

Dietmar Schwahn 

8.1. Introduction 

The methods of elastic scattering with neutrons deliver stmctural information from 

arrangements of atoms and magnetic moments in condensed material. Those arrangements 

ean be precipitated phases in mixtures of metals, low molecular Iiquids Cf polymers and one 

gets information about size, number density and correlations between the objects. In 

scattering experiments the intensity of neutrons is measured as a function of momentUIll 

transfer Q 

Q 4". 0 = - 5111 M 

A 
(8.1) 

with the scattering angle 20 and the wavelength A. of the neutrons. Q is the difference of the 

wavc numbers k (absolute value k:::;2n/A) of incoming and scattered neutrons. Thc 

mornentulll transfer is inversely proportional to the length scale of invesligalion; at Q of the 

order of I A -1 one measures inter atomic distances and in the region 10-1 A - 1 _ 10-4 A-1 

mesoskopic objects of sizes betwcen lOA _10 4 A. For all these investigations specialized 

instmments have been developed. In this lecture we will introduce instmments for small angle 

scattering and reflectometry with neutrons. With these instruments objects within the bulk and 

at the surface are investigated. The main elements of these elastic methods will be separately 

introduced in the last part of the lecture. We will discuss instnlIllents working at stationary 

nucJear research reactors. In future spallation sources will becorne the more important sources 

as they show a larger neutron flux with a periodic time stmcture; those instmments need quite 

different conditions for optimization. 

8.2. Intensity at Sam'11e and Detector 

In Fig. 8.1 the traces of neutrons for elastic scattering are depicted in real and reciprocal 

spacc. The inlensily al the sampie (in linguistic usage: primary inlensity) is determined 

according 10 

AIo =L ·F ·M2 (8.2) 

by the luminosily ollhe source given in units [cm'2 S,I steradian'l] 
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(8.3) 

for neutrons with wave vector k, the irradiated area oflhe sampie F, and the divergency orthe 

primary beam described by the space angle M1. The luminosity L is determined by the total 

Ml, /))JA SampIe 

--\- _._._. _. _.-._._. _._. _._. - ._._._. _. 

F 

k Lillk 

~I~ --- _ 20 

- - ~~ ---------- - - Q 

. 6n., 

Figure 8.1 : Troces 0/ neutrons in real- lind reciprocal space 

thermal flu< of the neutrons <!J, the temperature of the moderator (h / 2n) ' k~/ 2m = k. T and 

the resolution of wave length distribution according 10 ßk/k alld determined by the 

monochromator. Tlte scattered intensity in adetector element with space angle DJJ: D and 

scattering angle 20 or scattering vector Q respectively is given as 

dl: 
ßl (0Q)=M ·D.J.-(0Q) ·ßQ 

0 ' _ 0 dO: '- 0 
(8.4) 

with sampie thickness D alld diminution coefl1cient T of the primary intensity (transmission). 

The macroscopic scattering cross section dE/dn is the experimental result alld is lIsually 

given in absolute units [I /ern] . 

8.3, Small Angle Scattering with Neutrons 

The method of small angle scattering (SANS) is a broadly used tool in research. Ther. are 

thre. different SANS techniqu.s: The pin-hole SANS, the double crystal diffiactometer, and 

the focusing SANS. The first two types of instruments are being used in aur laboratory in 

Jülich, and a first focusing SANS instnllnent is presently built and will start operation in OUf 

laboratory within the next year. 
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8.3.1. Pin-Hole SANS 

The principle layout of a pin-hole SANS is depicted in Fig. 8.2. After the fission process. 

thermalization, and a further moderation in the cold SOIlJ'ce the neutrons are guided through 

neutron guides 10 the instnllnent. Monochromator and collimator are filters for neutrons with 

a predetermined wave length and divergency. The collimator consisls of two apertures of 

Figure 8.2: Principle design ~(pin hole SANS 

1 , 
: 
i , 
i 
; 
i 

J 

neutron absorbing material as f.i. Cd and as monochr9mator one has a velocity se/eclat, 

delivering a Illonochromatic beam of wave lengths between 5 and 15 A with a relative mean 

square deviation of abaut < oA} >os / < ')~ >= 0.1. After passing balh apertures the neutrons 

irradiate the sampie and part oflhe neutrons are scattered. The thickness oflhe sampie should 

bc adjusted in a way, that only about 10% of the neutrons are scattcred in order to avoid 

remarkablc effects from multiple scattering. The scattered neutrons are counted in a /wo 

dimensionalloeal sensitive de/ee/ar. The neutrons not scattered by the sampie remain in the 

primary beam and are absorbed in the beam stop in front of the detector. The resolution 

function ofthis experiment is given as 

<öQ' >=k' [(~)'+ (~) ' +d; (_1 +_I_) 2 +02 (~)'l 
12 L D Ls Ls L D < A > 

(8.5) 

The symbols Ls und LD represent the distances between the two apertures and between 

sampie and detector, the symbols d!) and dE the diameter of the two apertures. For a given 

instmmental setting neutrons can be detected in a limited angular interval; the setting is 

adjusted by the distance between sam pie and detector between 1.25 und 20 m leading for the 
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possible neutron \Vave lengths between 5 and 15 A to a Q interval of 10-3 A-' - O.3A -1. The 

resolution has always heen adjusted to the instrumental setting and which is determined by the 

length of collimation L s . The space between selector and first aperture is always bridged by 

KWSI: Flux on Sampie 
• 

10 
~ 

N '" L 1.61!.j110 4 

8 

~ 
.0 .;;; 

10 
" ~ ).=7; 1!JJ'J.=O.2 

Entrollce Apcrture 3·3 ClIl 
, 

Rc.1ctor Power 20MW 

10 3'-'--~L---~~~~'-'-'--~---' 

10 

Collimatioll [m] 

Figure 8.3: SOli/pie il/lel/sityfor d![ferellf leI/gI" of collill/aliol/ 

neutron guides which in segments of Im length can he posed in Of out the beam; in this way 

the primary intensity cau be remarkably enhanced by a beam with larger divergency. This is 

shown in Fig.8.3 where the measured primary intensity is depicted versus the length of 

coJlimatioll. The optimized conditions of the instrument are achieved, when all elements of 

resolution in Eq.(8.5) contribute the same amount to the "desmearing" of the scattered 

intensity. Optimal conditions are accordingly obtained for the following instrumental sett ing: 

und (8.6) 

One always tries to perform measurements with as much intensity as possible with 

sufficiently good resolution. Such an optimized instrument has aresolution of 

öQ," ~(kl J)) ·d E ILD(see Eqs.(8 .5) und (8.6)) and delivers an intensity at the sampie 

according to 

III ~LM1~L' ~ L(öQ)4 L' . 
o L2 0 k D 

D 

(8 .7) 

The last relationship shows that the intensity at the sam pie is proportional to the square of its 

length and is the reason of 40m long pin~hole SANS instruments. The upper limit is 
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determined by the maximum divergence of the neutrons according to the total angle of 

reflectioll. 

A fhrther important criterion for the quality of a SAS difrractometer is the slmrpness of 

the primary neutron beam prepared by the collimator. In Fig.8.4 primary beam for a given 

10° ....-~. 
10" 

, ' 
\ , 

~ ~ 
0 

, 
10'2 

, , ';;; , 

" • ~ -

~ 
, , 

10') 
'0 

" N 
10" ~ , 

§ " • ; ... 
0 10" f' Ov_ Z .. ,,.' . . 

10'6 • • -/j \ ....... 
,"'" - 2r 2r

l12 
• . '" 

-20 -15 -10 -5 0 5 10 15 20 

Position [em] 

Figure 8.4: Resolution cun'e jOt a gillen COJ~figllration 

configurat ion has been depicted in a semi-Iogari thmic presentation. One recognizes, tllat at 

twice the fuH half width the primary intensity has been decreased to va lues between 

IQ-s lind 1O~6. This result demonstrates that the instrument is in a good condition~ the 

background near the primary beam is sufficient ly smalI, so that also in this region scattered 

neutrons can be sensitively detected and analyzed. 

8.3.2. Focusing SANS 

The principle of a focusing SANS has been depicted in Fig.8.S. The monochromatic neutrons 

enter the instrument through an aperture with a diameter ofabout Imm and enter the focusing 

mirror with the flill divergence of the neutron guide. From the mirror the neutrons are 

reflected and in the focal point the neutrons are detected from a loeal sensitive deteetor. The 

resolution element of this detector has the same size as the apert ure of about I mm. Just 

behind the mirror is the position of the sam pie. The instrument with the lengths given in the 
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figure and wilh neutrons of about IsA wave length covers a Q range of (lO-l- IO-')k' ; it 

measures in the resolution range oflight scattering. Tlte intensity at the sampie is given 8S 

Detec tor " 

I _____ APerture~ 

I '" 

1~.Ix t: 0 r sara pl e 

I 

1--41'<1--1 
10 • 1 0 • 

Figure 8.5: Schematic design ofa focusing SANS 

(8.8) 

Within these small Q ranges this instrument is superior to the pin-hole" instmment because 

neutrons with the maximum space angle 4y~ ofthe neutron guide are used. The concept of 

10-1 

10-3 c 
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, r---.. ' . . 
~ : . . ' 
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Abb.8.6: Resolution C//IW 01 alocusing SANS 
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the focusing SANS is knowll for 10ng time. However, only quite recently it is possible to 

build such instruments with the necessary good quality as shown frolll the experimental 

resolution curve depicted in Fig. 8.6. The reason is the high demand on the surface quality of 

the focusing mirror~ those mirrors can be buHt today as the resliit of an extended project for 

the developll1ent ofX-ray satellites. 

8.3.3. Double er)'s!nl DifTrnc!ometc,' 

Froll1 all three SANS instmments the double crystal diffractoll1eter (DeO) has the highest 

resolution. Its concept is depicted in Fig.8.7. The central part ofthis inslnllllcnt are two 

C h a nn e l C~V9ta la 

~-tt-lH4~t ~+I 
Samp l e Opt lc a l 

Be n c h 
Detecto ~ a 

V 
Figure 8.7: Schema/ic design 01 a dO/lble clys/al dif!mc/ome/er 

perfect Silicon single crystals, 1l10unted on an optical beneh. The reflectivity of a perfect 

crystal is described by the Darwin cllrve according to 

(8.9) 

aod depicted in Fig. 8.8. The parameter y is the scattering angle which is normalized in a way 

that the interval where neuirons are u,lly renected are within lyl$ 1. The second crystal is 

rotated with respect to the first one. When the corresponding lattice planes ofbolh crystals are 

oriented parallel to each other the Darwin curves of both crystals overlap completely and Olle 

measures the maximum intensity of the resolution curve as shown in Fig. 8.9 at 6,=0. If the 

second crystaI is rotated, both Darwin curves only partly overlap with the result of a smaller 

reflected intensity. The rotation of the second crystal is mathematically equivalent with the 

folding of the two Darwin curves, which gives the resolution curve in 
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Figure 8.8: Dmwin cllrve after single ond Iriple rej/ectiolls. 
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3 

Fig.8.9 and which is the scattered intensity from the second crystat. In the region Iyl ~ l the 

reflectivity is equal one, which means total refleclion. rhe width oftotal reflection is given as 

b e-wIFIN1.' 110 -,,-c_-,--,,-:-_ 
4n sin 20 0 

(8 .10) 

For instance, for the (331) latlice planes of a Silicon single crystal and 1.~1.8A neutrons the 

Bragg angle of difrraction is about 45° and the half width of the resolution curve is 

110 ~ 3 .2wad , which cOffesponds to an angle ofslightly more than halfa second ofarc or a 

Q ~ 1.12 ·10-> A -' . This examples shows, that this method measures at very small angles; this 

demands protections against mechanical vibrations, fluctuations of temperature, and much 

patience from experimentalist. 

The strength of this instrument is its very high resolution, which is even better than of 

light and its relatively simple and cheap design in comparison with most other neutron 

scattering instruments. This instrument can also be successfhlly operated at smaller research 

reactors. Disadvantages are that it measures in slit geometry, that the experiment points are 

measured in sequence, and that it is rat her poor in intensity. There are, however, 

improvements possible by special designs of the crystals. So, the relative high background 

near the primary beam can be strongly improved by so called channel cut crystals. If the 

neutrons are reflected within the chalmels of a compact single crystal (Fig.S.7 and Fig.8.8) fi . 
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three times, then one measures a Darwin curve multiplied three times with itself and gets a 

reflection curve as depicted in Fig. 8.9 with the region oftotal reflectioll and Illuch sharper 

" 
2.0 IA 

Si
ll1

; A==4.4SA 

1.5 
0 V·s mode ·iil 
0: 

" 1.0 :s yt-tlllode 

J 0.5 

0.0 
-5 -4 -3 -2 -I 0 2 3 4 5 

I)[~I)] 

Figure 8.9: Theorefical Clll1'es 0/ resolution 0/ fhe double clyslal d(Uractometer fol' single­

single (s-s) (lI1d Iriple-Iriple (I-I) r~f/ecliol/S. 

JOO 

Expcrim. Resolution: Si
ll1

; A=4,4SA 

&(s-sr54.2 ~lmd 

U15( 1 .1)"'2S.8~tmd 

-30 0 30 

Scattering Angle I) [wad] 

Figure 8.10: Experimental resolution after single-single and triple-Iriple rejleclions wilhin the 

chmmel cul clyslal. 
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tail s. This reflection curve leads after folding to a much sharper resolution curve. 

Experimental resolution curves of single-single and triple·triple reflections are shown in 

Fig.8. 10. One clearly see the effect of multiple renections. 

8.4. Rcncctol1lctc,' 

Investigations of surface properties by surface reflection of neutrons or X-rays is a relalively 

new technique and is presently very active field in research. In Fig. 8.11 the specular 

Q 

Figure 8. 11 : Traces 0/ nelltrons mut diagram 0/ lJIomen(ulJI 0/ speclIlar ref!eclioll 

reflection of neutrons at a surface is shown and in Fig. 8. 12 a reflectometer for neutrons has 

been schematically depicted. Similarly to the pin-hole SANS instrument in Fig.8.2 the 

divcrgency of the monochromatic neutron primary bearn is determined by two apertures. In 

this example the monochromatic neutron heam is determined by a single crystal within the 

neutron guides. A linear position detector measures the refleeted neutrons. Specular refleetion 

as shown in Fig. 8.11 is defined by the same ineoming and outgoing angle. In this case the Q 

vector has an orientation perpendieular to the surface and only heterogeneities in direction 

perpendicular to the surface e.g. parallel to Q are measured. All example is shown in Fig. 8.13 

giving the renection profile of a Nickel metallic film coated Oll glass. In this case Olle 

measures the heterogeneities formed between Nickel and glass and in addition the surface 

roughness hetween Nickel and vaeuum aceording to the different values of the coheren! 

scattering length densities. The intensity profile shows total refleetion at small augles and thell 

at larger angles strongly decreases with periodic oscillations. From this profile one ean 

determine thiekness and roughness of the metallic film . 
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Figure 8. 12: SchemCllic design 0/ Cl diffractome/erfor neu/ron reflec/ometlJ1, 

Nickelschichi auf Glas 
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Figure 8. 13: Curve ofrefleclionfl'om Cl Nickel sill/ace lJIeaSllre Cl( fhe "HADAS" inslrumellf. 
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For the Nickel film one gets a thickness of 838 A and a roughness of 15 A. The open dots in 

Fig. 8.13 show the reflection from glass alone. One c1early observes a sm aller angle of total 

reflection and a decrease equivalent to the Darwin curve in Eq. (8.9) . At relatively small 

intensities of 10.3 scattering from background becames visible. 

Olle ean also study heterogeneities within the surface wh ich are f.i. formed by phase 

separation. ]11 those cases Olle also observes nonspecular reflectioll in direction parallel to the 

surface. 

8.5. IIlIJlol'tant Elements of Sm all Angle Scattcl'ing and Reflection 

The most important elements of small angle scattering and reflection are (I) thc neutron 

guides for an eftective transport of neutrons. (2) the velocity selector and the peffeet single 

crystals for ll1onochromatization of the neutrons, and (3) lhe local sensitive detector for a fast 

determination of the scattering angle. 

8.5.1. Neutron Guide 

The phenomenon of total reflection is demollstrated in Fig.8.13 on a Nickel film . This eflect 

is used to transport neutrons through neutron guides over long distances without much loses. 

The angle of total refleclion is given as 

(8.11) 

with the coherent scattering length density p. Natural Nickel is a good choice for coating 

material in order to have a large angle of total reflection (see Figure 8.13); an even better 

choice is the isotope Nickel 58 because of its large coherent scattering length. So, for natural 

Nickel one gets a total angular of refleetion of 0 c ~6' · A[A] and for the isotope 58 a 

O e =7. I' .A,[Ä) . About 30 years ago neutron guides were invented at the research reactor in 

München; Neutron guides lead to a much broader use of neutron scattering with instruments 

posed [ar from the source and with much better conditions. 

Neutron guides coated with a so-called super mirror transport neutrons with even 

larger angles of divergence. In addition to Nickel those mirrors consist of alternating Iayers of 

two different metals (their coherent scattering length density must be sufficiently different) 

with an ingenious sequellce of different thickness, in order to excite Bragg scattering in a 

continuous range of Q perpendicular to the surface. In this way the angle of reflection of 

Nickel ean be increased by more than a faetor of two; however, the best achieved reflectivity 

of super mirrors is still slightly less than olle so tIlat one gets appreciably lasses of neutrons if 

transported over long distances .. 
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Neutron guides also enable to transport neutrons on curved traces. The bending radii 

ean be made very small by so-ealled bellder guides eonsisting of several small and parallel 

channels. Bender with proper materials for the layers are also used as a polariser. 

8.5.2. V.locity Selecta,' 

Figure 8.14: ROlo!" oj a l'e/ocily se/eera!" blli/lfrom DOI·niet. 
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Figure 8.15: Time-oj-flight speclrlll11 f1"0111 a ,'e/ocily se/eclat'. The neuIran wave /ength is 
eva/ualed //"0111 Ihe ve/ocily, e.g. /t'0111 Ihe flighl time (md Ihe dislmlce behl'een chopper (md 
eleleclor. The small dip ill Ihe il1lensify al 7.94A is caused jl'0111 Bragg seal1ering in Ihe 
Bismulhji/lerjusl behind Ihe cold source alld is IIsec! CIS CI l'ejerel1ce va/ue. 
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The rotor of a velocity selector is shown in Figure 8.14. This rotor is mounted in a housing 

and can ratate with a speed IIp to 30000 rpm. 1t is transparent for a given wave length 

depending on the speed of the rotator. A distribution of neutron \Vave length after passing the 

selector is shown in Figure 8.15 . The neutron wave length is inversely proportional to the 

frequellcy ofrotation; the exact relationship and the halfwidth ofthe wave length distribution 

is determined by the tilt angle and the \Vidth of the ehannels. 

8.5.3. Local sensitive Detectol's 

Local sensitive detectors are necessary for an optimized use of sm all angle scattering and 

reflection instruments. The resolution element of a detector for the pin-hole SANS is typically 

0.5-1 cm, for the focusing SANS and reflectometer lmm. A two dimensional local sensitive 

detector has at least 64x64 resolution elements. There are dctectors on the basis of gas- and 

scintillation detectioll . 

8.5.3.1. Gas Deteeto!" 

The presently mostly used deteetor for SANS are ) He gas deteetors. The neutron is absorbed 

byan 3 He gas atom wh ich thell decomposes according to 

)He+n --> )H+'H+O.77MeV 

cathode neu tron 

prrmory 
ionization 

\... 3H .... __ . 
'--1 

L 0. w,' I\A e. 
avalanche 

drift 
----r--- region 

I 

anode 

Figure8 .17: Process 0/ defecfioJl 0/ fhe 3He gas defeclor 
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into two ionic particles with kinetic energies of 0.573Mev and 0.191Mev for the proton emd 

the 3 H (tritium), respectivcly. As shown in Figure 8.17, both ions cause a "primary" 

ionization c10ud within the surroundings where the neutron was absorbed. These ions are 

accelerated by an electric field and produce by a so·called "secondary" ionization process an 

avalanche of ions. Only the electrons give a signal at the anode because they achieve affilIch 

larger acceleration according to their smal1mass. The size of the voltage pulse at both ends of 

the anode is used for determination the position of absorption and thereby the scattering 

angle. In a two·dimensional detector there are two perpendicularly arranged wire lattices, 

from which by coincidence measurements thc position oflhe absorbed neutron is determined. 

8.5.3.2. Seilltillatioll Deleeto!' 

Another type of detector are solid state detectors using the principle of scintillation. The 

reaction equation is the following: 

6Li+1I --> 'He +' H+4.79MeV (8.13) 

A Li gl ass with 6.6% 6 Li is mixed with Cerium (Ce). By absorbing a neutron in 6Li two 

ionic products of reaction are formed, which interacting with Cerium produce about 4000 

photons of 400nm wave length per neutron. Jn the disperser the photons form a light cone of 

90° as depicted in Figure 8. 18. The light cone is adjusted by the thickness of the disperser and 

by the slit between scintillator alld disperser (total reflection) so that the light overshadows 

two photo multiplier. The photo multiplier have a diameter of8cm and in total 8x8 photo 

Neutron 

-+-Ught Disperser 

"'-------t--Light Cone 

Photocathode 

-f--PMs 

1-------- Anode Current 

Figure 8. 18: Process 0/ deleclion 0/ a 6 Li scintillatioll deteclor 
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multiplier are arranged in a quadratic array. The resolution of one pixel is 0.8 cm. Such a 

resolution becomes possible by an algorithm calculus from the light intellsities of several 

photo multipliers. In a first stage a rat her ntde determination with an uneertainty of 8em is 

made by the position ofthe photo multiplier with the largest light intensity. In a second stage 

he neutron position is determined by also considering the intensity of the neighboring photo 

multipliers. An important advantage of this detector is the large atomic density of {he 

absorbing material and its consequently large detection probability; a 1 mm thick absorbing 

material of a scintillator has a 93% detection sensitivity of 7 A neutrons. Such adeteetor 

(Anger camera) was develaped at the Forsehungszentrum Jülich and is used in aur KWSI 

small angle instntment. 
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9. Crystal spectl'Ometer: triple-axis 
and back-scattering spectrometer 

F. Gilthoff, H.Grimm 

It has beeIl emphasized in the preceding lectures that thermal neutrons provide wavelenglhs 

'J.. comparablc 10 inter-atornic distances and energies hw in the order of collective excitations 

of condensed matter. In order 10 determine the properties of a sampie - as representcd by the 

scattering function SeQ.O) ocd2(J" IdQdE' - a variety of instruments may be used. The 

evaluation of the single differential cross section represented by du / d,Q is the lopie of dif­

fractometers. However, since - in general - the scattering of neutrons by the sampie is COIl­

nected with an energy transfer it suggests itself 10 analyze Ihe neutrons scattered intü the solid 

angle dQ in addition with regard to their energy. Introducing and investigating the double 

differential cross section d 2
(T / dQdE' ~hus corresponds to the switching from diffractometer 

to spectrometer. In order to determine whieh energy transfer E - E' = tlW is associated with 

which momentum transfer Q, the neutrons have to be characterized before hitting the sampIe 

by means of the so-called primary spectrometer and after leaving the sampie by the secondary 

spectrometer. 1t will be shown in the lecture on time-of-flight spectrometers that the energy 

of neutrons can be deterrnined via selection of velocity and travel time. Recall that thermal 

neutrons (300K) having an energy of k,T;Y,lIlv' - 25 meV travel with a speed of about 

2200m/s. According to de Broglie one may associate a wavelength A to a moving particle 

with mass 111 • This fact is used by crystal speetrometers whieh - by means of Bragg scattering 

1l'J. ~2dsine (9.1) 

seleet neutrons of energy 

(9.2) 

under Bragg angle e for given spacing d of the seleeted atomic planes. Thc modulus of the 

wave vector is related to the wavelength by k = 2n IA . 
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Two types of crystal spectrometers will be introduced in this lecture. The triple-axes spec­

trometer represents one of the earliest neutron spectrometer types. It was developed by B. N. 

Brockhouse. By means of this facility his essential studies [I] resulled by the end of the 

fifthies laying gronnd for his winning of the Nobel prize for physies in 1995. In contrast, the 

backscattering spectrometer is of more recent origin (the first facility of this type was put into 

operation in JUlieh at the beginning of the seventieths by B. Alefeld) and was stimulated by 

ideas of Maier-Leibnitz [2]. 

BOlh types of spectromcters can be - similar to time-of-flight machines - positioned at cold 

and thermal neutron somces. Especially for triple-axes spectromcters the possibility is real ­

ized to lIse thern at hot somces where neutron energies range up to I e V. 

9.1 Common fcatlll'es of cryslal spcch'omctcrs 

Olle of the most important properties describiJ?g and charactcrizing spectrometers is the reso­

lution function. lt is essential to determine and to optimize this function since it determines 

the type of dynamical behaviour which may successfully be measured. For a substanee to be 

investigated, this might mean that several different spectrometers are to be employed in order 

to determine the whole range of interesting excitations. According to the expected excitation 

energies not only a change in the moderation of the neutron somee but also switching to a 

conceptually different spectrometer might become necessary. However, already for a given 

spectrometer, resolution and flux may be varied by an order of magnitude taking advantage of 

available measures. Amongst otltee aspects. the knowledge of the instmmenlal resolution 

fUllction is of central importance in view of the ratlter limited neutron flux, since - for exam­

pIe - the size of the measured signal varies proportional to the inverse fourth power of the 

chosen average collimation for a triple-axes spectrometer. Thus, for each experiment, a suit­

able compromises between resolution and intensity have to be chosen. A comparison might 

elucidate this point: e.g. 1017 
- 1021 quanta/s are lypical for a LASER beam whereas a reac­

tor like the DlDO offers normally 10' - 10' neutrons lern'· s (monochromatic) at the sampie 

position. ]n order to make the most emcient lIse of those neutrons, different strategies - dis­

cussed below - are pursued by the various crystal spectrometers. 

For a crystal spectrometer one may weite the measured intensity scattered into lhe solid angle 

.6.Q with the energy spread .6.hw in the form: 
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(9.3) 

The first part of eq. (9.3) IIp to lhe cross section of the sampie represents information about 

the spectrum of the neutron sauree A(k) and the reflectivity of Ihe monochromator p(/Y; the 

number of seattceees in the sampIe is N. The last part refers to the signal measurcd by the 

secondary spectromeler. Since monochromator (primary side) and analyzer (secondary side) 

ael by the same physical prillciples it is advantageolls to describe the instrumental faetoes and 

thus the resolution in eq. (9.3) more symmetrically. Ta this end we lIse the already introduced 

relation betwcen cross section and scattering fUIlction 

(9.4) 

and \Vith the help of M' M ' 1i1 11 1 6.V' ßQ. fil1w = .1., 1, . ..3.... k'l1k' = _1_' __ we can rewritc eq. (9.3) to 
kfl 111 I l1l.k' 

M ~ A(k)' N· S(Q,W)' p(k)6.V· p'(kJtlV' , (9.5) 

where - as will be shown below - the vohnne elements in wave veetor spaee are given by 

6. V = 6.k" . 6.k" . 6.k,. 

In this seetion, now, the most important elements far the triple-axis and the backscattering 

spectromcter shall be introduced, It will become obvious that exploiting an essentially identi­

cal principle leads to quite different set-ups and properties. As a first step the general inHu­

enee of various components on the resolution will be described by means of lhe triple-axis 

machine which will be followed by an optinuzation of the physics involved (one sided in a 

certain sense) in the shape of the backscattcring spectrometer. 

9,2 Prillciple of Ihe crystal spectrometer wilh three variable axes 

Fig,9,1 shows the principle layout of a triple-axis spectrometer. Neutrons cf a defined wave­

length Aare selected from an incident "white" beam by means cf a single crystal (mollo-
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chromator M, first axis) under the associated angle 20~, according to eq. (9.1). The sampIe S 

under inspection is posi tioned in the diffracted beam. The secondary spectrometer 1l10ves 

around the sampIe thereby selecting neutrons scattered by an angle 2E> s (second axis) wh ich 

are further sorted with regard 10 their energy via the angular setting 20 A of an analyzer crys­

tal. A (third axis) and counted by deteetor D. The scattering veetor Q as weil as the energy 

transfer tun are determined by the angles 20 s and 28 A for given incident wave vector !s. 

(see also Fig.9.2). 

Fig.9.1: 

a 
o M 

a 
2 

Schematic layout of a triple-axis spectrometer with: collimators O:i" monochroma­
tor M, sampie S, analyzer A, deteetor D, ineident (scattered) wave veetor k (1;.') 

Thereby, the wave veetors I;. and /;,' are eonneeted with the variables Q and hw by the eon­

servation of moment um und energy. In the resulting scattering triangle (Fig.9.2) the deviation 

of the foot F from Y; Q determines the energy transfer liw . The sense of this deviation de­

termines whether the neutron has gained (!;. < /;,~ E-E '=hw < 0) or lost energy (/;. > !;.', tl(O 

> 0) by the scauering process. In order to influence the divergence of the neutron beam, col­

Iimators aare inserted before and after the crystals by wh ich neutrons are selected. Dctection 

of neutrons is by materials with an exceptionally large absorption cross seetion. The involved 

nuelear processes are e.g. IOB(n,O), 6Li(n, O), and 3He(n,p). The most eommon type of de­

teetors is coneeived as proportional counter filled with 3He having an absorpt ion eross section 
9-4 



üf 5300 barn für neutrons with 25 meV. With the typical active length of about 5 cm and a 

filling pressure of abau! 5 bar, the counting probability feaches >95% for thermal neutrons 

(the absorption cross sectiOll is reciprocal 10 the speed of the neutron), 

Fig.9.2: 

2 ' p 
ß E ~ tl (k' , k ') / 2m 

} 112 9 ~ 1I2(t,~') 
k 

1/2 tim 
" 9 tI Q / 2m 

Geometrical relation between wave vectors k and !i' on the olle hand side 10 1110-

mentum- 1i Q and energy transfer tlW Oll the ether hand. Since <& !s. ') represents 6 
dimensions, yet (Q,m) 4 dimensions, only, arbitrary solutions of vector e on the 

plane perpendicular to Q result for a given (Q,w )-point. 

It is meal1ingful to insert a neutron monitor at the exil of the primary speclrorneter, This de­

vice is principally similar 10 a counter absorbing and detecling, however, a small ffaction of 

the incident neutrons, only. The measured speetra may thus be normalized to the number of 

incident neutrons which is essential for long measuring periods sinee the neutron flux may 

undergo appreeiable f1uetuations. In addition, for a reaetor of the type DIDG, the average 

neutron f1ux increases by about 10% during anormal cycle. 
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Fig.9.3: 
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Representation of the theoretical measuring range of a neutron spectrometer with 
fixed incident wave vector k. 

The term triple-axis spectrometer indicates already the versatility of this instrument (not only 

in real space) which distinguishes this coneept from alher types of spectrometers. As long as 

the radius of action is not barred by the radiation shielding, arbitrary points in ß.(tJ - space 

may be selected. For fixed incident wave vector, those points belang to a parabolic surface 

wh ich is defined by momentum- and cncrgy conservation as shown in Fig.9.3). 

Q=k-iL (9.6) 

ßE = hOl = .h'..(k' -k") 2. . (9.7) 

9.3 Beam shaping 

Due to the fact that neuirons are uncharged and thus may penelrate materials rather easily, 

neutrons may be bundled or focused to a limited extent, only. This aspect aggravates \Vith in­

creasing neutron cnergy. Already in the source, there arises the problem to guide a suitable 
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number of neutrons through "holes" (beam tubes) in the biological shielding 10 the experimen­

tal setup. From the total solid angle cf 4 0 J only the ffaction travelling in the directioll of the 

beam tube will contribute 10 the flux. The used divergence of the beam is can merely be cho­

sen by annihilating all those neutrons by absorbing materials travelling outside a defined an­

gular range. Thus a beam tube represents the simplest version of a collimator. It is comparable 

10 a system of two diaphragms positioned in a distance of same meters. Wilh a typical length 

of 3 m for the beam tube and a cross seetion cf 0, 1 m there results a divergence of abaut 20 

for the neutron beam. 

Now it turns out that it is less meaningful 10 collimate the neutron beam in the vertical plane 

as tight as in the horizontal (seattcring) plane. Tilting the scattering triangle (Fig.9.2) slightly 

out of the scattering plane influences the selected· (Q.OJ) -point either not at all or in second 

order, only. ]f collimation shall be achieved within a short distance, thereby making allow­

allce far a desired anisotropy, olle uses a so-called Salier collimator. To this end, a set of co­

planar foils coated wirh absorbing material is mountcd vertically with a distance of say 1 to 5 

mm. Choosing about 30 cm for the length of the foils, olle may achieve a horizontal diver­

gence of the neutron beam in the order of 10 minutes of angle. Yet one has to take inta ac­

count that switching to half of the divergence entails about the same reduction of the neutron 

flux! The facts that the foils have a finite thickness and that their absorption is less than 100% 

modifies the ideal triangular transmission curve by rounding the top and by the appearance of 

tails beyond the base. This modified curve may weil be represented by a normal distribution -

a useful property for folding operations. In regard to the interpretation of measured data the 

more sharply Iimited resolution triangle as realized by the chopper of a time-of-flight ma­

chine would be more desirable. Since a weH defined cut-off clearly separates the change from 

elastic to inelastic scattering the difficulties in interpreting the quasi-elastic transition region 

wh ich involve the knowledge of the exact shape of the resolution function are greatly reduced. 

The anisotropy of the divergence may be exploited by a vertically focusing arrangement of 

monochromator and/ar analyzer crystal in order to increase the neutron flux at the sampie as 

shown in Fig.9.4). It is weil known from opties that the inverse foeal length is given by 

I1 f = (t; + -t;) and that the ratias of heights for image and saurce is eqllal to that of their dis~ 

tances L~ • Since, in general, the Bragg angle e :;t 0°, the focallength depends Oll the 

Bragg angle and the radius of vertical curvature by 
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R 
f~-

sinG 
(9.8) 

The distances 44 for a given spectrometer are to be considered as fixed quantities and (hus 

the curvature R of the crystal has to be variable. This may e.g. be realized by the parallel ar­

rangement of lamellae of single crystals which can be tilted individually. An additional gain 

factor results from lhe height ratio of monochromator to souree. Depcnding on the relative 

heights of sampIe and crystals an increase of lhe neutron flux at the sampie by a facter of 2 to 

6 might be achieved. The possibility of a horizontal focusing - whereby the influence on the 

resolution is 110 langer negligible - will be discussed further down. 

Fig.9.4: 

' .. 
.... -.. . -

Venical focusing: The gain facter P for lhe intensily at lhe sampie is given by lhe 
ratio of heights for souree and image (h"h,) and the height of the defleeting erys-

tal hM in units of the height of the souree by: 
p = rt), f (alc.r.,' = !2L .!::l:!:.!::L 

er)"Jfal,... L, h, 

~ 'd-i!+ 1) 

Similarly to e.g. light, one may mirror and tlms guide neutrons. On the basis of the Fermi 

pseudo potential V one ohtains the index of refraction for neutron by 

2M '/11-' . p(r) ' b~, ([) ~ 1 _ A' plJ:) . b,," (r) 

r. 'k'(2/11r ' - 2" 
(9.9) 

where b, ... (1:) denotes the average se"ttering length "nd P(r) the particJe density. The losses 

due to the total reflection are small even for a father modest quality of Ihe mirroring surface. 
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By suitable coaling the simple be am tube may become a neutron guide and Ihe IIr2-law is 

thus circumvented. According 10 eq. (9.9) ane should use materials for such mirrors whieh 

possess a large coheren! cross section logelher \Vith a large atomic density whieh is fulfilled 

for the isotope 58Ni with b = 14.4 ·lO-'~ Ill. Since the limiting angle far total reflection is ex­

tremely small (rfJ, IA = 0.1 '/I0·lOm). simple homogeneous coating could be used sllccess­

fully for cold neutrons, only (the lechnique 10 produce super mirrors opened the possibility 

foe guiding neutrons with energies up 10 the thermal range). By means of the neutron guides 

instruments having still a high neutron flux can be set up at larger distances from the reaclor 

core. If , in addition, such a neutron guide is slightly curved one can avoid the direct view 

onto the core whieh reduces the background. Simultaneously, olle obtains an efficient A/2~ 

filter by suppressing the unwelcome faster neutrons. A marginal note might be added: in the 

ease of extreme cooling of neutrons olle may keep and store them in "bottles" since Ihey are 

totally reflected under arbitrary angles. 

9.4 Resolution for diffraction by a crystal 

As we have seen already, single crystals offer the possibility to control the travelling direction 

of neutrons. Thereby use is made of their coherent, elastic scattering properties which - ac­

cording to eq. (9.1) - allow for deflecting neutrons from an incident "white" beam under the 

angle 20. This Bragg seattering becomes possible as SOOI1 as the scaUering veetor corre~ 

sponds to a reciprocal lattiee veetor, Le. 

Q=/:;-K=Q (9.10) 

and eg. (9.7) satisfies the condition tJ.E = O. or expressed differently by: 

(9.11) 

This ease is fulfilled if - as shown in Fig.9.5 - the projeetion of the wave vectars onto Q is 

just equal 10 1/2· G and is thus negligible far triple-a,.;is spectrometers. 
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Fig.9.5: 
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Illustration for the selection of scattered .wave vectors and their divergence as de­
termined by Ihe modulus G and Ihe scattcring angle. "'% is ofllte order of 104, 

The variance of a selected k -vector is given by the derivative of ~ G = ksin8 . Of 

ßk LU 16E 6G 
- =- =--=- +eot0·60 
k A 2 E G 

(9.12) 

With increasing wavelenglh of the ncutron the energy resolution will be improved. 

Back 10 the "bottled" neutrons: in Ihis case it is the half Iife time of the fcee neutron of abau! 

13 minutes wh ich finally limits the variance of the energy. 

The probability for a k-vector to obey the Bragg condition is both given by the "thiekness" of 

Ihe bisecting plane (constructive interference of Ihe contribution of Ihe tattke planes) and by 

the variance of the orientation of Q. The former condition means a relative sharpness of the 

modulus cf Q. in the range of 10-4 to IO ~' , whereas the laller is fulfilled with an accuracy of 

about 10-' for an iIluminated erystal surfaee in the order of em2, Simultaneously, eq. (9.12) 

expresses the dependence of the resolution on the material of the crystal, Le. the lattice pa~ 

rameter. This is exemplified in Fig.9.6. The smallest variance in k (ar}.) results for a Bragg 

angle of 90°. This range of e =90° is not accessible for usual trjple~axis spectrometers. 
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Fig.9.6: Schematic represcntation of the variance t1A as a function of scattering angle and 
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Fig. 9.7: M monoehromatie f1ux at the INS (lLL) for various materials as a fUlletion of k 
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Ideal crystals would be nearly prohibitive for measurements with the triple-axis spectrometer 

since their variances in the lattice vector are too small as to reflect sufficient intensity. There­

fore, the perfection of the crystals is artificially degraded by various methods. Possible meth­

ods are elastjc bending of the crystals or a continuous variation of the lattice parameter in so­

called gradient crystals. The breakthrough in the successful preparation of gradient crystals 

which implies a complicated and cost ly procedure was achieved satisfactorily in 1995 in Ber­

lin-Adlershof with Ge-Si crystals. A comparably wide-spread method is the deformation of 

perfect crystals. thereby generating an imperfect mosaic crystal by introducing dislocations. 

On may imagine such a crystal as being composed of small perfectly crystalline blocks - the 

mosaic pebbles - whose orientation is normally distributed. A common full-width-half­

maximum or mosaic spread is in the order of 3D". 

Fig.9.8 illustrates the operation of such a crystal as monochromator. The neutron beam inci­

dent Oll the crystal is given a divergenceao ' A perfect crystal would reflect just Olle wave­

leugth for eaeh angle 0 .. , as expressed by the seetion of the dashed line (bisectiug plane) lim­

ited by a, (';; ao). It is the distribution of biseeting planes (mosaie) whieh spans the hatehed 

area being proportional to e cot e M' Togetller with the vertical divergence ß delivering a 

contribution of ßk there results aresolution volume being proportional to e cote...,. The 

varianee of the scattering angle 60 in eq. (9.12) follows to (withoUl derivation): 

60= 
a~a: + a~ nl + a: ry l 

a~ + all + 4172 
(9.13) 

This dependenee shows that the gain in intensity by the mosaie erystal is not to be "paid" by a 

worse energy resolution for a, = a, ! Generally, the intluenee of I) on 60 is weak. (Fig.9.9) 

Which crystals should 110\V be used as monochromators for neutron? Apart from the lattice pa­

rameters further criteria are to be considered: those are the reflectivity, the suppression of 

AI2-contamination, and last Ilot least the availability as given by rhe technical and financial ef­

fort for their production in suitable quality and size. For example, for the same reflected 

wavelength, Cu has a better resolution as graphite (PO means pyrolytic deposited graphite), 

however, an appreciably lower retleetivity (see table 9.1 and Fig.9.7). 
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The elastic form factor of the crystal 

F(Q) = '2>. (Q)' exp(iQ ß . ) (9.14) 

plays an important role since it represents the coherent seattering length and the extinction 

rules. Eq. (9.14) deli vers for Ihe diumond lattice Ihe form faclors: 

h+k+I=4/1 

= 211 + 
= 2(2/1 + I ) !! 

Thus Ge and Si have the desired property to suppress the Al2-contamination of the reflected 

beum by means of Ihe forbidden (222)-retleclion when using Ihe (111 )-retleclion. 

1.0 

0.8 

c: 
.~ 0.6 
.!a 
E 
~ 0.4 

~ 
0.2 

0.5 

/.-237A 

i. _ 1.55A 

I 

3/. _2.37A 

1.0 1.5 2.0 2.5 

wavelength ),/A 

Fig.9.IO: Transmission of PO-filters [4] 

Choosing PO or Cu one gets contributions of higher order apart from the wavelength seat­

tered first order. It is important to eliminate those contributions carefully in order to avoid any 

ambiguity of the measured signal. One may circlllllvent this problem by inserting suitable 

materials as filter, however, at the expense of weakened intensity. In addition, there result 

limitations in regard of the freedom to choose the wavelength as can be seen by the example 
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of the frequently used PO-filter. The corresponding transmission curve is showll in Fig.9.10. 

The goal is to choose a wavelength A for which the filter offers an especially large transmis­

sion and, however, a large absorption for integer fractions Alu. \Vith the choice of A =2.37 

10.10 m, neutrons with 2A .nd 3A =2.37' 10.10 m will be largely suppressed. The wavelength 

A =1.55· 10-10 m offers itself, as weil. Above A == 4· 10.10 m, as in the case of a triple-axis 

spectrometer at a cold source, olle uses a Beryllium-filter cooled by liquid nitrogen as a cut­

off for shorter wavelengths. 

Mosaic distribution of a crystal and beam divergence are not the only means to influence 

resolution and intensity. Those properties rnay be varied also directly by the choice of k. In 

order to offer more neutrons at the correspondingly large or small incident energies, one shifts 

the maximum in the energy spectnull of the reactor neutrons by cooling (D2 at 25 K) or heat­

ing (C .t 2000 K) of a moderator. A speetrometer plaeed at • cold souree (small fsJ, has a 

higher resolution as compared to those placed at thennal or hot sourees. Thus, by selecting 

different moderation, olle may vary 6E between orders of 0.01 meV, 1 meV, and 100 meV. 

Tablc 9,1: Propertics of frequently IIscd l110saic crystals 

material graphite (PO) Oe Cu 
refleetion (hkl) (002) (111) (220) 

A -range / lO"'"m upper limit 6.708 6.533 2.556 
( =2d) 

lower limit 1.16 1.13 0.444 
(0 =lO') 

peak- reflectivity A = 1 . 10''" m - - 14 
(%) =2· 10.10 111 74 24 32 

=3 ' 10.10 m 82 34 -
=4· 10.10 m 87 43 -

absorption 5· 10-4 0.058 0.19 
details (222) forbidden "bad" mosaic distri-

bution 
costs 20000 15000 5000 
per erystal in DM (eoarse) 

Olle notes that nearly a1l introduced components affect the resolution function of the spec­

trometer. This function - a four dimensional ellipsoid - resulls by projecting the product of the 

volume elements 6V and 6\" onto the (Q,w)-space (integration over the two dimensional 
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veetor E. in Fig.9.2 [5). In the upper part of Fig.9.11. the orientation of the volume elements 

with respect to k and k ~ are indicated as weil as projections of the resolution funclion. Inclina­

tion .nd widths of the ellipsoids depend strongly on the se.Hering sense - part (11) of the fig­

ure. Part (lll) shows Ihat there results an appreciable increase of (he wave vector spread for 

scattering twice in the same sense. It isjust those different projcclions on the various (Q,CL1) 

directions wh ich is exploited for the measurcment of phonons. By ndapling the slope of the 

resolution ellipsoid to the slape of the dispersion curve in quest ion olle achieves a focusing ef­

feet - as shown schematically in Fig.9.12. This exemplifies an important possibility (0 influ­

enee the quality of the measurement. The following twa figures shall demonstrate 

M 
R (t) 

s 

•• A , 
0 

-j, \: A "'O u '(I 
k, 

0 "'Ou 60 i 
'ai 

(111) 

), .. ). HnCO! 9 / / .. ft/ 

Fig.9.11: Dependenee of widths and inelinations of the resolution ellipsoid from the 
canfiguration of the spcctrometer ((I) and (11) from B. Dorner [6). with k; = k and 
k r = ki 

9-16 



v 

v 
scan direclion 

dispersion CUNe 

resolution ellipsoid 

q 

scan direclion 
v 

dispersIon CU Ne 

resolution ellipsoid 
'---

q inlensily 

Fig.9.12: Effect of fOCllSillg for measurements of phonons. The integrated intensity is the 
same in balh eases. The focused mode (lipper part) exhibits a smaller width and a 
better signal-ta-background ratio. 

How olle can ohlnin a complete picture of the dispersion surfaces by measuring phonons at se­

lee ted symmetry direction and making use of a lattice dynamical calculation. In contrast 10 

TOF-instnllnents recording simultaneously many points on the surface shown in Fig.9.3 (e.g. 

128 angles * 1024 time channels), one may measure just olle point with a conventional tripie 

axis spectrometer. Fig.9.13a shows a sean in energy direction, Le. aseries of such points, 

whereby Ihe veelor Q. is kepl fixed in Ihe syslem of Ihe inspeeled eryslal. Thus Ihe widlhs of 

Ihe observed peaks represenl Ihe frequeney or energy widlh of Ihe phonons folded wilh Ihe 

resolution. The se an also demonstrates lhe general case that several phonons will contribute 

to a scan according to their dynamical structure faelor. In fact, the same peak positions but 

quite different intensities will be observed at equivalent positions in ot her Brillouin zones. 

On the olle hand sidc this equivalence serves as experimental cross cheek for lhe peak posi­

tions (ei gell va lues) and on the olher hand one may dcrive the eigenvector from the observed 

illtensities for a seleclcd phonon. 
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Fig.9.13: Phonon dispersion for AI203 (sapphire) along Ihe (OIQ)-direclion al 20 K. The 

points (phonons) in a) resu lt [rom the maxima observcd in many separate seans. 
E,g. Ihe results within the marked region are obtained from seans as showl1 in b). 
Such seans display however not always all theoretically expected phonons simul­
laneously. The solid !ine in a) represents the fit of lhe experimentally obtained 
data 10 a lattice dynarnical model; in b) the line corresponds 10 Ihe fit of the re­
sponse funtion broadened by the resolution functiOIl of the instrument 10 the ob­
served scattering intensi ty (in many eases, a one dimensional folding with a 
Gaussian is suffieient for fitting the measured speetra). (7). 

The dispersion - often illuslraled as curves along synunelry directions (e,g. Fig.9.13b) - rep­

resent of eourse dispersion surfaces being periodie with the Brillouin zone. In general, this 

surfaee needs not 10 be determined eompletely by further seans. One rather fits a lattice dy­

namical model (see leeture on inelastie neutron seattering) 10 the observed peaks and may ex­

tent Ihis ealeulation to arbitrary wave veetors whieh "predictions" might in turn be tested ex­

perimenlally. The dispersion surface for Barium is shown in Fig.9.14 in Ihe (011) -plane [8]. 

Direetly measured have been the indicated points, only. The remainder results [rom a fitted 

lattice dynamieal model. 
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Fig.9.14: Dispersion surfaces for Barium in the. (llO)-plane. Thc solid lines correspond to 
lhe main symmetry directions, the points 10 (he various observed peak positions 
of intcnsity. The transition from lighter 10 darker points corresponds 10 tllat from 
longitudinal 10 transverse polarisation of the phonons. 
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Fig.9.15 : Left hand side: energy and resolution are determined by the deflection angle 0 as 
weil as by the collimators absorbing all neutrons travelIing outside the accepted 
divergence. Right hand side: for the so called monochromatic focusing, all dellec­
tion angles and (hus the energy of the neutrons are equal duc to the curved crystal 
such that the divergent (Le. relaxed Q-resolution) but l1lonochromatic neutrons 
merge together at Ihe foclIsing point. Caution! the average cllcrgy of the set-up 
has !lQW becorne dependent on the sampie position due to the ornitted collimators. 
The resolution will depend on the size of source and sampie relative to the ra­
dius of curvature. 
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A final aspect for optimising the spectrometer shall now be mentioned. Considering the dis­

persion for Barium it becomes obvious Ihat the dcpendence on wave veClor for the so called 

acollstic phonons is 1101 exceedingly large towards the zone boundary. Oplieal phonons (see 

the leeture on phonons and magnons) exhibit this property in most eases even more clearly. 

This menns lhat one eould achieve more intensity or sherter measuring times by reducing the 

Q. -resolution and keeping the energy resolution constant, Le. keeping the distinetness of the 

various phonon branches. This ean be aehieved by l11eans of a horizonrally eurvcd 1110no* 

chromator and/or analyzer as drafted in Fig.9.15. About a faetor of five in intensity may be 

gailled by this horizontal arrangement. Experiments using doubly focusing detleetion erystals 

exist since a eouple of years requiring, however, a high degree of skill and experience. 

9.5 ßack·Scattel'ing Spectl'ometel' 

It follows from Fig.9.16 and eq. (9.12) timt for a given divergence of the neutron beam a crys· 

tal will achieve the optimum resolulion in the modulus of k for the ease of baekseattering, Le. 

for 0 = 90°. This is the basic idea for Ihe backscatlering·(n )·spectrometer which realizes this 

optimum deflcetion angle bOlh at the monochromator and Ihe analyzer. For the ease of back­

seattering one may rewrite eq. (9.12) to: 

( ~k) 
o d~ 

I", (6.0)' 
cos(6.0/2) 8 

(9.15) 

Assuming that the divergence of the beam is determined by a neutron guide. one gels from 

eq. (9.9) and far Ihe isotope 58Ni 

6.0 = 2ßkrn = 2..J(4iiii0 
rn k k' (9.16) 
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Fig.9.16: Bragg-reflection in the case of near backscattering. 

Insening ß0., into eg. (9.15) delivers ('11 ,)". ,,5' 10-5 and with eq. (9.12) an energy resolu-

lion of 6.E;; 4 ßkh'i 1. EIe ;:; 2.4· 10-7 eV. Th,is contribution 10 Ihe energy resolution is thus 

independent of the selected energy. Even with a tripie axis spectrometer at a cold SOUTee this 

extreme value of öE is out of question. An additional contribution 10 the variance of k results 

from primary extinction, i.e. Ihe fact that a final number of lattice planes contributes 10 the 

Bragg-reflection, only. Perfeet crystals afe used in order 10 maximise Ihis Jlumber. This sec­

ond variance is expressed in Fig.9.5 by the thickness cf the bisecting plane. The prirnary ex­

tinction is proportional 10 the !lumber of unit cells per volume Nz and the absolute value of 

the structure factor F G, and inversely proportional 10 C 2
• For perfeet crystals Iike e.g. Si the 

additional variance is of aboul the same order as that due 10 the divergence of Ihe k-vector. 

The maximum errar for the energy results Ihen from the slim of bOllt contribulions, Le. add­

ing the extinction in eg. (9.15) (without derivation). 

(9.17) 

Veto how is it now still possible 10 vary Ihe incident encrgy at such a speclrometer being re­

stricted to the deflection an gl es 8=900? To Ihis end olle Ilceds - according 10 eq. (9.1) - a 

variation of the latticc parameter or Ihe reciprocal lattice vector Q.. This can be achieved by 

heating the monochromator cryslal or simply by moving the crystal (periodically) parallel 10 
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the direction of Ci. with a velocity v D' The change of energy (in the laboratory system, 

Doppler effecI) is Ihen 

(9.18) 

whereby E and v N denote energy and speed of the backscallcred neutrons and 11 D die velocity 

of Ihe Doppler drive. Moving a cryslal - sei 10 neuirons wilh A ~ 6.3' 10.10 m by lIsillg Ihe 

Si(ll l ) reflection - with a velocity amplitude of 2.5 mls results in an energy range of 

± 15 Jl eV. Fig,9. 17 !lOW displays the realisation of the above consideratiolls by means of an 

experimental facility. 

Analyzer 
Plates 

Analyzer 
Rings 

Supermirror"'~~;J~if" 
Sampie 

Detectors 
Monitor Guide 

Chopper Doppler 

\ Monochromator Drive 

~====:~=:::;;:========I~ 
Deflector 

Neutron Gulde 

Fig.9.17: Layoul of Ihe backscauering speclromeler in JUlich 

NOl lInexpccledly, Ihis sei up is qllile differenl from Ihal of Iriple axis speclromeler. The 

backscattered and Doppler shifted neutrons have to be deflected by a second crystal off from 

the neutron guide towards the sampie position. This so called deflector is positioned next 10 

the neutron guide wh ich entails a slight deviation from perfect backscattcring and thus the op­

tinulln energy resolution. Exacl backscattering has been attcmpted in the first experimental set 

up by placing a deflector covering I/10th of the beam size inside the neutron gllide. Despite 
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the somewhat better resolution this option results in tao a low fIux for most applications. Af­

tcr deflection, (he neutrons travel through a conical shaped, supermirror coated neutron guide 

whieh focuses the beam onto the sampie. A chopper with abaut 50% dead time interrupts the 

c0I11inuous beam and triggers the gate of Ihe counters. Thereby olle avoids counting of those 

neutrons being scattered directly from the sampIe into the nearby counters, whereas neutrons 

having passed the analyzers are detectcd according 10 the Doppler velocity. The analyzers 

(elastically curved Si s ingle crystals) are arranged at a fixed radius around (he sampIe and fo­

eus the backscattered neutrons on the associated detectors. Note, that the energy resolution of 

the backscattering instrument also depends on the flight path. It increases with increasing 

flight path since the detectors have a finite vohlIne which me ans slighlly different dctection 

limes. The accuracy of the counting eleetronic may thereby be considered as perfect. 

After all those constraints on Ihe detected neutrons it might astonish that there remains suffi­

cient intensity far measurements. We had learned about the cast of intensi ty for optimizing 

the resolution. In order 10 a~hieve a usefnl signal/noise ratio here, one has 10 relax Ihe resolu­

tion in the momentUln transfe r. Taking the width of 45 em for an analyzer plate being posi­

tioned at a distance of 150 cm to the sampie, ane gets an angular resolution of abaut 9° . For 

an average Q value, given by Q = ~ ~ sine s == 1.41 ' 1010 rn-I for e $ = 90° and a wavelength 

A. = 6.3· 10.10 m, this means aresolution of ± 0.1' 1010 m- 1. For comparison: at the tripie axis 

spectrometer one has a resolution in Q of about 0.01' 1010 rn- I . On Ihe other hand, 1110st 

problems investigated on a backscattering spectrometer exhibit smooth functions on IQI, only, 

wh ich allow for such a relaxed Q - resolution. The isotropie seattering also peflllits the s imul­

taneous reeording of several momenhllll transfers by arranging many counters and associated 

analyzer plates around the sampie. In this respeet the effieieney of a backseattering instrument 

is higher thall that of a tripie axis speetrometer which uses on deteclor, only .. 

Finally, as an example for a measurement on the backseattering instrument in JUlich, the tern­

peralure dependence of the spectrum of Paraeetamol is shoWTl in Fig.9.18. In this ease, one is 

interested in the rotatiOllal or more exactly - permutation al - tunneling of the methyl group of 

the rnolecule. Eigenvalues and eigenvectors of the associated hamiltionian result from the 

Mathieu equation fol' threefold synunetry. 
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Fig.9.18: Rotational tunneling ofthe methyl group in Paracetamol. 

The goal is to determine those eigenvalues (here abOlIl 3DeV for the A H E transition, A = to­

rally symmetrie, E = doubly degellerate) alld thus 10 obtain rat her precise information 011 the 

intra- and inter-molecuJar interactions. A rernarkable observation thereby is that the excitation 

energies are much smaller than the thermal energy of say 10 K of the sampie (I DcV ~ IIIOO 

K). This may be understood by considering the basically different cOllpling of phonon (spin = 

0) and neutron (spin = '12) 10 the eigenstates with different symmetries (see lecture on Transla­

tioll ami Rotation). 
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10. Time-of-flight spectrometers 

Michael Monkenbusch 

10 .1 Introduction 

The information that may be extracted from a neutron scattering experiment can be ex­

pressed in terms of the scaft.e1'il1g fundioll S(f{, w). All properties accessible by these kinds 

of scattering experiments are contained in S(Q, w). The resulting intensity repres€nts the 

double differential cross section: 

d'u 
<lOdE' 

= N ~b2S(Q,w) (10.1 ) 

where k', k is the modulus of the scattered anel incoming neutrons respectively. N clenotes 

the number of atoms in the sam pie and b is the seallering lengthl
. The energy transfer 

eiuring scattering is fiw = (E - E'), here E , E' denote the energies of thc incoming and 

scattered neutrons respect ively. The variables of the scattering function depcnd on K, lf.; 

Q = k - lf. is the momentum transfer and 

(10.2) 

the energy transfer that occurred during thc scattering process. Since the modulus of the 

wavevector k of the neutron is relaled as weH to the neutron velocity, Q (momentum) as 

to the wavelength (l/wavcnumber): 

Qm n 

2" 
= k 

(10.3) 

(10.4) 

it is possible to determinc the energy transfer (10.2) as weil - by employing the wave 

properties of the ncutron- by analysis of the wavelength ).' as -by using the particle 

character- by measurcment of the velo city VI of the scaltcred neutrons. 'fhe first method 

IS applied in crystal-spectrometers like the classical triple-axis-spectron1cter or the 

1 For compounds containing different types of atoms (elements or isotopes) t.he corresponding expres­

sion consists of the sum of partial st.ructure factors multiplied by thc corrcsponding scat.tering lcngths 

bibj in bi linear combination. For the discussion of instruments the simple version is sufficient. 
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backscatterlng-n-spectrOlnetel'j for detai ls see chapter 10. 'fhe second method leads 

to the spectrometer types that are the topic of this chapter, namely different variants of 

time-of-ftight (TOF)-spectl'ometers. Also the neutron spin-echo spectrOllleter, 

NSE that is described in the next chapter ernploys -somewhat less obvious- direct.ly the 

velocity change of the neutrons 10 infer the energy transfer. The generie geometry of 

a scattering experiment in reciprocal (i.e. velocity, moment um 0 1' wavevector) space is 

iIIustrated in Fig. l. The scatterinp; tri angle consisting of thc ineoming waveveclor K, 

k' 

28 
k 

Figure 10.1: Scattering triangle. 

t he wavevcctor of the scattcred neutrons !t. anel the rcsulting momentulll transfer ( ~n, ) , 

9..., the figurc shows the general situation of inelastic scattering (here: energy gain of the 

neutron) . 20 is thc seattering angle, Q indicates the momentum transfer for elastic 
~ 

seattering (i .e. without energy transfer). 

A nuclear research reador as neutron source basically yields a thermal (Maxwellian) 

spectrum of neutron velocities, the temperature of thc moderator (D 20-cooling water 

approx. 60°C') determines the temperature of the neutron eloucl. Many facilities contain 

additional small moderators of different temperatlll'e that supply single beam tubes with 

neutrons of a different spectral dist ribution (different tcmperature). In particular the so 

ealled Ileold sources" havc to be mentioned. In J ii lieh thc Ilcold source'll which supplies 

the neutron guide hall (ELLA) with long wavelength neutrons, consists of a small volume 

filled with liquid H2 corresponding to a temeparture of 20 K. The following table enables 

a quick survey over thc average values of the corresponding neutron speetra. 
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~"Ioduator/ f( .J:?/m/s >./nl11 hw/eV v = w/27r/s- 1 

330 2870 O.H 28 x 10- 3 6.87 X 10" 

20 706 0.56 1.7 x 10- 3 0.42 X 10" 

5 177 2.24 0.4 x 10- 3 0.1 X 10" 

For specific experiments of course also neut rons of deviating velocities within a band 

around the average are employed, however far from that the available number density 

resp. the flux drops st rongly. Typical neutron velocit ies are in the order of 1000 m/s 

the corresponding time~o f-flight per meter is I ms/m, i.e. such neutrons need a couple of 

millisecollds for theil' journey through a spectrometer. 

10.2 The cIassic time-of-flight spectl'onleter 

Figure 10.2 illustrates the generic setnp of a classical time-of-flight (TOP) instrument. 

~ Cl:: HISTOGRAMM-
LlJf----~I SPEICHER 

=> ini<.re:r:e:1:;ere:-:c 

Figul'e 10.2: Generic setup of a c1assica l TOF instrument . 
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From thc thermal spectrum of thc neutron beam entering from the left a monochromator 

(ofany type) fi lters a limited wavelength band -I±t.-I. ß y doing this typica lly a bandwidth 

of ß)"J)" ~ 10- 2 is achicved . The thus monochromatizcd beam enters a. so-called chopper 

which opens the beam path periodically for a short moment. Typical frcquencies are 

bctween 20 and 200 Hz, the ratio of time-open:time-closed is around 1:100. Thc resulting 

pulse widths are of the order of several (tens) of microseconds. After an as short as 

possible Aight path the neutron bunches hit the sampie and are scatLered according to 

the double differential cross sec ti on of the sampIe material. In this process some neutrons 

exchange kinetic energy with excitations in the sampie, i.e. change thoi1" velocities. After 

scattering into d ifferent directions the neutrons transverse the ßight space between sam pie 

and the detectors. The path length between sam pie and detector is usually kept the same 

fol' all detectors placed at the periphery of the ft ight space. The detectors most often 

consi,ts of 'He ("'10 bar) filled counting tubes of 30·· · ~O cm Icngth. Up to 1000 (a11(1 

more) t ubes are used in some installat ions to cover as much solid angle as possible. 

T he elastically scatte.red neutrons (like those from the direct beam) reach the detectors 

after the time top + to = dchopper:-s80lpleJUO + LJvo, t hose scattered inelast ically arrive 

earl ier (energy gain of t he neutron) 01' later (energy loss of t he neutron). Each pulse 

from a counting tube causes via thc associated electronics an increment of one cell in 

the histogrammic memory. The address of this cell is derived from the time difference 

bctwecn chopper opening and arrival time of the neutron (pulse), i.e. TOF, and t he 

detector number (~ scattcdng angle) . T hus the distribution of Aight times evolves as a 

histogram of 512· .. 2048 channels with a width of around 10115 each. For each detector 

(resp. group of dctectors) such an histogramm \'s . time is obtained. A monitor (Mo) in 

the direct beam sen'es to normalize the histograms to t hc incoming neutron flux. 2 

2A "monitor" is a detectioll dcvicc (counting "tube") that covers the beam cross scctiOll and has a 

high transmission for neutrons (> 90%) and low detection probability (10- 3 ... lQ-7). In thc figure only 

one moni tor behi nd t he samplc is shown for dari ty. In general anoLher monitor (more im portant) is 

loca ted bctwccn chopper and samplc, it measurcs the incoming ftu x withollt the inft llcnce of the sam pie 

transmission. 
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10 .2 .1 Interpretation of spectra 

As displaycd in thc path-time diagram in fig. 10.3 pulses of neutrons with defincd vclocity 

are periodically transmitted by the chopper with the frequency 3 NO = 1/r. Thc slope 

of thc dashed lines cO l'responds to the average velocity vo . The neutron pulse needs a 

constant time tcp for the distance from the chopper to the sam pie d Chopper- Pwbe' After 
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Figure 10.3: Path(Flugweg)-time(Zeit ) diagram , 

Thi s velocity spread is indi cated by thc filled gl'cy triangles. The analys is of arrival 

3According to the tcchn ical rcalization t.here is an integer factol' between rotation frequency of the 

chopper and pulse repet ition frequency; e.g. a Fermi chopper that opens t.wice per one revolution (see 

10.2.4). 
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times is performed at thc dctector distance dcp + L. A possiblc resulting "spectrum'! is 

indicatcd on top of thc detcctor distancc linc. The extrapolation of the dashcd line to the 

detectol' position indicates the location of the "elast ic line", i.c. the time channel where 

neutrons wiUlOut energy transfer arrive 4. The left vertical edge of thc tri angle deflnes 

the IIbeginning" of the timc-of-flight spectrulll, i.e. the earliest possible time of arrival 

occurring only for nearly infinite energy gain of the neutron. In reality there are no infinite 

large energy gains and the proper spectrum starts somewhat later. The right edge of the 

"yclocity fan') symbolized by the tri angle is less well defined) in principle thc neutron may 

transfer only a. part of its energy but also virtua11y a11 of its energy to thc samplc, thus 

virtually hortizontal path-time curves may rcsult. I.e. strictly speaking the spectrum does 

not end al same maximum channel number. However it is immediately recognizable that 

fortunalely this effect goes along with a corresponding "dilution}) of the intensity which 

becomes virtually structureless on the scale of the histogram channel windows C'frames}) 

causing a constant background in all channels af a "frame" that may be subtracted during 

data treatment. Thereby it becames possible 10 repeal lhe uptake af a "frame" wilh a 

frequency n and to accumulate the spectra into the histograms mentioned above. Each 

chopper pulse resels the dock to time zero and the channels af the histogram cover lhe 

time interval T in terms of bins of width nTg ~ T / N. If due ta resolution requirements 

5 01' duc to other lechnical demands n has to be chosen such that the abave discussed 

IIframe lJ-ovcrlap effect still distorts thc speclra, it is possible) as indicated in fig. 10.4, to 

use an additional coal'se chopper to transmit only cvery 2nd 01' n-th pulse. By doing this 

sufficient spacing between "frarnes)) mal' be gained to coUecl an undistorted speclruffi) 

however with an n-fold reduclion of effeclive data collection rate. 

10.2.2 Time-of-flight spectra 

In fig. 10.5 several speclra as they are accumulated in lhc histogrammic memory are 

displayed. The time-of-flight scale of the horizontal axis refers to lhe distance L between 

sampie and detectors. This t.ime-of-flight. is dircdly proportional to the wavelength ).,' 

of lhe scattered neutrons as is indicated by the diagonal representing this linear relation 

4Generally the scattcring without (sizeable) energy transfer is the most. probable proccss. 
5The pulse widt.h (opening t.ime) of a chopper depends - for a given dcsign- Oll its rotation frequency. 
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Figure 10.4: Path-time diagram for a conf1guration with "Frame overlap choppers") chop· 

per 2. 

using thc right hand vertical seale. This diagonal straight lioe intersecls thc level AO = 

O.6nm at the loeation of the "elastic ehannel" whefe neutrons are collected that did not 

change their velocity during scattering. Since in liquid water which was the samp!e aB 

moleeules may diO'use without restrietion only a so called quasielastic line is obscl'vcd 

whieh corresponds to a Lorentzian with a, width proportional to Q2 . The maximum of 

intensity is nevertheless at thc elastic chanllel ( -7 quasielastic). 'rhe difference between a 

solid with atoms/molecules fixed at lattice siles and a liquid is illustrated by t he right part 

of the figure. Imidazolc in the solid state exhibits an intense line at the elastic channel 

with a width cOlTespond ing to the instrumental resolution. In contrast molten imidazole 

(especia lly for the relatively large scattering angle displayed hefe -7 large Q) shows only a 

broad quasielast ic intensity distribution. At shorter times-of-fl ight corresponding to larger 
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energy transfers (gains) structures in the spectra are visible that stem from molecular ami 

lattice vibrations. Note the second left seale in combination with the dashed line that 

iJlustrates the strongly non linear relation between energy and time-of-flighL For energy 

gains ßE » kBT the scattering energy dies out due to the exponential Boltzmann factor. 

At ambient temperature kaT is equivalcnt to 25meV. \-Vell above that energy gain the 

unavoidable virtually const.aut background due to "frame overlap" may be determined. 

3000 
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5 10 10 , , , 
40 ~ \ 8 8 

~ \ / 
~ 2000 30 " ' / )!o · • . >',l ~ ______ . 6 <;; 6 

~ 20 ~ . \ / <i .~ ., 
ilJ "':'\/ I 

:" c , , 
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<l \';~~:, __ . 

4 4 E - 1000 10 . \ 
........ - ":.,;:- 2 2 
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Flugzeit1ms Flugzeitls 

Figmc 10.5: Left: TOF-spectra from liquid water at ambicnt tcmperature for different 

scattcring angles betwcen 30° and 140°. Parameters: >'0;;;; O.6nm, ßr = 18/1s, L = 3.05m, 

N = 512. Right: TOF-spectrum from imidazole (C,H.,NH) as crystalline solid at 3001< 

(the dashed Iines displays the same data scaled by x O.l) and as melt at 4031< at a 

scattering angle of 95°. 

Technicallya TOF spectrum is accumulated at a fixed scattering angle for each detector. 

That corresponds to the situation of the scattering triangle as depicted in fig. 10.1. A 

glimpse on this figure makes eIear that different momentllll1 transfers Q and Q (depending 
~ -

on energy transfer) for elastic ami inclast ic scattering have to be assigned to the different 

time channels of the histogram from one specific detector. That appl ies as weIl for the 

modulus Q as for the direction of Q: The sequence of cUt'vcs in thc left figure 10.5 shows 

the values of Q as function of scattering angle (different cur"cs) alld time channel. The 

propcrty that thc values become very sim ilar for large energy gains -also expressed by 
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the similar intensity distribution of that part of the spectra for different angles- follows 

[rom the fact that thc main contribution to Q at high energy gain stems from the length 

difference of k and k' (see fig. 10.1). The variation of IQI may be compensated \Vilhin 

ccrtain limits by combining the data [rom different dctectors (angJes), however that does 

not apply for the d irection change of q. Therefore TOF-instruments - in contrast to triple­

axis spectrometers- are bettel' suited for isotropie sampies (liquids, powders, amorphous 

substances) than for single crystals 01' other highly oriented sampies. 

10.2.3 Transforms 

Since the physics of thc systems under invcstigat ion is usually expressed in terms of 

S(Q,w), a transformation of thc raw data representing 1(20, /) into thc (Q,w)-space is 

necessary. "Vith t = L/v' anel 10 = L/v inselted in Eqn. 10.2 yields 

alld 

( ) 
_ m n L1 t

1 
- /5 wt - - - -

2~ t1t5 

Q = m n L 
Ii 

t1 + 15 - 2cos(20)lol 

tö t2 

(10.5) 

(10.6) 

The non linear mapping from chaIlneis to cnergy given by Eqn. 10.5 also causes a strongly 

varying cnergy-width of TOF-channels, I<. 

or somewhat simpler 

with 

and 

the rcsul t 

I< 0 .. , 

J(20,[() <X J ~47l"b15'(Q,W(t))~~dt 
(I< -1).6.T 

k' to 
k 

dw(t) 111 n 1 1 
d( =TL f3 

1(20,[() <X 5'(Q,w(J(c,r)) t' 
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is obtained, all eonstant faetors are omitted and lumped into astilI undctermined pro­

portionality faetor 6. Note the factor t- 4 betweell 5' ami I which eauses a significant 

intensity enhaneement far the early arriving time ehannels, however intimately connected 

with a corresponding loss of energy resolution. Application of the transfonns Eqns. 10.5 

alld 10.11 allows a display of the spectra in terms of S(20 ,w) . Figul'e 10.6 shows a 

correspollding S(20,w) derivecl from the water clata (medium angle data in fig. 10.5). 

2.0 2.0 

1.5 1.5 

Ö 0; 
.~ .~ 
~1.0 ~ 1.0 

~ ~ 

0.5 0.5 

0 0 
- 4 -2 0 2 -40 -20 0 

6.EJmeV 6.EJmeV 

Figure 10.6: TOF spectrum from liquid water (see fig. 10.5) converted to S(20,w) 

displayed over two different energy ranges. 

The diffusion is easily recognizable but the structure due to (internal) vibrations is lost in 

this type of representation. As so on as a model for S(Q,w) is available, it is in most ca ses 

more advantageous to apply the inverse transform to that model ta compute 1(20, K) 

alld to compare this result with the raw TOF data. This procedures also allows for a 

simpler more direct application of resolution eorrections. 

Remark: application of a coordinate trausform (here (Q,w) -t (20, [() resp. (Q,w) <­

(20, [()) requires -besides the observation of the (nonlinear) coordinate dependence- the 

application of a Jacobian determinant as factor to preserve uvolume". For the time­

frequeney part this is also done here (t-4-factor). The transform 20 -t Q\ howevcr 

6For practieal purposes tbe proportionalit.y fador is determined by an absolute calibrat.ion using a 

standard sampie, e.g. vanadium whieh is a purei)' ineoberent elastie seaUerer. 
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is performcd without Jacobian duc Lo an asymmct.ry in definitions of S(Q,w), namely 

d<7(20)/dn = S(Q(20)) ! 

10.2.4 Fermi chopper 

One possibility to open thc beam for a short time to create thc required neutron pulse 

consists in the placement of a short rotating collimator in the beam such that it transmi ts 

neutrons only for a narrOW inte rval of the rotation angle. Thc collimator consists of of 

a parallel arrangement of neutron absol'bing sheets (cadmium, gadolinium, boron). 'rhe 

gaps are filled with a material wh ich is t.ransparent for neut.rons (aluminum). Such a 

chopper is sketched in fig. 10.1 , this type of chopper is called "Fermi chopper". 'rhe 

divergence .6.0' is determined by the distancc between ncigbouring sheets D and their 

lengtll I in beam direction, ßCfFII'HM = arctan(D/I) (typical values are 1'· · ·2'). 'fhe 

duration of the opening D.T is given by thc rotation frequ enc)' n 

.6. . .6.aFII' H M 
TFII'HM = 21Tn (10.12) 

Note tImt the neutron pulse frequency for a chopper with straight collimator slits is 20, 

because the collimator axis is twice per revolution parallel to the beam axis. Since thc 

neutrons have a finite velocity, the chopping collimator must not be too long, bccause oth­

erwise the transmission dircction drops too much evcn before the neutrons that entered, 

when the collimator orientation corresponded to transmission, have emcrged from the 

collimator. It is also possible to use a "collimator" with curved slits, which accounts for 

the above mentioned effect, however such a curved-slit-chopper exhibits a wavelength de­

pendent transmission charaderistic. Sometimes this is a desired charactcristic to suppress 

unwanted orders of monochromator Bragg reflections. 

10.2.5 Disc choppers 

Besides the Fermi choppers also so called \\disc choppers" are uscd. Figure 10.7 shows a 

front view with respect to thc beam direction of such a chopper disco 

The disc is covered by a neutron absorbing layer (dark grcy) and contains - for counter­

balancing two- window zones, A anel B. The beam cross section is indicated as striped area 

in A. Thc typical diameter of such discs is 0.5···101 . From the figure it is immediateI)' 

visible that the ratio pulse width to pulse-pulse distance for a cop per of this type is rat her 
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Figure 10.7: Disc chopper. 

10% than 1%. A reduction of thc windo\\' size wDuld not help to improve this ratio, 

s illce thal wDuld also impose a reducecl beam width on the system which wDuld reduce 

the availablc intensity to an unacceptable level. '1'0 achicvc nevertheless a reasonable 

temporal resolution with thc required pulse-pulse distance (to avoid "frame overlap" ), 

it is necessary to combine several disc choppers where slo\\' choppers select only olle of 

several openings of raster ones (rotating with a in teger multiple Il of the pulse repetion 

frequenc)' !}), The resulting pulse has -according to thc 11igher rotation frequency 1ln- a 

length whieh is shorter bya factor 1/11. Also counter rotating discs are employed. The 

multiple disc chopper technique requires exact electronic control of the relative rotation 

phases of the choppers. 
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10.2.6 Crystal monochromators 

Thc monochromator indicatcd in fig. 10.2 has the function lo select neutrons from a 

narro\\' band of vclocitics (approx. 1%) out of the 1\'laxwellian spectrum of thc incoming 

primary beam. It may be reali7.ed by different means. First the crystal monochromator 

is described. It uses the matter wave properties of the neutrons to select neutrons of a 

defined wavelength (i.e. velocity) by interference in a crystal lattice (Bragg reflection). 

Neutrons with a wavelength of 

A = 2d sin(0M /2) 
n 

(10.13) 

are l'cflected in direction of the sampie; here d is t.he distance of lattice planes of the 

monochromator crystal (often pyrolyt.ic graphite 002, d = 0.6708nl11), 11 the diffraction 

order and GM the angle of reftcdion. I.c. a simple crystal monochromator rotates the 

beam direction by GM; if the wavelength sholild be changed the bulky rest. of t.hc spec­

trometer must. be rotated around the location of the monochromator crystaJ. See figure 

10.9 in the following sedion. 7 In addition Eqn. 10.13 implies that generally several 

diffraction orders are reflected. To suppress the unwanted orders mainly three methods 

are uscd: 

1. Filter: if the desired wavclength ,\ is long enough it is possible to use a block of 

polycrystalline material (mostly beryllium) which has negligible neutron absorption. 

The shorter wavelength neutrons are Bragg reftected by some crystallites in the 

block and removcd from the beam diredion while the long wavelength neutrons 

with ,\ > 2dmru are transmitted with Iow losses. 

2. CUl'ved sIit choppers: by curving the slits of a Fermi chopper it is possible to 

achieve that thc chopper is only transparent for a certain band of neutron velocities. 

This band may be selected such that only the selected diffraction order is included. 

3. Second (coal'se) chopper: by a second (coarse) chopper at some distance from 

the main chopper it is possible to select the desired diffraction order via the TOr 

7This may be avoided by the use oftwo crystals in a parallel arrangement. The second crystal performs 

a reftection that restares thc original beam direction and rotation and translation of the crystals in such 

a "double monochromator" are performed such t.hat the direction and position of tbe monochromatizeu 

beam stays the sallle for all wavelengths. However this advantage is connected wit.h an intensity lass. 

I\Iore abatli, crystal monochromators may be found in the chapter "Crystal spect.rometers" . 
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betwecn tbc two choppers. See also sedion TOF-TOF. 

10.2.7 TiInc focussing 

1t seems ullsatisfactory that by a TOF spcdrometcr at a continuous source (reactor) only 

a small fradion (1%) of the continuous primarj' bearn is ll tilized. On the other hand the 

TOF-analysis correlates the energy resolution with the length of the neutron pulses 6r. 

However there is trick to partly compensate for this correlation and to achieve a rnulti­

plicatioll of the intensity without resolution loss (at the elastic line) , see fig . 10.8. The 

chopper opclling may last langer if there is a correlation betwccn time and wavelength 

(velocity) of the neutrons du ring the opelling interval such that aU neutrons arrive at the 

same timc at thc dctector -as indicated in fig. 10.8. By this means the elastic line remains 

I 
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Figure 10.8: Path-time diagl'am , time focussing. 

narrow but thc foclIssing effect depellds on energy transfer alld becomes ineffective for 
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larger cncrgy transfers. Howcvcr it is possible to move the focusing point to some inelastic 

energy transfer by chosing a different chopper frequency. Figure 10.9 shows a lechnical 

realization of the time focussing principle. 

Detektoren 

F igure 10.9: TOF-spectrometer with time-focussing. 

Instcad of only Olle monochromator crystal several crystals one after the other form the 

monochromator, each crystal reflects a slight ly different wavelength Al > A2'" > As. such 

that the stowest neutrons (Ad are transmittecl first when the chopper channel approaches 

transmission during a revolution; thereafter the gradually faster neutrons (A2' .. As) follow 

subsequently. For a set of matched distances between crystals and bctwcen monochroma­

tor alld chopper and frequenc)' n of thc chopper a path-timc behaviour as illustrated in 

fig. 10.8 may be ach ieved. By thc use of 5 instead of one crystal about 5 times as much 

neutrons hit the sampie. 
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10,2,8 TOF-TOF: TOF-monochl'omatol' 

lnstead of a crystal monochromator (see above) the incoming wavelength (velocity) may be 

equally weil selecled by the time-of-flight between two choppers (see fig, 10,10), therefore 

the abbreviation TOF( monochromator)-TOF( analyzer), 

I 1 I 1 I 

I ' 1'Nt> i I ~ i~etektor(en) 
11 Ii I 

,, '/1 i ;1 

'/1 /! I/ I 
2' , / I : / 1 "/ I 
5 '/ I ' / I ' / I 
~: 1 ;/' !! ./ 1 LL I 1 , I 

I I 1 
1 I 1 
, , , , : Chopper 2 
[" 1 

L I 
Chopper 

Zeit 

Figure 10.10: Path-time diagram for an instrument with TOF-monochromator. 

A technical realization of this principle is e,g. thc IN5 spectrometcr at thc ILL in Grenoble. 

It is equipped with a system of disc choppers. Besides thc Aexibility to choose waveJength 

s imply by changing the chopper phasing a better defined resolution function , duc to 

convolutioll of several real tri angular windo\\' opcning functions, is advantagcous. In any 

ease this method of monochromatization automat ically yields a pulsed beam hitting on 

the sam pIe. 
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10.3 Invel'ted TOF-spectrOlneter 

In the spectrometer types described abovc the sam pIe was "illuminatcd'1 by pulses of neu­

trons with a single defined wavelengt.h (velocity) whieh have been prepared by a chopper­

monochromator combination. The analysis of thc vclocities of thc scattered neutrons was 

effected by TOF-mcasurement. 

It is also possible to inve rt this sequence, thc incoming velocity (Le. wavelength, energy, 

k) is delermined by the TOF bctween chopper (pulsed saurce) and sampIe. Then - to 

obta in a defined cnerg)' alld momentum transfer- only scatterecl neutrons of a given final 

wavelength lhat may pass an analyzer are detected. 
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.. / / / ! : I ,.; / I' I I 1 I, 1 / 1 I; ! 1 

I 1 I/ I I l' I I ~ I I f I I i I 111 I I I I I I 1I M/F 
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Figure 10.11: Path-t ime diagram of a TOF spectromeler with inverted geometry. 

The correspond ing path-time diagram is displayed in figure 10.11. Neutrons emerging 

the pulsed source fty according to thcir individual vclocity in direction of the sam pIe, 
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the associated paths are indicated by the grey triangle. The ill tcnsity within the range 

of this tl'iangle is of course not uniform hut depends Oll the spectral properties of the 

source. 8 Neutrons that have been elastically scattcl'cd by the sam pie (path 2) pass the 

analyzer /filter lvI/I" anel lead to the elastic line in the TO F-histogram. Neutrons that loose 

enel'gy (path 1) are faster before the sampie scattering amI arrive earlier at the detector 

than the elastically scattered olles. Analogously path 3 represents neutrons that gained 

energy during scattering. Compal'ed to a unormal" TOF instrument the energ)' gain and 

energ)' loss sides of the histogram are reversed. Therefore also high energ)' cxcitaliolls 

that are thcrmally not occupied may be measured. 

(Spallationstarget) 

~ ,~ 

• •••••• •• !co , •• 
AO • 

Probe 

[I fI IlIHl fBl UJ D 
),>A» ,>A>A 0 
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Figure 10.12: Setup of a TOF spectrometer with inverted geometry. 

Figure 10.12 shows a corresponding setup . The pulse at the chopper contains neutrons 

from a broad velocity distribution (IVIaxwellian spectrum at moderator temperature) . 

During the path from chopper (pulsed samce) ta sampIe this pulse separates into differ­

ent wavelengths A, resp. different incident energies, that arr ive at different times at the 

sampie. Since a wavelength selection (to AO) is performed between sampie and detectors, 

all detected neutrons have the same velocity and the distance sample-detector adds a 

8 In particular ove rl ap of the t.riangles ("frame overlapn) may happen, wh ich may be suppressed by 

filters taylor ing the incoming spectrum. 
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consLant offset to the TOF. 1'0 be able to corred the TOF-histograms with respect to 

the spectral distribution of the incoming pulse, it is important to detected the incoming 

neutron Aux by a monitor (Mo) located elose to the sam pie position accumulated in a 

separate TOF-histogram. Th is type of TOF-spectrometel' is preferentially nsed at pulsed 

sourees, ideally it may be possible to omit the first chopper by taking the pulse as gen­

erated by the pulsed source (spallation target). 9 All neutrons from the pulse (flying 

into the right direction) are utilized. This method has a few specific advantages and 

disadvantages, advantages are: 

1. The pulse contains neutrons with high incident enefgy that may perform energy 

loss scattering, the resolution at high energy loss is relatively good, especially if the 

pulsed sonrce supplies very short pulses at high neutron energies. 

2. If the analyzers are used in near backscattering configuratioll high resolutions (com­

parable Lo those on true backscattering spectrometel's) see chapter 9) can be at­

ta ined. 

The utilization of the ruH spectrum has however also disadvantages: 

1. Thc full tl white" pulse enters thc shielded sam pIe detector space. Any parasitic 

scattering and any imperfection of the analyzing filters 01' failure to absorb neutrons 

of Uunuscd" final wavelength or direction leads to increased hackground. In addition 

thc background depends on the sam pie which makes correcting subtractions difficult . 

2. SampIes are hit by a highcr integral flux and therfore becomc more radioactive. 

In general also "narmal" TOF inst ruments perform bettel' on a pulsed source .in com­

parison with a reactor (ir the average fluxes are equal) sincc by synchranizing saurce alld 

chopper only a small part of thc generated neutrons (with the desil'cd wavclcngth) are not 

used. Thc distancc somce-chopper may scrvc at the same time as TOF-monochromatol'. 

In total the efficiency is comparable with the inverted type because in both cases on 

one side of the sam pie the spectrum is restricteel by filters/monochromators anel on thc 

other side the fnll spedrum is utilized and sOI·ted according to the TOF. Energy transfer 

analysis willlOut filter on any side is impossible. 

91'0 suppress background or to pre"ent "[rame o\'erlap" it. may be ne\'ertheless ad\' isable to use an 

additional chopper. 
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10.3.1 Analysis by filters 

The analyze .. that is indicated by the grel' segment labelIed M/F in fig. 10.12 mal' either 

consist of an array of crystals reßecting scattcrcd neutrons of thc selected wavelength 

.\0 onto the associated detectors or of a filter. Especially in thc early days of neutron 

scat.tering filters made [rom polycrystalline blocks of Be , BeO cLc. were used. These 

filters are transparent on I)' for neutrons with encrgies below thc "Bragg-edge", i.c. for 

wavclengths la rger than twice thc larges! lattice spaci ng. All faster neutrons will be 

rcAected by seme crystallite in thc block. By integl'ated absOl'bing plates thc UlUS reflected 

neutrons are removcd. For thc filter to be sufficiently transparent helow the Bragg­

edge thc used material may on I)' have a very low absorption cross sedion, In addition 

the thermal diffuse scattering by fluctuating lattice dcformations (phonons) has to be 

suppressed by cooli llg (liquid nitrogen) . Delow the Bragg-edge these filters lransmit all 

neutrons from nearly zero energy to the edge energy of a few meV. For the spectroscopy 

of high encrgy excitat ion this is accceplabic since lhe energy transfer is then determined 

by the incident energy of a fcw 100 meV. High resolution quasielaslic scat tering has t.o 

be done with other inst ruments. By employing the diITerence bctween data obtained with 

two diITcrent filters (c.g. Be and BeO) the eITect ive window of final energies may be 

narrowcd, however two measurements are necded and the final signal is obtained from a 

sma ll difference of two largcr counting signals with the corresponding statistical errol'S, 

10.4 Resolution and intensity 

One important quality of a spectrometer is its resolution in (~,w)-space. For TOF­

spectrometers - unlike for triple-axis instruments- for many applications mainly /only the 

energy resolution is important since the scattering intensity has to be collected amI accu­

mulated in a large solid angle anyway to yield a sufficient number of counts , The energy 

resolution is determined by the accuracy of the TOF-measurement and by the width of 

the incom ing (or analyzed) wavelength band. The latter is given by the beam divergence 

in combination with the mosaic width of the crystals (see also chapter on triple-axis spcc­

trometres). Thc TOF-uncertainty is given by the chopper pulse length and the accuracy 

of the flight path. The flight path cannot bc defined with arbitrary accuracy, since finite 
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sampie size of cm anel a eletect ion position uncertainty of some mm in the eletectors IO
, Ir 

aB timing uncertainties are lumped into 6t ) a classical TOF instruments has the following 

resolution: 

6w = (10,14) 

From Eqns, 10,2 - 10,5 folIows: 

6w (10,15) 

Because N cx: IJ-v' cx t anel elose to the elastic line P' ~ ,\) it follows that 6w cx 1/)...3, i,e, 

the most efficient measure to incrcase thc "elastic" resolution is thc use of a long neutron 

wavclength/ For a matcheel setup the relative timing uncertainty 6t/to anel the relative 

wavelength wielth ß,\/)... shou ld be about equaL Eqn.10.15 shows in addition that the 

timing uncertainty term 0:: 6l. dominates the resolut ion width for short time t , i.e. large 

energy gain of the neutron. If path uncertainties 6L are treated separately, 6l represents 

only the chopper opelling anel Eqn . 10.15 reads: 

6w (10,16) 

For the inverted spectrometer the expressions st.ay the same except for the exchange of ,\ 

anel N, 

10.4.1 Intensity 

The available neutron sources are rather weak compared to sources of electromagnetic 

radiation (laser, synchrotron), the)' emit neutrons in form of a thermalizeel gas with a 

broad dist.r ibution of velocities and into all directions. Preparation of collimat.ed allel 

monochromatic beams is only possible by seledion, i.e. removing all unwanteel neutrons. 

Thc reslIiling beams -even at high fiux reactors- contain on I)' relatively few neutrons. 11 

For this reason the available neutrons have to be ut ilized as efficient as possible, Even 

IOPor sampie in form of thin plates t.he pat.h ullcertaint.y due to scattcring position in tbc sampie may 

be reduced for (only) one scatterillg angle (region) to t.he plate thickncss. 
IIThe typical neutron flux in front of (he chopper of a classical TOF instrument is in the order of 

l07 n/ cm 2s , after chopping only 105n/ cm 2s hit the sam pie and are available far scattering. In comparison 

a bcam of a smaJll m'V HeNe Jaser is strictly collimated and monochromatic and represents an integral 

"\lX of 3 x 10 15PllOtonen/s with a cross sedion ofmaybe 1111111 2 , i.e. 3 x 1017photons/cm 2s. 
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if an increase in resolution may be achieved by stricter wavevector !s.. selection (velocity, 

direction) and by reduction of the chopper pulse length, it is often not advisable to 

enhance all elements of the resolution up to the technologicallimits because th is goes along 

with a. drastie loss of intensity (detector count rate). Design of (neutron)-spectrometers 

mcans the search for thc best compromise between resolution and intensity. Tbe optimum 

depends on the nature of thc problem, i.e. the features and structures expected in 5(Q, w). 

TOF spectrometers as described in this chapter are preferentially used to investigate 

isotropie to weakly anisotropie sampies with only weak structures in S( Q) . This enables 

the utilization of a large solid angle for detection which compensates for the lasses caused 

by energy analysis. In the schematies of the spectrometers this is already indicated by 

thc large number of detectors. Modern TOF instruments contain more than 1000 single 

count.ing tubes covering a detect.ing area of 30 x lcm2 each . The total area covel'd by 

1000 detectors is about 3m2 , for a Hight path of 3 m this corresponds to a solid angle 

of 0.333 01' 1000 degrees squared. Thercby an intcsity g.ain of a factor 500 is obtained 

eompared to a tripie axis spcctrometer wit.h a detecting area of 2 degrees squared, the 

lass caused by the fact that thc chopper opens only for about 1 % of the time is more 

than compensated. In addition thc TOF instrument has a multiple advantage: all energy 

transfers are dctccted simultaneously and not sequentially as in the case of a triple-axis 

spectrometer. However it is seldom usefnl to sum the data of ALL detectors into Olle 

spectrum but different scattering angle regions have to be evaluated separately. Still 

tbey are measured all at the same time! Generally the TOF instrument is more effieient 

than a triple-axis spectrometer for isotropie sampies. As soon as single crystals or very 

anisotropie sampies with a strong dependence of the spectra on 9.. are to be investigatcd 

the conventional triple-axis spectrometers are better suited. 
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11. Neutron spin-echo spectrometer, NSE 

Michael Monkenbusch , Reiner Zorn 

11.1 Introduction 

The attempt ta increase the resolution of timc-of-flighL (TOF) instruments described in 

chapter 11 [ar beyond the ~ 1 % of the prescnt realizations would lead to an unacceptable 

lass of intensity (as expressed in tenns of deteclor count rate). E.g. a factar 0.1 which had 

to be applied as weIl to the monochromatizatioll as to the pulse length (chopper opening 

time) would on the one hand increase the resolution accordingly by a factar of abollt 10 

hut at the same time the intensity is reduced by O.lmonoch. x O.lchopper = 10- 2
• Still other 

necessary measures to preserve the increased resolution as the reduction of sam pIe sizc 

(definition of flight path) are not contained in this reduction factor. Thc same situation is 

also given if monochromator ami analyzer consist of crysta ls. In general an improvement 

of t.he spectral resolut ion rcquires the narrowing of the filter t.ransimssion functions before 

and after thc sampie scattering by the desired improvement factor. However this means 

an intensity reduction by the square of the resolution improvement factor. This situa­

tion would immediately improve, if it would be possiblc to equip each neutron with an 

individual stop watch which could bc read in a way that the run time difference betwecll 

test tracks before and after the sampIe is obtained at dctection . If this stop watch has 

a sufficient time resolution it would be possible to observe ver)' small velocity changes 

even if a beam with a wide range of initial neutron velocit ies is used. This would allow 

to escape the intensity trap. 

In the neut ron spin echo (NSE) spectrometer- with some restrict.ions (with important 

consequences for the application)- it is indecd possible to use the neutron spin diredions 

as kind of individual stop watch pointers. The clockwork of this watch is then effected 

by the preccssion of the neutron spins in an external magnetic fieleP. The restrictions 

In is somewhat involved to ext ract this analogy starting from a quantum mcchanical view with spin 

cigenstates alld eigenvalues. Implicitly we are talking abouL the behaviour of the ensemble average of thc 

spin "edars wh ich obeys the "c\assical" Bloch equat.ion concern ing it s precession in the magnetic field. 

As lang as the kinet.ic energy ofthe neutrons is much bigger titan t he magnetic level splitting the classical 
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affecting application are causeel by the fact that the "spin-stop watch" can on I)' bc rcael 

up to an unknown integer nu mb er of eomplete preeession turns. The reading is performed 

by the eosine type transmission function of an anal)'zer and yields only ensemble averages 

anel not individual rotation angles. The intensit)' at the detector js modulated aceOI·dingly. 

In addition inelastic scattering eloes not producc onl)' one defined velocit)' change hut Lw 

is dist.ributed according to S(Q,w ~ k~v). The deteclor signal is then proportional to 

the integral of intensi ty contributions modulaled by the eosine of the prccession angle and 

weighted according to the ßv of S(Q,w), Therefore, the signal of the NSE spectrometer­

as explained in this chapter-is completely different from the TOr histograms of classical 

TOF-spectrometcrs (chapter 11 ). Instead it is proportional to the eosine Fourier transform 

of S(Q,w), i.e. the in termediate scattering function S(Q, t). A detailed derivation alld 

d iscussion is given below. But first of all thc acltlal setup of an NSE spectrometer is 

prcsented, 

11.2 Setup anel F\mction 

Figure 11.1 shows the schematic setup of aNSE spectrometer (upper part) together witlt 

t he propagation of the neutron spin in the instrument (lower part), 

Longitudinally polarized neutrons2 (i.e. spin expectation value parallel to the beam di­

rection) enter thc spectrometer from the left. In the first so-ca lied rr/2-flipper the spin 

is rotated such that on exit it is orthogonal to the longitudinal magnetic field of the 

precession path . That defines the start of the "spin stop watch", immediately after the 

nipper a precession of thc spins around the axia l magllctic fi eld begins. The precession 

frequency increases during thc approach to the cent re of the main precession solenoid 

where it reaches its maximum of up to a few ~/lHz. The accumulation of precession angle 

pict.ure is completcly su ffi cienL. It. is much easier to understand the NSE spec trometer in this way than 

a quantum mechanica l treatment. 
2The polari zed neutron beam is obtained by rcflect.ion by a magnetic mul tilayer mirror. The layer 

s t ack consists of alternatillg nonmagnet.ic (e.g. Fe, Si or Ti) and magnet.ic (Fe or Co) layers. The cffectivc 

index of refractiol1 of the magnetic layers depends on the relative orientation of magnetization and spins 

of the neutrons such that there is a modulation of index of refraction fot neut.rons in one spin state ouly. 

Those neutrons are reflected, the othets are transmitted. For layer distances of 5 10 nm refl ec tioll 

augles of a few deg rees result for wavelengths around 10 A. 80th the reflected and the t.ransmitted beam 

are polari zed (with opposi te spin direcliolls). 
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Figure 11.1: Spin rotations and setup of a generie NSE-spectrometer. Upper part: Spin 

rotatioll) middle part: magnitude of thc magnetic field) lower part: schematic set np of 

tbc Jiilich NSE-spectrometer. 

contillues~with decreasing frequcIlcy-until the neutrons reach thc Ir-flipper elose to thc 

sam pie (S) . Thc total precession angle at that point is: 

\]I = I/IEldl '" 0: 
V I 

(11.1) 

where'Y = 211" X 2913.06598 X 104 5- 1 JTesla is thc gyromagnctic ratio of thc neutrons and 

IBI is thc modulus of thc magnetic induction along the path 1. 

Thc "stap watch 1
' does not proceed uniformly but with a position dcpendend frequency 

that is proportional ta the local magnetic field alollg thc neutron path, see figure 11.1. 

This mayaiso be considered as a field dependend distanee st.reehing, which releases e.g. 

the mecllanical positioning aeeuraey requirement.s for the flippers sinee they are loeated 

in low field regions. The total llumber of preeessions a neutron spin undergoes Oll passage 

through one arm of the spectrometel' lies between 10 anel some 104 . 

elose to the sampIe (ideally: at the sam pie position) the so-ealled 1T-flipper is loeated) it 

rotates the spins by 1800 around a vertieal axis. In this way the total preeession angle is 

tl'ansformed to Wl = +0- ~ -0-. The preeession angle Q' is-aeeording to equation 11.1-

extremely dependent on veloeity and therefore very different fol' different neutrons in 

a beam with finite width of the wavelength distribution. As a eonsequenee the spin 
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Figure 11.2: Field along the axis of a main precession coil. 

vectors at thc sam pIe position (1T-ftipper) are evenly distributed on a disc orthogonal to 

thc field direction. If no velocity change occurs during scattering at thc sampie (elastic 

scattering) each neutron enters thc secondary arm of thc spectrometer with unchanged 

veloci ty. Thc precession field anel path length of thc secondary arm exactly match thc 

correspondillg elements cf thc primary arm before sam pie anel 7J'-flipper. Accordingly, the 

precession accumulated in thc secondary arm is W2 = +n and thc total precession angle 

at thc second 7r/2-ftipper is WJ + W2 = -Q' + a = O. l.e. all spins-irrespective of their 

initial velocity-reassemble at the same vertical position they had at the start point. The 

rotation imposed by the second 'iT/2-flipper converts this back to the initial longitudinal 

polarization that. is fuIly restored. The flippers limit the the two race tracks and realize 

('stare', "time reversa ]1' and "stop" of the ('spin stop watches". The second 7T" /2-flipper is 

the last element used to manipulate the spins. It converts the average precession angle to 

a longitudinal polarization component. Since the ficlel after thc second 1r /2-flipper is again 
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longitudinal, fur ther precessions do not influence the analyzed longitudinal polarizat ion 

component (the stop watch is stopped!). The analyzer accepts neut rons of one longitudinal 

spin state for the detector. After ensemble averaging this means that the count rate at 

the detector is proportional to (l ± cos(iIi))/2 3, where i!i is the expectation value or the 

angle between spin and axial direction. 

11.2.1 Flippe rs 

Ignoring technical details the main elements needed to perform the spi n operations nec­

essary for aNSE spectrometer are: 

• rr/2-flipper (sta rt) 

• first precessiolls field 

• 7r-flipper C'time reversal") 

• second precessions fleld 

• rr /2-ßippcr 

\J\'hile in the precession fields the spin vector (its expectation value) continuously rotales 

around thc field vector on a cone with constant angle (angle field-spi n, ideal value = 

90°) even if the field whieh the neutron experiences during its fli ght perfOI'ms (sufficiently 

slow, Le. adiabatic) direction changes\ the flippers rely on a sudden change in the field 

d irection that gives rise to a new drastica lly changed cone angle. In figure 11.3 a ir/2-

flipp er is shown together with the field vedors that have to be generated for an adequatc 

function of the flipper. 

JThe sign in front. of the eosine depends on the teehn ica l realization of polarizcr and anall'zcr (both 

rcfl eding, transmitting, olle reflecting one transmitting) and on the orientation of flippers. It mal' be 

selceted bl' ehoosing the signs of the "ipper currents. 
4The eone of precession follows the direction of t he preccssion field quite aecurately if the effedi\'e 

frequency of the fie ld rotat·ion is much sm aller than the loea l precession frequcncl'. Such a change in field 

is called adiabatic. In particu lar this mcans that faster dire<:tiOll ehanges arc thc more adiabatic thc largcr 

the field iso For aNSE spectromcter care must be lakcn that cxccpt at the entrl' and exit of flippers the 

eonditions are adi abatic. Thc magnctic field of the speetromeler is of course statie, howc"er the neutron 

spins exper ience a time "arl'ing field due to the passage of the ncutron through the spectrometer. 
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Figure 11.3: Schematics alld function of a 1T /2-flipper. 

Thc rectangular flipper exposes its large sides ta the beam. The box consists of electrically 

conducting anel neutron transparen material (aluminum wire) which carries a current I, as 

indicated by the broad arrows. All side walls realize a thin homogeneous current density 

distribution (current sheets) that leads to a homogeneous field B7f / 2 in the inside of the 

flipper. For a sufficient lengtll of the flipper the stray field emerging from the ellds of 

thc flipper coil is negligibly small in thc beam area in front of the flipper. Ta obtain 

thc desired operation thc 7r /2-flipper has ta be embedded in an external longitudinal 

field Thc resulting field in thc interior of the flipper Bin' has an angle of 45° to the 

longitudinal axis. The magnitude of the field must be set such that the neutrons perform 

a precession of exactly 1800 during the time they nced to trans verse the flipper. In this 

way Cl longitudinal spin vector is rotated into an orienta tion perpendicular to the axial 

field. Then the prccession cone has thc maximum angle of 90°! i.e. it is a disc (dial of the 

"stop watch"). For a typical flipper thickness of 1 cm thc interiOl' field is in the order of 
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0.1 mTesla = 10 Gauss (1'br eomparison the earth's magnetie field is ~ 0.5 Gauss). Sinee a 

fixed preeession angle around Binl=eonst must be aeeumulated during the passage time of 

the neutron through the flipper , the flipper function is moderately wavelength dependent. 

For the ease of setnp and stability of operation of the spectrometer it is advantageous 

that thc flippers are embedded in a eomparatively small external field « 10- 3 of the 

maximum preeession field). I.e. elose to thc flippers the "spin dock" runs slowly anel 

sm all path differenees due to positioning inaeeuraey and thermal expansion only lead to 

very small errors in prcccssion angle. 

The teehnical realization of the ir-flipper is identical to the Olle of the 11' J2-flipper, however 

its fUlletion- as indicatcd by its namc- is different. 1t perfOrIllS a 1800 rotation around 

an axis perpendieular to the beam axis (e.g. a vcrtieal axis) whieh is virtually parallel to 

the axis of thc flipper coi l. To do so the internal fidel has the same magnitude as in the 

11' J2-flipper howevcr thc embedding field is elose to zero and therefore the internal field 

vector is virtually vertical5. 

11.3 The detector signal 

As mentioned above the detector signal results from the transm ission function of the ana­

lyzer shaped as the eosine of thc net precession angle in eombination with the distribution 

of net preeession angles due to the distribution of vclocity changes eInring seattering. The 

velo city distribution is proportional to the spectral part of S(Q,w). In the following this 

is derived in terms of mathematieal expressions. First the field integrals along the primary 

SUnfortunately it is not possiblc 10 embed the 1l'-flipper in a zero field environment., as everywhere in 

t.he beam volume this would lead to a violation of t.he adiabatic condition. While the beam enters such a 

zero field region if would suffer ullcontrollcd inhomogeneous tilts and rotations of the precession.cone that 

would effedively lead to a depolarization. Smallest extern al stray fields would exert a big influence Oll 

thc signal. A defined Spill operation would not be possible. For that reason a minimal field in the range 

of a few (1 ... 2 Gauss) is mandatory not to loose the defined polarization. Without further action the 

1!"·flipper funct.ion is deteriorated by this finite external field. But by a slight tilt of thc flipper or by a tiny 

ext.ra component. of the ex ternal field in dircct.ion of the flipper axis thc ideal function mal' bc reslored. 

Thc condition 10 be fulfiJled is that the result.ing internal field is orthogonal to thc embedding field whieh 

may bc slightly tilted from its horizontal oricntatioll by the added sIllall extra ficld component. 
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and secondary paths of prccession are defined: 

1(11') 

J1 = J IBldl 
1((1I'/2)d 

'((1I/2hl 

J, = J IBldl 
'(11) 

(11.2) 

(11.3) 

for asymmetrie setup J1 = )2; l(rr, (rr /2h,2) denotes thc positions of the corresponding 

nippers. 'rhe precession angle accumulated on a path i is 

"' . _ "(J; 
'"" - u 

(11.4 ) 

where v is thc neutron velocity (typically several 100 m/s). Bccause the rr-ftipper inverts 

thc sign of \lI 11 a total precession angle of 

"(J1 "(J, 
'11 1 , = -- + , v v+n" (11.5 ) 

results , where .nu is the velocity change of the neutron duc to inelastic scattering. The 

transmission function of an (assumedly ideal) analyzer is 

1 [ ( "(J1 
Ta = 2" 1 +C05 --v- (11.6) 

From that the detector intensity 

, J! 1 [ ( "(J1 
I = I/S(Q) 2 1 ±cos -~ (11.7) 

results , whcrc '1 i5 an irrelevant. calibration fador and tu...., resp. w" are normalized dis­

tribution functions. tu...., reprcscnts the spectrum of thc sam pie as found in the scattering 

function and w" takes account for the fact that the NSE spectrometers usually are 01'­

erated with a broad incoming wavelength distribution (.n).F\\' f1M/>' = 10 .. . 20%). Ob­

serving t he linear depcndences of k, ). anel v anel series expansion of the squares in the 

expression for the double differential cross sectiOil 10.2 anel insertion into equation 11.7 

leads to: 

(11.8) 
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11.3.1 Symllletric Case 

At the point of symmetry J 1 ::::: J2 = J it is possible to coJlect the )'~dependend terms in 

equation 11 .8 and to write them as series expansion for small w: 

1 
- 0+ A (11.9) 

Ta see thc salient features of the spectrometer signal more c1early the finite wavclength 

distribution is temporarily ignored 

J = W)S(Q,w)dw] 

= ~ (S(Q) + S(Q, t)) (11.10) 

The underbraeed product has the unit Ht. ime", the integral in equation 11.10 represcnts 

the eosine Fourier transform of 8(Q,w) with respect to w, the result ing function is callcd 

int,er'me.diate. scatlering jUllction, 8( Q, t) 6 From equation 11.10 it is fu rther reckognizable 

that t.llC time parameter t ::::: IJm~,,\3 j(h22n) depends on the third power ofthe wavclength 

). (Le. lang wavelength ~ very long Fourier times). In addition t 0:: J, Lc. mainly 

proportional Lo the eurrent throught the main preeession solenoids. This eurrent ltsually 

is the parameter used to stepwisc sean thc Fourier time chtring an experiment to get a 

table of S(Q, t) vs. t. 

11.3.2 Elastic Scatte ring of a Finite Width Wavelength Distribution 

For a transmitted beam 01' elas tieally sealtered neutrons from a referenee sample w = 0 

holds, i.e S(Q,w) = o(w). With that equat ion 11.8 becomes 

(IJ.lI) 

For this case the intellsity is proportional 10 thc Fourier transform of the wavelength 

distribution. Here, 1he undcrbraeed part is the extcrnal contral parameter. It contains 

the differenee between the fi eld integrals along the prima I")' and seeondary paths J2 - J t . 

This differenee ean be casily controlled by sending a eurrent through an auxiliary coil 

6Strietly this is onl)' true for a S(Q,w) that is symmet. rie with respeet to w, i.c. in the c1assical 

approximation. For an)' praetical problems however this is weil rulfilled since the minute energy transrcrs 

corresponding to t hc NSE time scale are very small compared to knT. 
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of a few windings around one of the precession solenoids. For a Gaussian wavelength 

distribution the envelope of the Fourier transform is again a Gaussian whose width is 

inversely proportional to thc wi(lth of thc wavelength dist.ribut.ion. Since tu,\ is centered 

at a finite nominal wavelength '\0 the envelope is multiplied by a eosine with aperiod 

cx 1/),,0. This function follows immediately from equation 11.11 if w,\ = 0(A) is assumed. 

Figure 11.4 displays the results of an extensive measurement using the attenuated direct 

beam with a central wavelength of ),,0 = 0.7nm and ß.'\nl'HM/'\O = 0.1 compared to a 

calculation (fit) assuming a Gaussian wavelength dish·ibution. 
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Figure 11.4: Echo shape: count rate as function of the magnetic symmetry (0:: phase coil 

current). 

At the echo point (i.e. a phase coil current elose to 1.5 A creating perfect symmetry) the 

count rate has aminimum. Ideally the count rate should be zero there, but becausc all 

elements that contribute to the poiarizatioll manipulation and analysis are imperfect a 

residual intensity is left that has to be determined by calibration measurements. From the 
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the functional dependence of the intensity Oll thc phase current it is possible to determine 

the wavelength distribution. 

11.4 Experimental Procedul'cs and Evaluation 

In principle t he information on S(Q, t ) according to equation 11.10 is contained in the ratio 

of the intcnsitics at the symmctry point and the average intensity (.,.,/2) S(Q). Howevel' 

thcrc are practical reasons that prevent the rcl iable setting of the symmetry point alotie. 

The loeation of thc symmetry point (i.e. phase zero current in the phase coil) is extremely 

sensitive to t iny variations of the magnetie environment caused e.g. by displaeement of 

la rger iron parts at neighbouring instruments, movemcnt of the crane of the instrument 

hall and thermal displacements of coi ls. Thereforc, thc posit ion of the symmetry point has 

to be mcasurcd as weil as the intcnsity for each Q, t setting. In figure 11.5 the minimum 

of single eountings is indicated, in tensity J11l1st be determined for three points P l ••• P3 

separated by a symmetry change eorresponding to a quarter precession each. From these 

three values it is possible to extract the average in tensity 1(Q, 0), the echo ampli tude 

1(Q, t) and thc exacl symmetry point IDeation. T his also holds if any perturba tion shifts 

the loeation as indicatcd by t he three hollow circles in the figure. 

For an ideal spectrometer I(Q ,t)jI (Q,O) = S(Q,t.)jS'(Q) would be the desired value of 

the normalized in tcrmediate seattering function . In reali ty resolution effects and pola1'­

izat ion losses reduce the value of I(Q, t)j I(Q, 0) compared to S(Q, t)jS(Q). 

Figl1l'e 11.6 shows data from ad ual ex periments that are uscd to determine the echo 

amplitude ancl average intensity. Here the shape of the echo signal (intensity vs. symmetry 

cUl' rent) is sampled fol' a eonsiderably larger number than the minimum of three points. 

Thc parameters amplitude, average and phase zero Cllrrent are determ ined by a nonlinear 

fit. Behind the oscillat ing echo form there arc t\\'o further groups of point.s showing the 

min imum and maximum of intensity wh ich indicates the efficiency of t he polarization 

analysis. These intensities are measured by deactivating the 11" /2-ßippers (minimum) and 

then additional deactivation of the 11"-ftipp er (maximum). An ideal spectrometer would 

have zero transmission in the one ease alld 100% transmission of neutrons in the other 

ease. The non-ideal behavioul' is eaused by depolarization effeds at the technical elements 

or t he spectrometcr, the wavelength depcndence of the fl ipper operat ions and the finite 
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Figure 11.5: Schematic echo form , idealized. 

effidenc)' of polarizers and analyzers. Also for an ideal spectrometcr being free [rom thc 

abovc effects a finite minimum and less than 100% maximum intensity will result for spin­

incoherent scattering which is always accompanied by spin flips for 2/3 of thc incohercntly 

scattered neutrons. 

'1'0 account for the polarization lösses thc difference between thc thus delermined ((up" 

and ('down') counl rales is llsed to normalize th.e echo amplitude (instead of taking just 

thc average intensity). 

11.5 Field Integl'al Homogeneity and Resolution 

Besides thc deea)' of 5'(Q, t) as a consequence of the dynamical processes in thc sampie 

thc measured echo ampli t ude suffers a further reduction due to resolution effecls (different 

from the above mentioned depolarization effects) that must be accounted for in the data 

evaluation. 
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Figure 11.6: "Phase scans') used to determine the echo amplitude at the Jülich NSE 

spectrometer. Symbols indicate count rates normalized to a monitor rate. Thc oscillating 

Iines are "fitted l1 echo signals (assuming Gaussian distribution of wavelengths). At the 

end of the scans groups of points corresponding to thc minimal (7l' /2-Aippers off, 'ir-flipper 

on) allel maximal (all flippers off) obtainable count rates are locatcd. Thc horizontallines 

correspond Lo the average allel the minimum and maximum intensities. Thc experimental 

value of interest is computed from the ratio of the echo amplitude anel the maximum 

possible up-down difference. The lines starting at one point at the beginning of the scall 

are measured magneti c fielel cornponents (differences to the starting value) at the sam pie 

position, t.hey serve to monitor variations of the magnetic environment. 
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Up to this point we tacitly assumed that the values of J1 and J'l are the same for a ll 

Ileutroll~ in the primary and scattered beams. T his would however only be approximately 

true for very nar row beams which therefol'e would carry only very few neutrons. Useable 

beams must have a width of several cm ami contain neutrons of different direction (d iver­

gence) . In particular the use of a large area sensitive detector leads to rather di vergent 

rays in t he secondary arm . Note that a field of 1000 Gauss=O.1 Tesla acting atong a track 

of 2 m )'ields 3000 Hz/Gauss x 1000 Gauss x 2 m 1 400 m/s = 15000 fu ll preeessions for 

neutrons with a veloci ty of 400 m/s (A = l.Onm). The condition that t he precession angle 

accumulated atollg different rays in the beam must be equal within 0.1 precessions then 

translates into the requirement that the field integrals along the d ifferent rays 11111St be 

same within 1 : 105 . As soon as the precession angles resul ting from different rays differ 

by 1800 the signal ist lost completely. Simple cylindrical precession coils fall behi nd the 

rcquired homogeneity by a factor 100. Only by use of special correcting elements (UFres­

ne!,l coils) the requircd homogeneity may be achieved. The correct ion element.s positioned 

in the neutron beam have to realize radial current distributions around the magnetic axis. 

T hree radial elements per arm in principle allow for a full correction. However the making 

of such elements that are transparent for neutrons anel are able to carry the requ ired high 

current densities with the required accuracy is difficult. Currently the improvement by a 

factor of 1001 sufficient for operation with the above parameters, is barely achievable. 

Fig. 11.7 shows thc shape of the radial correction elements which are used in the Jülich 

NSE. T he uncorrected inhomogeneity is proportional to the main precession fields and 

t herefore proportional to the Fourier t ime t. In the current setup the residual inhomo­

geneity (after corrcction) sets the limi t for the maximum Fourier t ime. 

Figure 11.8 illust rates how the echo amplitude decreases due to resolution effects even 

with correction elements. \'Vithout correction t he amplitude would drop to values below 

0.1 above Fourier times of a few ns. The resolution functions as show in figure 11.8 can 

be determined using the scattering from a refe rence sampIe which is known to exhibit 

elastie seattering on I)' (> 99.9%), here: mieroer)'stalline MgO. The experimental restlils 

(normalized echo amplitudes) of all sampies have to be divided by thc normalized echo 

ampli tudes from the referenee sam pie to )' icld S(Q,t)/S(Q). An example for the fina l 

result of a typical experiment is shown in figure 11.9. 

11 - 14 



+ 

Figure 11.7: Correct.ion element for the field integral homogeni7.atioll, material: alu­

minum. 

11.6 Practical Aspects, Peculiarities 

From the ahove dcscription it follows that thc NSE spectromcter measures thc Fourier 

transform 5'(Q, t) of the spectral part of S(Q1w) directly. As a consequence the average 

count rate at thc detector corresponds to half of a11 neutrons scattered from the sampIe 

into thc solid angle of thc detector (Fourierinfegl'al). Thcrcfore weak spectral features 

are buried under thc noise due to counting statist.ics. However thc method is perfeetly 

adapted ta relaxations that are performed by most of thc scattcring structure sillce thc 

relaxation functions are measured in thc time domain directly and resolution correction 

consists of Cl. division instead a deconvolution in the frequenc)' space. 

One ver)' important field for NSE investigations are "soft matter}) problems. These com­

prise polymer melts ami solutions and other complex fluids . Thc NSE metbods opens a 

dynamics window in the SANS scattering vedor regime. Since in that regime the dy­

namics is determined by the balance between elastic (entropie) forces and friction and 

in comparison inertial forces are negligible the observed fluctttations are pure relaxations 

and weIl suited for investigation by NSE. 

Man)' isotopes-especially normal hydrogen (protons)- scatter neutrons incoherently. 
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Figure 11.8: Resolution function of the Jülich NSE for beams of different divergence. 

Solid lines: configuration with three correction coi ls, dashed lines: on1)' two correctioll 

coils . 

T his is often uti lized in TOr investigations sißce the incoherent scattering from hydrogen 

is dominant anel more easy to interpret than t he coherent. The spin incoherent scattel'ing 

is caused by thc dependence of thc scattering length on thc relative orientation of nucleal' 

and neutron spins. Thc fluctuating part of the scat tering length duc to random spin 

orientation contains no interference of scattering from different nuclei, i.e. thc scattering 

intensity distributes even ly over 4rr solid angle and is "cl ilu1ed" accord ingly. 'fhe inten­

sity js very small compared to typical SANS intensities. The dynamics of the incoherent 

scatlering reflects the tagged particle motion (self correlat ion ). For the NSE method it 

is important to note that the spin-dependent scattering flips 2/3 of thc neutron spins. 

This means that a considerable loss of polarizat ion is encountered, only 1/3 of the neu­

trons contribute 10 the echo signal- the rest is background . T his 1/3 stems form the spin 
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Figure 11.9: 8(Q, t)/8(Q) of a 2.5 % polymer solution with a fit to the 7.immmodel that 

theoretically describes S( Q, t) for a dilute polymer solution. Thc data have been measured 

llsing the area detector at onl)' two angular positions of the secondary spectrometer arm 

within 8 h time. The hollow symbols have been obtained at an arm setting of Q = O.05Ä-1 

and correspond to Q / A -I = 0.038,0.05,0.061,0.072. The filled symbols were measured 

at Q = 0.08A-1 and correspond to Q/A- I = 0.067,0.08,0.09,0.102. 

ftipped neutrons, i.c. the echo amplitude is also iovcrted (negative). It is evident that 

for this reason NSE experiment.s wilh incohercllt scattering are much more difficult ta 

perform. If cüherent anel incoherent. scattering contributions are simultaneously prescnt 

this may lead ta peculiar cfrects since thc amplitudes may caneel each ather depending 

on their-potentially different-dynamics. 
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12. Structure determination 

G. Heger 

12.1 Introduction 

The analysis of crystal stmcture and magnetic ordering is lIsually based on diffraction 

phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Even 

though electron microscopy ean achieve atOlnic resolution, more detailed infonnation on the 

3dim. atOlnic arrangement of crystals with its symmetry and chemical bonding as weil as 

magnetic structures and spin densities requires diffraction methods. The basic theory of 

diffraction is Ihe same for all types of radiation. Complementary information is achieved duc 

to the different character of X-rays, neutrons anel electrons, and henee their different 

interactions with matter and further praetieal aspccts. 

Considering only X-rays 811d thennal neutrons olle find s that their wavelengths are similar 

(0.5 A < A < 2.4 A). While the electromagnctic X-ray radiation yields the total electron 

density distribution, the nuclear scattering of neutrons probes the density distribution of the 

nuclei and the magnetic neutron scattering the spin density of ullpaired electrons. 

X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is 

the most important method for structure analyses. Tlte purpose of Ihis paper is 10 discuss 

special eases) for which, in addition to this indispensable part, neutrons are required to solve 

structural problems. Even though the huge intensity of modern synchrotron saurces allaws in 

principle the study of magnetic X-ray scattering the investigation of magnetic slructures is still 

one ofthe most important applications ofneutron diffractioll . 

12.2 Sh'ucturc factor aud Bragg intcDsitics 

The characteristic feature of the crystalline state consists of its periodic ordcring, which may 

be represented by a (translational) lattice. In the 3dim. case three basis vectors g, Q.. and 9. 

deli ne a parallelepiped, called unit cell. The generallattice vector 

::r = ug + VQ+W9. (I) 

results from a linear combination of the basis veelors with coefficients Il, v, and w being 

positive cr negative integers (incl. 0). According to their point-sYlllmetry properties seven 

cl)'stal systems are dislinguished: 

Tl'iclinic, IvfollOclillic, OrthorJlOmbic, Tetragonal, Trigonal, Hexagonal, and Cubic. 
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Besides of the related sevcn primitive lattices, with only one lattice point per unit cell, 

multiple lattices with centred unit cells are possible.ln Ihis way a total of 14 Bravais lattices is 

defined. 

The position of atom j in the unit cell is given by the vector 

[j = Xj!! + YjQ + Zj~. (2) 

The coefficients Xj. Yj. and Zj are called atOlnic coordinates (O';Xj<I ; O';Yj< I ; O';Zj< I ). 

Lattice planes (that means a set of parallel planes containing lanice points) defined by three 

integers (hkl) called Miller indices have the characteristic interplanar spacing d"H. 

For scattering studies ofcrystals the concept ofthe reciprocallattice with the basis vectors fix, 

h*, and f* was developed. The lattice vector of the reciprocal lattice is defincd in 

crystallography by 

!::! ~ "n*+kQ*+/~·. (3) 

In solid state physics instcad of H = lIdlJH there is nomlally used the scattering vector 

(4) 

12.2.1 Nuclcal' scattcriug 

In killematical approximation, assuming that the magnitude of the incident wave amplitude is 

the same at all points in the specimen (this implies a small sampIe size, weak scattering 

intensities, 110 multiple diffraction and neglecting of absorption), the diffracted intensity is 

proportional to thc square of the amplitude of the scattered wave for each individual 

reflection; it can be regarded as a weight ascribed to the reciprocallattice nodes 

J(!::!) -IF(!::!)I'. (5) 

The stmcture faetor F(H), in terms of the Fourier transfonn, contains the complete 

information on the distribution of the seatterer density in the unit cell, ineluding the atOlnie 

coordinates Xj, Yj, and Zj, 

F(!::!) = I bj exp[2"i(!::!-rvl'Tj(!::!) ~ W(!::!)I·cxp[icp(!::!)]. (6) 
J 

In the case of nuclear scattering of neutrons the stmcture factor has the dimension of a length, 

as has U,e scattering length bj(!::!) ~ bj ~ const. of nucleus j. Tj(!::!) is U,e Debye-Waller factor 

which takes into aecount dynamical and static displacements of the nucleus j from its average 

position !j (see Eq. 2) in the unit tell. With the fractional coordinates Xj. )'j and Zj the scalar 

product in the exponcntial function can be written as 
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(7) 

Important: The measured Bragg intensities 1(1:D from diffraction experiments yield only the 

modullls of the strueture faetors, IF(!:!) I oc ,,[(!::!), and not their phases <jl(!::!) 

(see Eq. 5), which would be required for the inverse Fourier transform of the data (Fourier 

synthesis) to give directly the arrangement ofthe atoms in the unit cell. The lack ofthe phase 

information is knowl1 as the phase problem of crystaJlography. 

In a diffraction experiment HOTmally only relative Bragg intensities are measured. A SCALE 

factar is assumed to be rigorously the same for all reflections of olle data set. For merely 

nuc1ear neutron scattering and single crystals the integrated relative intensities are given by 

[(!::!) ~ SCALE-LA!F(!::!)12 (8) 

The Lorentz factar L is instrument specific. Thc absorption correction A depends on the 

geometry and linear absorption coefficient of the sampie. 

The geometrical diffraction conditions and hence the reciprocallattice yield the periodicity of 

a cI)'stal. Information on the crystal system; the Bravais lattice type and the basis vectors !!, 12, 

f ofthe unit cell (Iattice constants a, b, c, 0., ß, y) may be directly deduced from the reciprocal 

lattiee_ Thc !F(!::!)I' values assoeiated as weights to the nodes of the reeiproeal lattiee give the 

diffraction symbol and hence valuable infonnation on the space-group synunetry. Here 

systematic absences (zero stmcture factors) can be related to the choice of a non-primitive 

Bravais lattice, or to the presence of non-symmorphic symmetry operations (symmetry 

operations with translation components). 

12.2. 2 Magnetie scattering 

The dipolar interaction between the neutron magnetic moments and the magnetic moments of 

atoms/ions (and nuclei) illj leads to the magnetic neutron scattering in addition to the nuclear 

contributioll. In the case of an ordering of the magnetic moments over the whole crystal 

(periodic magnetic stmcture) the magnetic structure factor is given by 

F,,(!::!) ~ I bMj(!::!)-exp[2TIi(!::!-r;))-Tj(!::!) (9) 
J 

with the magnetic scattering amplitude 

(10) 
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!hcr is the neutron spin operator and illJ.i(tl) the projection ofthe magnetic moment illj onto the 

seaUering plane (hkl)_ 'fhe magnetie form faetor fMj{!::!) is the Fourier trans form of the 

Ilormalised magnctisation density Mir) of the atom or ion j 

fMj(!::!) = Iv Mj{r)-exp[2ni(!:!-r)]-dr 

with fM(O) = Iv Mj{r)-dr = I_ 

(11) 

This is a function of the reciproeal lattice veetor !:!, whereas the atomie scattering faetor fj of 

X-ray diffraetion 

fj(l!:!1) = Iv pj{r)-exp[2niili-r)]-dr. (12) 

far a spherical eleetron density pj(r). depends only on the length of H-

The intensity of magnetic and nuclear neutron seattering is of the same order of magnitude. 

For unpolarised neutrons the Bragg intensity of nuclear and magnetic neutron diffraction is 

simply 3n incoherent superposition 

For polarised neutrons on the other hand the eoherent superposition gives 

[IF(!::!)[']' = [FN(!::!) ± FM(!::!)[' 

(13) 

(14) 

with the interferenee terms ± 2- [FN(!::!)- FM(!::!)[ aecording to the two possible direetions of 

polarisation (+ and -). In measuring the flipping ratio at superimposed Bragg reflections, that 

means the ratio of the intcllsities for the two polarisations up and down, even small magnetic 

strueture faetors can be detemlined quite accuratcly. 

The analysis of a magnetic structure starts with the detemlination of its periodicity with 

respect to that of the crystal structure. The identification of magnetic reflections is usually 

aeeomplishcd by a careful comparison of powder diagrams recordcd below and above the 

magnetic phase transition temperatures, A more detailed study of the seattering vectors, e,g. 

for ineommensurate structures, may require also single·crystal experiments. The nuclear 

structure faetors FN(]:!) can be ealeulated from the known crystal stmcture. In this way the 

SCALE faetor of the dat. set ean be obtained and the absolute values of the magnitudes of the 

magnetic structure factors IFMU::DI can be determined. The individual orientations of the 

magnetic moments !llj with respect to the basis veetors of the crystal lattiee and their 

magnitudes are theu to be ealculated. 

12.3 Contrast variation 
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Neutron diffraction can be uscd for an experimental distinetion of atoms/ions with alm ost 

equal X-ray scattering amplitudes. In the ease of mixed systems it is furthermore possible to 

determine a fraetional site occupation. Another application of neutron diffraction is the 

determination of accurate atOlnic parameters (positional and thermal parameters, site 

occupations) of lighter elements in the presence ofheavy ones. 

The contrast in conventional X-ray diffraction is directly related to the ratio of the number of 

electrons Zj of the different atoms or ions j involved. The atOlnic scattering factor fj in the 

stmeture-faetor formula, which represents the Fourier transforrn ofthe atornic electron density 

distribution, is proportional to Zj (fj = Zj for sin8/1c = 0). Standard X-ray teclllliques can hardly 

differentiate between atoms/ions of a similar number of eleetrons, and only an average 

structure - including a total oeeupation probability of mixed oeeupied sites - may be obtained 

in sueh eases. 

For neutrons the atOlllic scattering factor fj is replaccd by the nuclear scattering length (01' 

coherent scattering amplitude) bj, which is of the same order of magnitude for all nuclei but 

varies from nucleus to ntlcleus in a non-systematic way. bj values, which can be either positive 

or negative, depend on the isotopes and nuclear spin states of the element j. A nucleus of an 

isotope with spin I may have two different neutron scattering lengths: one for the combined 

spin state J :::: I + 1;2 and one with J :::: I - 1;2. An important and fundamental cxample is provided 

by the simplest of all nuclei, the proton with spin I = \1,. The two spin states, J = I (triplet) and 

J :::: 0 (singlet), with statistical weights :x and 'A respectively, have the scattering lengths for a 

free proton: 

b'H = -23.7 fm, b'H = +5.38 fm, br",H = 'l\b'H + %b'H = -1.89 fm (with 10.15 m = I fm) . 

The value for the bound proton in a crystal stmcture, which is to be used in the structurc faetor 

calculations, amounts to bH :=; 2·bfredl:::: -3.74l fm. 

The natural isotope mixture and a statistical spin-state distribution lead to the commonly used 

general formula bj :::: a.·bj(1+ß·bjp+y·bj"(+ ... \Vith the sum of the different isotope fractions 

a+ß+y+ ... = I (bj", bjß, bj", bcing the individual scattering lengths of the different isotopes of 

the element j). The natural nickel isotopes, for instance, have extreme!y different coherent 

scattering amplitudes: 

b("Ni) = +14.4 fm, b(6JINi) = +3.0 fm, b(6J Ni) = +7.6 fm,b("Ni) = -8.7 fm, b(64Ni) = -0.37 fm 

resulting in an overall scattering length hNi = + I 0.34 fm. 
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Neutron experiments frequently make lIse of eompollnds containing single isotope elements, 

like fully deuterated sampies. Incoherent scattering due to a statistical distribution of isotopes 

and nuclear spin states is not discussed here. It may influence the effcctive absorption and the 

background conditions of neutron diffraetion studies. 

12.3.1 Example of contrast variation: 

Crystal stl'ucture and maguctic ordcl'iug of (Mnl_xCI'I)I+6Sb 

A special possibility of contrast variation, the combination of X-ray and neutron diffraetion 

information, is demonstrated for the example ofthe intermetallic cOlupounds (Mnl_xCrx)1+sSb, 

with 0:::; x :::; I [I]. This mixed system is of special interest due to its magnetic properties: 

competing magnetic interactions with isotropie ferromagnetic behaviour for Mnl+SSb and an 

uniaxial antiferromagnetic stmcture for Crl+6Sb. It crystallises in the hexagonal NiAs-type 

structure (space group: P63lnunc) with some additional partial occupation ('; 0.14) of the 

interstitial si te 2(d) (see Fig. I): 

2(a) - 0,0,0; 0,0,112 and 2(d) - 213,113,114; 113,213,314. 

(a) fO 
----'1,r----"-"', ~I 

- ._-_ .. ----~------~-----, . , ' 

Q."~ ---L-____ _ 
""""": !. 6 

L,,-O ----:--_____ _ 
-:~:<--~~L----- ___ .L.--------

OH, 0" 
Fig. la. NiAs stmcture 

-­b 

(b) 

-• OH, 

fO 
----':,>-----~ '~I 

.. -.. ----~ -_. -' -~-, , , , 

eH, 

-­b 

Fig. 1 b. Ni,ln structure (filIed NiAs-type) 

Conventional X-ray diffraction cannot differentiate betwecn ehromium (Zcr= 24) and 

manganese (ZMn= 25) on these sites but yields important information on their overall 

occupation probabilities M = (Mn,Cr): MaMdSb, where Ma stands for the occllpation 

probability of site 2(a) and Md for that of si te 2(d). The Sb position is assumed to be fully 

occllpied, thus serving as an internal standard. 
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The corresponding nuclear scattering lengths of neutron diffraction are extremely different 

with a negative sign for manganese: ber = +3.52 fm and bMn = -3.73 fm . 

Remembcl': A positive value of bj means that there is a phasc shift of 1800 betwccn the 

incident and scattered neutron waves as a consequence of predominant potential scattering. 

The few negative bj values - no phase change - result from resonant scattering. 

The knowlcdge of the overall occupation probabilities Ma and Md - from conventional X-ray 

studies - allows the evaluation ofthe Cr: Mn ratios ofthe different sites 2(a) and 2(d) from 

the corresponding effective scattering lengths dctcrmined by neutron diffraction. In the 

structure al1alyses based on the neutron data bt IT = bMn'PP is obtained individually for the two 

sites 

(PPa = a and PPd = d stands for refined pseudo-occupation probabilities). According to 

b,n{2a) = a[(l-Y)'b", + Y'be,J and b,o(2d) = d[(l-z)'b", + z·be.l 

we can calculate 

Y = [b,n{2a)/a - b",ll [be. - b",J and z = [b,n{2d)/d - b",J I [be, - b",]. 

The detailed site occupations lead to the general fonnula 

(Mnl_,Cr,).(Mnl _,Cr,)dSb 

site 2(a) site 2(d) 

corrcsponding to a chemical composition of Mn[(].y)J. + (l-z)djCf[ya +zdjSb. It is evident, that the 

individual (Cr,Mn) distribution on the two crystallographically different sites 2(a) and 2(d) is 

not accessible merely by a chemical analysis. For most of the sampies sludied, the site 2(a) 

was found to be fully occupied: a " 1.0. But the fonnula (Mnl_,Cr')I+,Sb used normally is 

only correct for the special ease of equal Cr : Mn ratias on both sites: 

x = y = z and 1 +8 = a+d. 
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Fig. 2. Magnetie phase diagram of the system MnSb - CrSb. The veetors indieate the spin 

orielltations in the different magnetic structures. 

The detailed information on lhe (Cr,Mn) distribution is needed to explain the magnetic 

properties of these intennetallie eompounds. for whieh only the spins loealised on the 2(a) 

sites are involvcd in the magnetic ordering leading to a complex magnetic phase diagram cf 

the MnSb - CrSb system ( see Fig. 2). An overall Cr : Mn ratio from ehemical analysis is not 

sufficient. The ferromagnetic MIlI+.5Sb changes its axis of easy magnctisation from parallel to 

the hexagonal c-axis at high temperatures 10 .1g at law temperatures. The magnetic spins of 

the uniaxial antiferromagnetic Crl+sSb are oricnted parallel (or antiparallel) 102. For mixed 

cI)'stals (Mllj .xCrx)1+6Sb in between the pure end mernbers there exist various feITO- and 

antiferrornagnetic states with inclined spin orientations, with non-colinear magnetic 

arrangements, and regions with co-existing magnetie ordering. 

]n general, a mixed occupation of olle crystallographic si te with three kinds of scatterers - e,g, 

Mn, Cr, and "vacancies" - requires at least two independent and sufficiently different 

experimcntal dala 10 detcrmine the fractional occupancies, 

12.4 Tbe hydrogen problem in strllcture analysis 

The determination of Ihe structure parameters of hydrogen atoms is a special problem 

involving different aspects of X-ray and neutron diffractioll. It is obvious that HID atoms with 

Z = J givc only a s111all contribution 10 the electron density ami, therefore, they are hardly 
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visible in X-ray structure analyses. This holds especially wlten heavy atoms are present. But 

ihere is a more general problem: the single electron of HID is engaged in the chemical 

bonding and is not loea li sed at the proton/deuteron position. This position, however, is of 

importanee wlten hydrogen bonds - eventually related to the lattice dynamies or struetural 

phase transi tions - are diseussed. 

X-ray studies of eleetron densitics of simple moleeular crysta!s, for whieh theoretjen! 

calculations for iso!ated moleeu!es are possible, are of special interest in order to compare 

experimental and theoretical resliits far a better understanding of chemica! bonding in 

crystalline so lids. Moleclilar crysta!s consist normally of light atoms often inclllding hydrogen. 

A combination with neutron diffraclion experiments is importanl to detennine the structure 

parameters of the HID atoms properly. More generally, the structure analysis by neutron 

diffraction yie lds separately and independently from the X-ray data the stmcture parameters of 

all atoms inc1uding lhe mean square displacements due to static and dynamic (even 

anharmonic) effects. This complete information can be used in a so-called X-N synthesis to 

oblain experimental electron deformat ion densities from the measured X-ray Bragg intensities. 

12.4.1 EX8mplc of the determination of HID positions : 

Study of hydrogen bonds in Na,S'9D,O 

One of the most important fields of application of neutron diffraction is thc determination of 

HlD sites and of their Debye-Waller faetors. As an example for a study of a variety of 

hydrogen bonds, where the structure model was established by conventional X-ray analysis 

and neutron diffraction served especially to loealisc the hydrogen atoms, the case of fully 

deuterated Na2S·9D20 was chosen [2]. Its crystal structure (non-eentrosynunetric space group: 

P4 ,22 or P4,22) is dominated by diserete [Na(O,Ohl and [Na(O,O),l spiral ehains of 

Na(D,O), oetahedra (see Fig. 3). There are fi ve different water molceules (see Fig. 4) with 

O-D distanees between 0.949 A .nd 0.983 A •• nd 0-0-0 angles from 104.6° to 107.5°. These 

water molecules are furthemlore involved in six different O-D ... S bridges to the S2- ions. 

Details of the various O -O ... O/S hydrogen bonds (given in Table I) were combined with 

results from Raman spectroscopy from which the ullcoupied O-D(H) stretching frequencies 

could be reasonably weil assigned to the nine different O-D(H) groups ofthe erystal strueture. 

t2-9 



Fig. 3. Na,S·9D,O: A partial view of Ihe cryslal slruclure 
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Fig. 4, Coordination of the D,O molecules in Na,S·9D,O. 

A B C A·B B.(: AC LBAC LABC LBAB' LCAC' L A·L LLAL' 

O(!) ·0(1) ... 5 0.961(7) 2.359(5) 3.319(5) 1.4(4) 178.0(6) 106.3(7) 103.4(2) Na(1) 2.<tl(4) tl6.1(2) 

·0(1') .. .5 0.961(7) 2.359(5) 3.319(5) 1.4(4) 178.0(6) Na(1 ') 2.411(4) 

0(2) ·0(21) ... 0(5) 0.964(7) 1.793(7) 2.752<n 4.9(4) 1n.4(6) 106.1(7) 11 1.5(2) Na(2) 2.588(5) 97.6(2) 

-0(22) .5 0.962(7) 2.550(6) 3.506(5) 5.2(4) 1n.8(6) Na(2') 2.380(5) 
0(3) ·0(3]). . .5 0.977(7) 2.311(5) 3.284(5) 4.7(') 173.3(5) 107.5(7) 116.9(2) Na(]) 2.397(5) 104.8(2) 

·0(32) ... 0(4) 0.953(7) 1.797(7) 2.730(7) 9.6(4) 165.3(6) 0(5) 2.768(7) 

0(4) ·0(41) . .$ 0.983(7) 2.29'(5) 3.274(4) 3.'(4) 175.1(5) 104.6(6) 104.1(2) Na(2) 2.418(5) 105.5(2) 

·0(42) . . 5' 0.973(7) 2.359(5) 3.333(5) 0.3(4) 179.6(5) 0(3) 2.730(7) 

0(5) ·0(5]). .0(3) 0.949(7) 1.838(7) 2.768(7) 9.2(4) 166.1(6) 105.5(6) 103.4(2) Na(!) 2.485(5) 101.7(2) 

·0(52) .. .5 0.967(7) 2.441(5) 3.401(5) 5.7(4) 1n.1(5) 0(2) 2.752(7) 

mean values 0.965 106.0 107.9 <Na-O> 2.447 

mean values O·D. .0 0.955 1.809 2.750 167.9 

mean valucs O·D .. .$ 0.970 2.386 3.353 175.2 

rable L Interatomic distances (A) and angles (0) for the hydrogen bonds and the ligands to the 

water molecules in Na2S·9D20. 
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RClllcmbcr: The scattering lengths ofthe proton and the deuteron are bH = ·3 .74 fm and bD = 

+6.67 fm, respectively. Their magnitudes are comparnble to the average of all bj magnitudes 

and, therefore, HID can be considered as "normal" atoms for neutron diffractiol1. The different 

signs of bH and bD may be of interest in Fourier maps for contrast reasons. Experimental 

conditions like background and cffeclivc absorption are strongly affected by the huge and 

exceptional incohercnt neutron scattering cross·section of hydrogen (O"inc(H) = 79.7 barns as 

compared to O"inc(D) = 2.0 bams).Very often deuterated compounds are preferred in order to 

profit from the larger bo value, but maillly to reduce the background from incoherent 

scattcring. This volume·dependent background may become crucial for neutron powder 

diffraction experiments, for which nornlally sampie volumes ofmore than I cm3 are required. 

12.4.2 Example of a slud)' of HID ordering: 

Ferroelectric phase tnmsitioll in KHzPO" (KDP) 

The hydrogen problem is of special importance for structural phase transitions driven by 

proton ordering. As a weil known example the ferroelectric transition in K.H2P04 (KDP) is 

presented. A characteristic feature of its crystal structurc consists of the P04 groups linked by 

strong hydrogen bonds (see Fig. 5). At room temperature KOP crystallises in a tetragonal 

phase (space group: 1 42d), where the protons in the O .. ·H .. ·O bonds are dynamicall)' 

disordered according to a double-weil potential. At Tc = 122 K, KDP transforms to a 

0- _. 

Fig. 5. Crystal structure ofKH,PO,. 
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fcrroelectric phase of orthorhombic symmetry (space group: Fdd2) in whieh the protons order 

in short asymmetrie O-H ... O bonds [3]. The eontour plots of the proton distribution at 

different temperatures are shown in Fig. 6. 

(a) Tc + 2K (b) Tc - 1.3K 

(c) Tc - lOK (d) Tc - 20K 

Fig. 6. Contour plots ofthe refined proton distributions in KH2P04 at: 

(a)Tc +2K,(b)Tc-1.3 K,(c)Tc- 10K,(d)Tc -20K. 

12.5 Molcculal' disol'del' 

Disordered structures and pseudosymmetries related to dynamieal reorientation and/or 

structural phase transitions are of great current interest. In principal, the dynamical disorder of 

molecules is due to the fact that the intennolecular bonds are very Illuch stronger than the 

extemal ones between the molecular groups and the surrounding crystalline frame. It is 

obvious that the chemical bonding scheme predicts the symmetry of a erystal stmcture, and 

not the other way around. \Vc cau state, however, that in the ease of an incompatibte point­

group symmetry of a molecule \Vith respect to its si te synunetry in the crystal structure, 

molecular disorder is the necessary consequence. In order to modellize the atOinie density 

distributions correctly in a way to obtain physically meaningful potentials, very accurate 

Bragg intensities over a targe sinen~ range are required. X-ray experiments are generally more 

restricted than neutron studies because of the sine/).. dependence of the atOlnic scattering 

faetor fj. 

12.5.1 Example of moieculaI' disordcl': 

Ahnost fl'ee rotation of NHJ groups in thc crystal structurc of Ni(NHJ)6I2 

As an example, related to the HID problem, the dynamical disorder of the NH3 group in the 

cllbie high temperature phase of the metal hexamine halide Ni(NH3)6h (space group: Fm3m) 

is presented. The corresponding crystal structure is shown in Fig. 7. With the NI-h tetrahedra 
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(3m symmetry) on cl1'stallographic sites of 4mm symmetry it is obvious that they must be 

orientationally disordercd. At 19.7 K, Ni(Nl-I))6h undergoes a first order phase transition to a 

probably ordered rhombohcdrallow temperature modification [4) . 

• 
0 0 

0 0 
• 

• • 
• 
0 0 

0 

• 

• Nickel 

o lodine 
<:;;; NH3 group with 

hydro gon diaorder 

Fig. 7. High temperature stmcture of Ni(NH))6b The hexainine coordination is shown only 

for the Ni atom at the origin. 

-0 . '41~~0.,~~ 
-0.14 -"11 0.14 -0 14 -"11 0.14 

(a) (c) 

0.14"--------,0.14.,---------, 

y y 

t t 

-0 .14 '-:-,--__ --::-:-' __ -"0.1"'-___ ---,::-:;-__ -' 
-0.14 -"11 0 . 14 -0.14 ...... 11 0 . 14 

(b) (d) 

Fig. 8. Ni(NH')6I, : Proton density in a [001) scction at z = 0.23; 

(a) and (b) experimental results at 295 K and 35 K, 
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(c) and (d) calculated densities at 295 K and 35 K. 

Single crystal neutron diffraction studies at 35 K and 295 K [5] revcaled a planar proton 

density distribution perpendicular to thc [our-fold axes (see Fig. 8). Its four maxima are 

dirccted towards thc neighbouring iodines according to the influence ofN-H .. .I bonding. This 

proton density can be explained as a consequence of a coupled rotational-translational motion 

of the ammine group. 

12.6 Spin densities in magnetic molecular compounds 

Molecular magnetie compounds are of great actual interest duc to balh, applicational 

perspectives and fundamental research. The spin density distribution is an essential 

information for thc understanding of the magnetie properties of these materials; it yields the 

localisation of the magnetie electrons and give rise to the microseopie magnetic interactions. 

Polarised neutron diffraction 011 single crystals is presently the most powerful tool for 

determining the spin densities in molecular compounds [6]. Results obtained from a data 

treatment by the maximum~entropy reconstr:uction method are presentcd for the purely organic 

ferromagnet, ß-4 ,4,5 ,5-tetramethyl-2-p-(nitro-phenyl)-3-oxido-4,5 -dihydroimidazoli um l-oxyl 

(PNPNN) [7]. 
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13.1 Intel'action and scattering Iaw 

13.1.1 Basic concepts of scattering experiments 

Scatterillg experiments are performed with almost aB types of radiation on various 

systems (solids, liquids, gases, atoms, nuclei, ... ). The radiation with weIl defined initial 

properties ( wavevector k; cnergy E) hits thc sam pie, gets scattered and may be detectcd 

again with weil defined final properties (wavevcctor li!.-i energy E') in the angular segment 

r2dO, thc schcmatic picture of thc scattering arrangement is drawn in figure 1. Aim of 

any scatterillg experiment is ta obtain information on the states of thc sam pie by use of 

the knowledge of the interaction between the radiation (for example neutrons) and the 

particles forming the sampie. In this chapter we deal with the inelastic neutron scattering 

in solids which is till today the most efficient way to study dispersion relations of lattice 

vibrations and magnetic excitations. 

The initial and final states of the neutron may be denoted by aj and a'l those of the 

sam pIe by Ai and X. ai is characterized by the wavevector k and the energy E = :,: 1;,2, a' 

respectively. The momentum transferred to the sam pie crystal, 9.., and the energy transfer, 

E = liw, have to fulfill the conservation laws, 9. = li - }{ and w = h(2:,,)'(k2 - k"'). The 

probability to observe a scattered neutron in the angular segment dQ and in the energy 

interval dE' is described by the partial differential cross sectiOll wh ich may be obtained 

within the Born-approximation, whieh is aperturbation theory of first order, i.e. olle 

considers thc interaction between radiation aIl(1 sampie cryst.al to be small. 

rPa 
drldE' 
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Figurel Schematical drawing of a general scattering experiment. 

I < ,,'-"I J d3
,. exp( ij{ .1:) ji (r)exp( ik . r) I",A, > I' 

*o(w + E' - E) 

The cross section in equation (13.1) is given by the sum of the transition matrix 

element.s between initial states CTjAi and the final states er')..' weighted by the probabilities 

of the initial states. In order to calculate the cross secHon and thc observable intensity 

distribution, olle needs the interaction potential iier.) and detailed knowledge of the statE~s 

in the sampIe Ai. In the inverse \Vay olle may use a measured intcllsity distribution in 

order to characterize the sam pie states, for example thc phonons. This is thc usual way of 

thc interpretation of any scattering experiment. The sampie states may be characterized 

by specific parameters, for example the frequencies and the polarization patterns in case 

of phonons, whieh with the aid of equation (13.1) will be dedueed from thc experimental 

intensity distribution. 

13.1.2 Nuclear intel'action - phonons 

The nuc1ear interaction betweell the neutron and the core of the atoms is charaeterized 

by an extension of 10-5 A, whieh is extremely small in comparison to the wavelength of 

thermal neutrons. Therefore, the scattering is isotrope alld may be deseribed by only one 

parameter, the scattering length. The interaetion with the hole erystal is given by the 

sum over the atoms: 

, 2n " lI(r) = - L.- bjo(r - Ej ) 
m j 

(13.2), 

where bj and Ej are the scattering lengt.h and the position of the j-th atom. The 

mixing of different isotopes at the same atom si te in the erystallographie lattice yields a 

further eomplication, since different isotopes have different scattcring lengths. This mcans 
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Figure 2 Schematic drawing of the vectors detcrmining the position of an atom in thc crystallatt.icc. 

that the interaetion potential (13.2) does not show the full translation symmetry of the 

crystal lattice. The IDeal variation of the scattcring lengtll splits thc differential cross 

section into two contributions : 

(13.3). 

The coherent contribution is detcrmined by the mean scattering lengtll, whereas thc 

incohercnt contribution is given by the root meau square deviation to thc averaged scat­

tering lengtll . 

In order to calculate thc differential cross sectiOil in (13.1) i t is ncccssary to know thc 

states in thc sampie or at least to pal'amctcrize them. Thc Burn over the states ).i in 

(13.1) may be transformed to the correlation function, in whieh olle has to introducc thc 

parameterized Eigcn-states of the system. In order to achieve this transformation in case 

of the phonons we consider the vibrations of a crystal in harmonie approximation. 

- Description o/lattice dynamics in hal"monie appmximation - A crystal consist.s of N 

uni t cells with 1'1. atoms within each of them, the equilibrium position of any atom is given 

by the position of the unit cell to wh ich it belongs, Land by the position of the atomie 

site in the unit cell, d.. At a ccrtain time thc atom may be displaced from it.s equilibrium 

position by li(l. d). T he instantaneous position is henee given by ~,. = L + d + li(l, d) (sec 

figure 2). 

For simplification we considcr first a lattice with only one atom in the unit cell, d. = Q; 

L deseribes then the equilibrium position of the atom. The interaetion potential betwecn 

two atoms land f, ~(Lf), may be expanded at the equilibriull1 position in terms of 

li(O=li(I.') =O. The eonstant term does not givc any eontribution to the equations of 

movement, it is relevant only for the total energy of the crystal structure. Since at thc 
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equilibrium position the atom is in rest, terms of first order are not allowed. In harmonie 

approximation one assumes the expansion till thc seeolld order to be sufficient. This 

assllmption is essential for the following analysis, sinec already the presenee of third order 

tenns prohibits to solve the equations of Illovcmcnt in the general ease. In most solids 

anharmonie eontriblltions to the potential are, however, sm all justifying the assumption. 

Ir the an harmonie effccts havc to be taken into consideration (for cxample elose to the 

mclting of the crystal lattice), perturbation theory is the usual technique. 

Using the definition: 

D (I I') cl'i!>(l,l'J 
a,p -, - = dua(L)dup(l'.) (13.4) 

one obtains thc cquations of movement (0:, ß = X, y, z) to : 

Mün(i) = - 'LDa,p(l.l'Jup(l'.) (13.5). 
P,E 

The displaeement of the atom r.. in ß-direction yields a force on the atom I in o:-direction 

of strength Da,pa, i'JuP (l'.), Da ,pa , l'.) are therefore called the force-constants. The real 

problem in treating lattice dynamics eonsists in the large nu mb er of these equations, thcre 

are 3N equations to be solved \Vith N being of thc order of 10". In order to avoid this 

complexity one makes the Ansatz of plane wavcs : thc movcmcnts of all atoms are given 

by the displacement in one unit cell at time zero pl'opagating in time and space as a wave 

(13.6). 

Figure 3 shows the displacement pattern of a planc wave eharacterized by the wave 

vectol' 9,., l'eflccting the propagation of the wave (planes perpendieular to q are always 

ident icall)' displaced), the vibration frequenc)' Wo of each atom and the direction of the 

oscillation givcn by the polarization veetor ~. In the single atom lattice there are only 

acoustic modes, they are ca lied longitudinal (LA) if Q is parallel to g and transversal (TA) 

for 9. pel'pendieular to ~. 

The plane \Vave Ansatz (13.6) for the equations of movemcnt )'iclds a system of three 

equations fol' each q-value : 
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q I Polarlzatlon 

~ 0 ? 0 ~ 0 ? 0 ~ 0 ? 
~ 0 ? 0 ~ 0 ? 0 ~ 0 ? 
~ 0 ? 0 ~ 0 ? 0 ~ 0 ? 
~ 0 ? 0 ~ 0 ? 0 ~ 0 ? 
~ 0 ? 0 ~ 0 ? 0 ~ 0 ? 
~ 0 ? 0 ~ 0 ? 0 ~ 0 ? 

Lambda latt!ce paramete r 

Figure 3 Scheme of the displacements in a t.ransversal plane wave. 

w~eo = I/M L Do,B(l, O) exp( -iql)ep (13.7). 
t,p 

Here wc use that the force constallts depend only Oll thc distance in real space (l - t) 

and not on the partieular values of land t. With (13.7) one gets an easily solvable system; 

the original complexity of the problem is transferred to the number of these 3-dimensional 

problems. Für a complete solution of the crystal dynamics oue would need to salve the 

problem (13.7) for eaeh of the N~1023 allowed 'I-values. In reality, however, one has to 

analyzc on I)' a few different q-va!ues. In general it is sufficient to study only q-values 

within thc first Brillouin-zone. 

\".,Te may define the dynamical matrix as 

Do,/J(q) = 1/ M L Do,p(L. O)exp( - i'IÜ (13.8) , 
t,p 

whieh aHows to rewrite the equatiolls (13.7) in matrix form: 

(13.9). 

The system (13.9) is just a three-dimensional Eigen-value problem. 

For fixed lJ.. one has to dcterminc the three Eigen-vectors gj , j=1 ,2,3 , togcther with 

the three eorresponding Eigen-values, Wj(q). This may be aehieved with the standard 

llUmerical techniques. Thc dependence of the Eigen-frequcncies on the wave-vector, Wj(q) 

with j = 1, 2,3, is called the dispersion relation. 
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Fjgure 4 Phonon dispersion of AI along the [100] alld [OllJ-directions (from reference [1)). 

The extension to a system with n Atoms in the primitive cell can be easil)' done, one 

gets for each Q an Eigen-value problem in 3n dimensions. The Eigen-vectors have the 

dimension 3n and the dynamical matrix is 3n * 3n dimensional. For each 9. one finds 

hence 311, Eigen-modes) therefore the complete phonon dispersion consists of 3n branches, 

three of whieh have zero frequency for q --). O. The latter branches are callcd acoustic 

since the)' are associated with the propagation of sound. The figure 4 shows the typical 

presentation w against wavc-vector 9. for the phonon dispersion of aluminum. 

The plane waves according to the Eigen-frequencies and to the Eigen-vectors to each 

of the allowed 9.-values form a complete set of funetions for the displacements of the N 

times n atoms in the crystal. An)' distortion can be represented as a linear combillation 

of these plane waves, Obviously it is rat her favorable to use this set for ca1culating the 

differential cross section. However, for this purpose it is necessary to convert the lattice 

vibrations into quantum mechallics, the correspondillg quasi-particle being the phonon. A 

olle-phonon process is shown in the sehematic figure 5. The momentum transfer Q = k - }{ 

cOllsists of the sum of a reciprocallattiee veetor 'L and the wave-vector '1, whieh lies within 

thc first Brillouin-zonc, Onl)' 9.. determines the wave vector of the contributing phonons, 

however Q. determines the differential cross section, i.e. the intensit)'. 

The exact scattering may be dedueed from the correlation functioIl. In the following 

wc onl)' want to diseuss the meaning of the different terms in the cross section : 
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Figure 5 Scattcring triangle correspollding to the observation of a phonon mode wit.h wave vector Q 

at the reciprocallattice vector T.. 

IGj(q, Q)I' 

r 
. wAg) 

·(n(Wj(q)) + 1/2 ± 1/2) 

(13.10.a) 

(13.1O.b) 

(13.1O.c) 

·6(w 'f Wj(Q)) . 6(~ 'f Q - z:) (13.10 .d) , 

with Va the vallllne of the reciprocal unit Gell. Equation (13.10) describing thc intensity 

of a one-phonon measuremcnt at specific q elosely resembles thc elastic structure facter 

of the Bragg reflection illtellsity, apart of expression (13.10) is called dynamic structure 

factor. The intensity is given by the surn over all reciprocal lattice and all wave "ectors; 

however only the combination Q+Z: = ~ may contribute due to tlre 6-funetion in (13.10.d). 

The second <5-functioll in (13.1O.d) reRects the law of energy cOllservat ioIl , however, olle 

has ta take into account timt thc scattcring processes l11ay lead to a creation as weil as 

to an annihilation of a single phollOn} corrcsponding to thc uppcr and t he lower signs 

rcspectively. There are two more general factors determining the intensity of the phonon 

observation by neutron scattering. T he term (13.lOb) indieates, independently of all 

ether terms, that the intensity is inversely proportional te the frequency of the mode. 

High energ)' modes are a lways more difficult to observe than thc low Iying Olles. Sillce 

neutron experiments suffer from the low flux of the existing sourees, this effect frequently 

prohibits the study of the high energy part of the phonon dispersion. T he term (13.10.b) 

13- 7 



l'esults from the quantum mechanics of a single harmonie oscillator: thc square of the 

amplitude is proportional to -ch( . 
Wjl!V 

The term (13.10.c) results from the Bose-statistics of the singular mode with frequency 

Wj(q) , the occupation number is given by the Bose-functioll: 

1 
n(Wj(Q)) = ('Wj(q») 

exp kT- - 1 
(13.11). 

n(wj('l)) tends for T --> 0 towards zero, the phonons are frozen. For T --> 00, n(wj(ll)) 

approaches (h-;:.i'») , i.e. the classical relation. The term (13.10.c) indicates that the 

Bose-function is increascd by +1 only in ease of phonon creation. At law tempcrature 

where n{wj(q)) is elose to zero, the phonon may be observed only in thc creation mode, 

thc cross sectioH for tha annihilation process becomes vanishing since thc phonon states 

are HO longer occupied . At finite tcmperature the Bose-statistics further simplifies thc 

observation of phonons with low frequencies. 

Thc complex term in (13.10.a) is given by .thc dynamical structure factar: 

(13.12), 

where the sum is extending to the atoms, numbered by the scalar d, in the primitive 

cell. They have the mass md scattering length bd and a three dimensional polarization 

vcetor ~(q), the equilibrium position in the unit cell is given by da. WitllOut the last 

part equation (13.12) corresponds to thc elastic st ructure factor, in particular one finds 

the same Debye-Waller-factor exp( - H'd(2)). The whole term in the exponential function 

determines whether thc interferencc between atoms is constructive 01' destructive. In the 

dynamical structure factor there is in addition to the elastic one the polarization term 

(last parenthesis); for instance only those atoms may eontribute whose polarization veetor, 

~(Q), possesses a componcnt parallel to 2. Sinee 2 enters this term directly, the strueture 

factor increases with IQI; the intensity is proportional to Q2 . The interference and the 

polarization term in (13.12) cannot be separated in general, therefore one has to calculate 

the strueture factors precisely. 

In addition to the interpretation of the frequency data the prediction of the intensity 

is an important out-coming of model calculations. Only with the help of these predictions 

a neutron seat tering experiment aiming at the lattiee dynamics of a complex material can 
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be performed in an efficient manner. 

Some easy examples mal' i1lustrate the signifieanee of the terms in (13.12). Let us 

consider a longitudinal acoustic mode polarized in the [100j-dircctioni for this mode all 

~ are parallel to 1100J. The polarization term beeomes maximum for 2=(h+~ 0 0) and 

can be extl'acted from the sum o The remaining interference SUtl1 corresponds fol' small 

~ to the elastie strueture-faetor of (hOO), The dynamie strueture beeomes henee strong 

for strang Bragg-reftections. In general acoustic phonons have ta be measured elose to 

the strong Bragg-reftections. Since for optical modes the atoms may be displaced in 

opposite directions} the polarization term ean change sign yielding a rather distinct sum 

of the interference term. In a simple two-atomic structure the optical mode has only a 

weak dynamical structure fador elose to the strong Bragg-reflections (this argument is 

110 longer valid in ease of negative scattering lengths). 

Why does inelastic neutron scattering play such a dominant role in the study of lattiee 

dynamics? The central point is certainly due to similar Illasses of atoms and the neutron. 

This yields the possibility of elastic as ,\'ell as that of inelastic scattering and renders 

the wave-veetors of thermal neutrons comparable to the wave-vectors of thc phonons. 

Inelastic neutron scattering allows to determine the phonon dispersion over the whole 

Brillouin zone} whereas optical techniques (Ra man and Infra-Red-scattering) yields only 

the analysis of mo des at the zone center. 

Recently there are serious efforts to perform lattice dynamical studies using syn­

chrotron radiation. In ease of thermal neutrons the ellergies amount to 1- 100 meV and 

eorrespond to the typical phonon energies. For comparisoIl} CuKo-radiation has an en­

erg)' of 8· 106meV. In order to determine phonon frequencies) one needs a relative energy 

resolution of 10-6 - 10- 7, whieh may be aehieved only by extreme experimental effort. 

The concomitant loss of intensity permits these measurement.s only at the most powerful 

synchrotron sourccs} and even then the measurements remain slow. \,yc have seen that 

thc one-phonon process yields an illtensity proportional to Q2} this may be used in case of 

neutron scattering duc to the nuclear interaction. In case of the x-rays the large Q.-range 

is not at disposition since the form-factor strongly reduces the interactioJ1. In the e1osel' 

future olle may not expect) timt inelastic x-ray seattering will supply results comparable 

to neutron studies concerning the efficiency. The x-ray measurements, howevcr) may be­

cOllle valuable in cases where the neutron scattering is hampercd either by sampie size or 
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by absorption. 

13 .1.3 Magnetic interaction - magnetic excitations 

The neutron has a spin 1/2 whieh yields a eoupling to the magnetie fields. The 

interaetion operator is given by : 

(13.13); 

here 'Yn= 1.913 is the magnetie moment of the neutron, expressed in MN, the nuclear 

magneton, a the Pauli-spin operator and H the magnetic field induced by the electrons in 

the sampie. H may arise from the velo city of the eleetrons as weil as from their magnetic 

moment. In the following we limit the discussion to the latter contribution. 

Furthermore we assume, that the orbital moment has vanished. This assumption is 

justified in ease of quenehing by erystal fields or for a half-filled shell (Mn2+, Fe3+, Gd3+). 

The Fourier-component of thc interaeLion potential is : 

(13.14) 

with 

fh(Q) = ~(1/2hdFd(Q)ilS~(l, d)exp(iQ . .B;d) (13.15) , 
i,d 

here 'Yd is the gyro-magnetie faetor, Fd(Q) the form-factor of the atom d and St(l. d) = 

Q X (Sid X Q) with S(Ld) being the spin-operator of the atom. 

There are two important differences between the magnetic and the nuclear interaction 

of the neutron with the atom. Due to the extension of the electron cloud , wh ich causes 

thc magnetic moment, the illteraction is non-Ioeal. Described by the form-facto!', F{Q), 

the inter action gradually deereases towards large Q. The detailed dependenee of F( Q) is 

determined by the single atom. Rare earths show, due to the strong localizatioJl of the 

4f-electrons, a less pronounced decrease wIten compared to the transition metal ions with 

more delocalized electrons. In the latter case the decrease may be quite strong limiting 

any measurement to thc first Brillouin-zones. The depenclence of the magnetic interaction 

duc to the form-factor may be used to separate magnctic 8nclnuclear contributions. Fur­

thermore, the magnetic inleraction is media ted by vector-operators. Only those magnetic 
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Figllre 6 Phonon dispersion of Ne alollg thc three main symmetry directions (from Ref. {2]). 

moments may eontribute to the interaction, which ha\'c a eomponent perpendieular to 

Q: This yields t he possibility to determine not on ly the size but also the direction of 

magnetic moments. 

13.2 Analysis of lattice vibrations 

13.2.1 Lattice dynamics in simple structures 

For a simple erystal lattiee oue may determinc the polarization patterns without de­

tailcd model calculations. The lattice dynamics of such a system may then be studied 

experimcntally without particular effort. 

In figure 6 wc show thc phonon dispersion of Ne in thc t hree main symmetry directions, 

whieh aeeording the eOlllmon usc are labeled ß, E and A. Ne erystallizes in a fee-Iattice 

with only olle atom in the primitive eell, therefore one expects only three acoustie branches 

per q-value. Olle obscrvcs thc three distinct branches only in the (xxO]~direction, whereas 

there are only single transverse branehes along [xOO] und [xxx]. In the [xOO].direetion these 

aeoustic polarization patterns may be easily understood. In the longitudinal mode atoms 

are vibrating in [lOOl~directiou, i.e. parallel to tbe wave vector. The two transverse modes 

are eharaeterized by displacements in [010] or in [OOI]-direetions, i.e. perpendieular to the 

wave-vector. Sinee (100] represents a four-fold axis in the fee lattice, the latter two müdes 

cannot be disLinguished; they are degenerate. The same situation is found along the 

[llI]-direetion wh ich is a three-fold axis of the lattiee. This behavior is a simple example 

of the general relation bctween crystal symmetl"Y and thc phonon dispersion. The crystal 
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Figure 7 The plane in reciprocal space spanned by the (100) and (Oll) vectors fot a fcc-Iatticej thc 

scattering triangle indicates thc observation of ß-modes. 

symmetry yiclds eonstraints for the phonon mo des whieh may be necessarily degenm'ate 

at eertain points 01' - like in thc Ne-structure - along a directioll . In the ease of more 

complex structures it is essential to profit from the predictions of the symmetry analysis. 

The [llO]-direction represent.s only a two-fold axis since [1-10] and [001] are not identical, 

as consequencc the corresponding transverse acoustk branches are not equivalent. 

In addition figure 6 shows tltat at X= (IOO)=(Oll) ß and E-branches are coinciding, 

which may be explained duc to the shapc of thc Brollouin-zone. Figure 7 prescnts thc 

plane of the reciproc.1 space spanned by (100) and (011); one recognizes that starting 

at the zone-center, r, in the figure (133), in the [IOO]-direction one will reach the zone­

boundary at (233)=(100)=X. Similar, one will reach this point when starting at the 

neighboring point (222) in [Oll]-direction. However, in this path one finds the border of 

thc Brillouin-zone carlier and eontinues the last part on the zone boundary. (100) ami 

(011) are equivalent point.s in reciproeal spaee; they are cOllnected by a rcciprocallatticc 

"ector, (-I I 1). For the phonon branches we conclude that ß- and E-branches have to 

coincide. The symmetry further determines which branches eoincidc: for example the 

longitudinal E-branch with thc transversal ß-branch. Agaiu, similar consideratiolls in 

more complex systems may decisively contributc to the identification of the branches. 

Figure 7 further shows how to mcasure the Cl.-branches. Olle may observe the longitu­

dinal branch in the (400)-zone passing to (4+x 0 0) (the (400)-zone has to be preferred to 

(200) duc to the larger value of Q2), whereas one may dctcrmine thc transverse frequencies 

in the (022)-zone at (x 2 2). 
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Figure 8 Dispersion curves and crystal structure of FeO (from refcrcncc [2]). 

- NaCI-structure - The NaCl-structure reprCscllts one of the most simple possible 

crystal structures with two atoms per primitive cell. It consists of two fcc-lattices shifted 

agaitlst each other by (0.5 0.5 0.5) . The entire cr)'stal strnctnre possesses fcc-symmetrl' 

tao. Figure 8 shows thc dispersion curves of FeO. 

The six branches expected für thc two-atomic structure are observed onl}' in [xxO}­

direction. Like in ease of the fee Ne-Iattice the transverse 6.- and A-hranches are doubly 

degcllcrate. Also in other aspects, there is same resemblance with the Ne-phonon disper­

siouj in both eases LA-ß and TA-E branehcs eoincide at the zone boundary. 

A more detailed diseussion is nceded in order to und erstand the optieal modes at r. 
Thc po!arization pattern of an optieal mode eorrcsponds to an anti-phase axial movement 

of thc ion pairs connected in [100], [0101 or [0011 direction. The three vibrations polarized 

in the crystal directions should, however, be degcnerate duc to the eubie symmctry; 

oue might expect only one optieat frequene)'. The optical vibration in the ionie lattiee 

possesses apolar eharaeter, Lc. there is a loeal polarizatioll due to the opposite shifts 

of cations and anions. For large wave-Iength, Le. elose to the zone-center, the loeal 

polarization adds to a macroseopie polarization only in ease of thc longitudinal mode. 

This macroscopie polarization requires an additional eIlergy, thc longitudinal optie (LO) 

mode is always lligher in frequenc)' titan thc trnaversal optic (TO) mode (note, that 

these mo des are only defined as the limit for 9.. lending to zero. The splitting bctween 

LO and TO-mode frequcncies is called Lydane-Sachs-Teller (LST) splitting and is related 

bl' the LST-relation to thc dielectrical constant. Polar mode frequencies mal' be easill' 
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Figure 0 Phonon dispersion of NaCI (from reference [2]). 
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determined by Infra-Red techniques; duc to t he form of thc resolu tion ellipsoid neutron 

scat tering on t his topic is frequently difficult . In metallic materials electric fields a~'e 

scrccncd duc to thc free charge carriers at least for macroscopic distances. As consequence 

the LST-spli t ting disappears. Thc phonon dispersion may thcn give information on thc 

efficiency of thc metallic screening. 

Figure 9 shows thc phonon dispersion in NaCt, which is isostructural to FeO. Compared 

to thc latter olle recognizes tbc perturbation of thc CUl'ves arising mainly [rom the lower 

optical frequencies. vVithin thc Brillouill-zone it is no longer possible to separate optical 

and acoustic modes, the branches tcnd to cross each other hut there is always a small gap 

betwccll brauches of the same symmctry. This represents a general property : branches 

of thc same symmetry may not cross. By mixing thc polarization pat terns it is always 

possible to yield a gap redllcing the total energy of the system. Whether this gap is small 

or large depends on the similarity between the polarization pat terns of thc two branches. 

Similar branclles may induce larger gaps, they are called to strongly interact . 

13.2.2 Model caleulations 

The examples discussed above arc characterized through their simplicity, whieh per­

mits to 811alyze the polariz8tion patterns witllOut detailed calculations. In actual topics 

üBe has to deal with systems of more than 10 atoms per primitive coll. Already during an 

experiment olle ma)' idcntify thc multiplici ty of the phonon modes only by the predictiolls 
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of model caleulations. 

As discussed above the lattice dynamics is described by the 3n-dimensional dynamical 

matrix: 

(13.16) 

(13.17). 

!Pa,ß(Od, ['d') denote the force constants between the atoms el and d' in by Lshifted cells. 

The determination of thc force constants represents thc real problem in lattice dynamics, 

in particular the question which constants are relevant. 

Already by symmetry, the )line parameters per atom-pair are significantly reduced. 

Furthermorc, one may reducc thc analysis to thc clüser neighbors, as rar as no long range 

force is involved. Thc next step consists in the development of potentials, from whieh one 

may obtain tha force constallts for many pairs inducing only a few free parameters. 

Frequclltly it is sufficient to cOllsider axial-symmetrie potentials with V(ld)r..d') = 
l/(t'L Le. the potential dcpellds only on the distance bctween the two atoms. Such a 

potential yields only two force constants, a radial and a transversal one : 

( ") lall, !Pr Ld, Lel = 1 "" '='. ur 

(13.18), 

(13.19). 

In the most simple model one may only introducc these radial and trans verse force 

eonstants far the elose Ilcighbors (Born-von-Karman Model). However, extending more 

and more shells will rapidly increase thc number of parameters. In partieular the lattice 

dynamics of ionic eompounds with the long range Coulomb-interaetiol1, ean only be pool'ly 

described by sllch a model. 

Even when parameterizing thc Coulomb-potential F(f') oe zd~d/e'.l by the charges, 

Zd, Zd', in ordcl' to deduec the respcctive force constants, the problem of the long range 

persists. It is not possible to cut thc sum at a eertain distanec, sinee thc sums da not 

converge. The satisfying solution of this problem consist. in the Ewald-method [11-
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The Coulomb-potentials in an ionic erystal yields an attraetive potential, whieh has 

to be cOIupensated by a repulsive one. If the eleetron clouds of two ions of opposite 

charge start to overlap upon decrease of their distance, this repulsive potential will in­

crease rapidly. One may clescribe this interactioll by a Born-Mayer-potential V(1') = 

B·exp( -1'/1'0)' inducing only two parameters for one type of ionic pair, Band 1'0. Amongst 

thc various extensions of this type of model, ealled urigid ion" , we mention only the sheH 

model, where the polarizability of the ions is described by aseparation between an elee­

tran cloud (the shell) ami the cores. There are many different ways to couple the eores 

and the clouds by force eonstants. 

In order to prepare an inelastie neutron seattering study on thc lattice dynamics of 

a eomplex material, even a simple and un-adapted model may be helpful, as long as the 

crystal structure and therefore the symmetry is cOl'l'ectly entered. By symmetry, degener­

ations are fixecl fol' certain points er even for lines in l'cciproeal spaee, and fl'equently the 

structure factors follow some inelastie extinction rules. In principle these predictions may 

also be found by a eareful analysis through group theory; howevel', the lIse of a simple 

model whieh does not need to dcscribe the frequencies weil is much less time demanding. 

Some of these aspccts have already been illustrated for the example of the NaCI struc­

ture. Coneerning thc dynamic structure faetors olle may add, that olle will observc the 

optical modes c10se to r best at the odd reciprocal lattice veetors (for example (333) ) 

independently of the forees involved. 

13.2.3 Structural phase transitions and soft mode behavior 

Struetural phase transitions form still a topic of actual interest, where information 

about the underlying microseopic meehanism may frequently be aehieved only by inelastic 

neutron scattering. 

In figure 10 one finds thc representation of a fietive struetural phase transition in a 

two-dimensional erystal structure with two atoms in the primitive cel!. In the high sym­

metry high temperature phase the blaek ion in the middle occupies a si te with inversion 

symmetry. This symmetry is broken at the phase transition due to the displacement of 

the blaek ion . The right part of figure 10 shows the corresponding dispersion curve, here 

the polarization pattern of the r-mode corresponds to the static distortiOll below the 

transition temperature, Tc . The phonon frequeney of this mode softens upon approach­

ing the phase transition and is therefore called a usoft-mode'l. The structural instability, 
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Figure 10 Schematic picture of a displacive phase t.ransition occuring at the zone center and the 

corresponding dispersion curve. 

however, ean be also seen in thc dispersion qui~e above Tc : thc frequenc)' of the relevant 

mode at r js lower than those of müdes with q-values in the Brillouin-zone. 

In addition to thc phonon softening oue expects a broadening of the Hne width in 

frequency; fillally the width of the phonon mode may surpass its frequenc)'. Such over­

damped müdes may BO langer be described in the harmonie approximation. 

Thc best studied example für a zone-center phase transition may be found in the 

ferroelectric transition in perovskites, for example PbTi03 sec figure 11. In the 10w 

temperature phase the anions are deplaced against the catiol1s, Pb, Ti, the corresponding 

phonon frequency vanishes almost completely. This polari'Zation pattern has a strong 

polar character and is connected to thc dielectric constant through the LST-relation. Thc 

softcning of the TO mode induces a divergence in the dielectric constant, wh ich explains 

the interest of the phenomena for technical applications. 

A structural phase transition mayaiso lead to an enlargement of the unit Gell. Here, 

the equivalcnt atoms in neighboring cells are not displaced identically; a schematic picture 

is given in figure 12, where neighboring black ions are shifting in opposite direction. Thc 

phonon mode associated with such a displacement pattern necessarily has a finite wave­

vcctor, since the translation symmetry is broken. In case of figure 12, 9.. is situated on 

the zone boundary. But like for the zone-center transition aue Olle may find a softening 

for the zone-boundar'y mode too. The most kllOWIl example for such a transition can 

agaiu be found amongst thc perovskites ABOa. The perovskite structure consists of B06 

octahedra with partially covalent and quite hard bonds; the octahedra are conuected only 

through their corners. Therefore, all these systems are more 01' lcss unstable against a 
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FiguTe 11 Structure and displacement pattern of the ferrroelectric transition in thc perovskite PbTi03 
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Figure 12 Schematic picture of a displacive phase transition corresponding to a zOIle-boundary mode. 

rotation of the octahedra around an arbitrary axis. Only the strcllgth of this instabi li ty 

and thcrcfore the Question whether a transition ocems or not, depends on thc compositioll. 

For cxample the octahedron in SrTi03 below 105 I< is rotated around a [lOOJ-direction. 

Thc coupling of rotations around different directions leads to a "ariet)' of distinct low 

temperature symmetries. 

Recently the rotation phase transitions in the perovskites have regained interest, since 

thel' seem to be elosely connccted in thc manganates to the electronic properties in partic­

ular their colossal-magneto-resistivity. Also the high-Tc-cuprates show similar transitions. 

13.2.4 Electron phonon inter action 

The study of thc electron phonon interaction represents an important ficld in lattice 
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Figllre 13 Phonon dispersion of TaG, the dips, for example at (0 0 0.7) andd at (0.6 0.6 0), indicate 

modes renormalized through the electron phonon coupling, from reference [21. 

dynamies, which is analyzed almost exclusively by inelastic neutron scattering since the 

largest effect.s am expectcd in tbe Brillouin-zone. 

The screening of the inter-atomic potentials through free charge c~rriel'S is determined 

by the topology of the Fermi-surface. In particular there are singularities in thc electrollic 

susceptibility when part.s of thc Fermi-surface are parallel and may, hence, be conuected 

by a single ncsting veetol'. The susceptibility at this vector will be essentially increased 

and may renormalize the phonon frequency of a mode just at this wave vector. In most 

cases this type of eleetron phonon coupling leads to a reduction of the phonon frequency, 

whieh shows up as a dip in the dispersion curve, called a Kohn-anomaly. In particular the 

conventional superconduetors, for example TaC in Figure 13, exhibit such effects. The 

phonon dispersion of TaC shows pronounced dips, which are not observcd in the phonon 

dispersion of normal metals. The study and interpretation of similar anomalies in the 

high-Tc-cupratcs is subject of present research. However, in this ease the analysis gets 

rather cOl11plicated due to the large number of atoms in these systems. 

13.3 Magnetic excitations 

13.3.1 Spin waves in a ferromagnet 

Like the crystal structure, magnetic order may be disturbed at finite temperature 

with the perturbation propagating through the crystal. Analogous to the phonons, the 

13- 19 



111111 
~al-

Illlll 
~al-

Figure 14 Schematic drawing of a simple ferromagnet : a) ground state, b) olle spin being flipped c) 

in a spin-wave the spins precess Oll cones (from reference. [4]) . 

quantisized excitations are called magnons. 

Tbc groulld state of a ferromagnet fesuIt.s from thc interaction between spins of neigh­

boring atoms, which favors a parallel alignment. Thc cnergy of a neighboring pair, $..1' 1 fijl 

depcnding on thc relative orient at ion of thc spins is described within the Heisenberg­

model by e = - Js..i . !i.j l where J is thc Heis~Jlberg excl.lange constant. For a chain of 

coupled spins thc energy of thc magnetic interaction amounts to : 

N 

U=-2J2::S,, · SP+l (13.20). 
p= l 

In thc ground state all spins are parallel and Uo = - 2NJS2 , this corresponds to figure 

14a. A possible excitation might consist in the flip of just one spin, like it is shown in 

figure 14b. This perturbation yiclds a finite increase in energy of 8J82 • However, the tem­

perature depelldence of several macroscopic properties like specific heat 01' magnetization 

does not correspond to an exponentiallaw, as it has to be expected for a finite excitation 

ellergy. Spin waves (magnons) Inllst have a much smaller energy than the single spin flip, 

like phonons may have lower energy than an ionic vacancy for instance. 

Thc distortiOIl of the magnetic order corresponds to a plane magnetic wave (with 

propagation vector Q and frequency w) and is drawn in Figure 14c. Spins are precessing 

around the direction of magnetic order (here z) with components : 

S; = u · exp[i(pqa - wt)[ (13.21), 

S% = v . exp[i (pqa - wt)[ (13 .22) , 
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Figure 15 1\'lagnon- and phonon dispersion curves in Fe at wom temperature and two Q-scans at 

constant energy , reference \5J. 

where a desigllates the lattice constant and b is numbering the spins. 

Like in thc ease of tbc phonon dispersion one may deduce the magnon relation. In 

ease of a simple chain one yields : 

liw(q) = 4JS(1 - cos(qa)) (13.23), 

which mal' be approximated far small q bl' liw(q) = 2JS(qa)', i.e. a quadratic relation. 

In cOlltrast an acoustic phonon dispersion is always linear in that q-range. Equation 

(13.23) may be extended to the three-dimcnsional ease, in all cubic systems the relation 

liw(q) = 2JS(qa)' remains valid far small q. 

Figure 15 shows the magnoB dispersion measured in Fe) from which one may obtain 

the exchange constant J; rar cOinparison thc linear dispersion relation of the LA braneh 

is added. One may note, that in the ease of Fe the magnon frequencies extend to higher 

energies than those of the phonons. Due to the special form of the resolution ellipsoid in 

the tripie axis spectl'omcter, it is favorable to perform seans at eonstant energy revealing 

both the phonon and the magnoll, whieh exhibit approximately the same intensities, see 

right part af figure 15. 

Sinee magllons are bosons, their occupation is given by Bose-statistics like t.hat of 

the phonons, equation (13.11). Also far the differential cross section olle may deduee a 
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fonnula similar to equation (13.10) valid for phonons: 

( c!'" ± 
dndE') = (k'/k)· S· const.· exp(-2W(2))F2(Q)(1 + §t). 

I:L~(n(w~) + 1/2 ± 1/2) . o(w 'f Wj(q)) . 0(2 'f q - :z:) (13.24). 

One recognizes the terms far momcntum and energy conservation as weil as the Bose~ 

factor, which is increased by one in case of magnoll creatiol1. Furthermore thc intensity is 

moclulated by the same Debye-Vvaller-factor as thc phonons. However, there is no term 

equivalent ta thc dynamic structure factor, the intensity is determined just by the spin 

8, the form factoT F(Q) alld the direction of the momentum transfer. 

Ferromagnetic materials are still of considerable interest duc ta their enormaus tech­

llical potential in the cOlltext of data storage media. Attempts ta optimize the technical 

properties lead ta binar)' 01' ternary compounds, where the eomplexity of the magnetie 

order is eonsidcrably inereased. In all eases thc study of the magnon dispersion gives an 

almost unique insight to thc microscopic eoupling terms. 

13.3.2 Antiferromagnetic Excitations 

Antifcrromagnetic order results from a negative exchange constant J in U = -2J Lp s..p' 

,s:p+l' The anti-parallel alignment of neighboring spins (HHHHt), however, leads to a 

magnetic ccll which is lm'ger than the nuclear olle. A classical example is given by the 

antiferromagnetic order observed in MnO at 120 K (Shull et al. 1951). Again one may 

find excitations in an antifcrromagnet) whieh have lower encrgy than thc simple flip of a 

single spin. Again each spin deviates from thc ordered position by a component given by 

a plane wave. The ealculation of the antifcrromagnctic dispersion more closely resembles 

that of the phonon case : 

4JS 
w2 (q) = (T )2(1 - cos2 (q . a)) 

4JS . 
w(q = -Tlsm(q' a)1 (13.25). 

In contrast to the ferromagnetically ordered structure and in close similarity to t.he 

acoustic phonons) thc frequency becomes linear in q, for sufficiently small q" Figure 16 

shows thc magnon dispersion observed in Rb~"InF3. 

In general both dispersion relations (13.23) and (13.25) are not gaped, the magnon 

encrgy vanishes for 9. approaching thc zone center, like in ease of an acoustic phonon. Für 
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Figure 16 rvlagnon dispersion in Rb!vlnF3 (from referencc [4]). 

the aeollstie phonon the zone-center limit corresponds to an infinitely small translation of 

the entire crystal wh ich does not cast an)' cnergy, since 110 force constant is stretched. In 

ease of the magnons the limit corresponcls to a rotation of thc ordered moment, which in 

the Heiscnbcrg-model does not involve an)' cnergy shirt (the interaction depcncls only on 

thc relative orientation). However, in general this model is not sufficient, there are always 

interactions favoring the oricntation of a ccrtain spin direction. These interactions yield 

a finite gap in thc excitation spectnull, however much smaller than thc spin Aip cnergj'. 

Antiferromagnetic materials have much less technical importance compared to fer­

romagnetism. However, antiferromagnetic correlations in metallic systems are often es­

sential for the understanding of the electronic proper ti es. For illstance the physics of 

high-temperature cuprate sllperconductors seems to be determined by the closelyness of 

the antiferromagnetic order in the insulating parent compounds. 

13.3.3 Crystal field excitatians far rare earth ions 

In the rare earth series oue fillds unpaired electrons in thc 4f-shell, whieh are strongly 

localized and therefore screened from the surrounding ions. In consequence the total 

momentUlll J remaiIlS a good quantum nu mb er. For a free ion the the ground state 

would be (2J + 1) times degcncrate. In a crystal this dcgellcracy is parti.lly lifted due to 

thc ~ weak - Coulomb-fields of the surrolluding ionic charges. The transitions between 

the single levels may be observed by inelastic neutron scattering. (This is valid for the 
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Figure 17 Crystal field scheme and measurcd energy scans in PrBa (T=1.5 K), [rom reference {GJ. 

crystal field splittings in transition metals tao, but duc to thc larger overlap of thc d­

orbitals thc exci ted levels in these cornpounds are usually to high in energy.) Ir the rare 

earth ions are sufficicntly dilu ted, interactions 3mongst thern may be neglected. Thc level 

frequencies show then HO dispersion and may be studied with time of ßight methods on a 

polycristalline sam pie. 

In figure 17 we show thc observed spectrum compared to thc crystal field scheme for 

PrB3 . The levels of Pr3+ with a J of 4 mal' split into not more than 9 levels. Thc local 

symmetry of the site occupied by thc ion in thc lattice determines wh ich levels may exist 

with wh ich multiplicity. However, thc symmetry cannot predict the sequence of the levels, 

for this purpose one needs a quantitative information far the surrounding flelds. The single 

levels are designated according ta the irreduciblc representations of thc loeal symmetl'Y 

group by r;. In elose resemblancc to cquations (13 .10) and (13.24) the differential cross 

scction arises from the sum of transit ion probabilities r j ---t r j ; these matrix elcments 

may be calculated within point chargc models. 

13.4 Conclusions 

Inelastic neutron scattcring is almost thc unique technique to observe lattice vibrat ions 

and magnetie excitatians thl'Oughout the whale Brillouin-zane. Thc maill part of our 

knowledge on these topics has indced been achieved by neutron studies. 
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Also the subject,s of present interest, Iike high-Tc-supereonductors, heavy fermions, 

quasi-erystals, C60 and compounds with colossal magneto-resistivity demand a dctailed 

analysis of their lattice dynamics as wel! as of their magnetism. Frequently the materials 

of current interest exhibit a large complexity; therefore their study requires a eontinuous 

developmellt of the experimental facilities as well as of the analysis methods. 

References 

1 N.W. Asheroft and N.D. Mermin, Solid State Physics, Holt-Saunders International 

Editions, Philadelphia (1976). 

2 H. Hitz and \V. Kress, Phonon Dispersion Relations in Insulators, Springer Verlag, 

Berlin Heidelberg New-York (1979). 

3 tvl.T. Dove, Introduction to Lattiee Dynamies, Cambridge University Press, Cambridge 

(1993). 

4 C. Kittel, Einführung in die Festkörperphysik, R. Oldenbourg Verlag, München (1983). 

5 G. Shirane, V.J. Minkiewiecz and R. Nathans, Journal of Appl. Physics 39, 3833 

(1968). 

6 A. Furrer, Magnelic Neutron Scattering, World Scientific, Singapore (1995). 

further suggestions 

P. Brüesch, Phonons: Thcory and Experiment.s I, II, III, Springer Verlag, Berlin Hei­

delberg New-York (1982). 

Landolt-Börnstein Band 13, Metalle, Phononenzustände, Elektronenust.ände and Fer­

miftächen, Springer Verlag, Berlill Heidelberg New-York (1981). 

- E. Balear and S.\V. Lovesey, Theory of t."lagnetic Neutron and Photon Seattering, Ox­

ford Seienee Publieatiolls, Clarendon Press, Oxford (1989). 

G.L. Squires, Thermal Neutron Scattering, Camhridge University Press, Cambridge 

(1978). 

13-25 









14. Soft Matter: Structure 

Dietmar Schwalm 

14.1. Intl'oductiol1 

The methods of small angle scattering (SAS) with neutrons and X-rays are broadly used for 

investigations of mesoscopic structures in condensed materials. Whenever, atomic dcnsity cr 

chemical composition inhomogeneities of mcsoscopic length scale exist in a sampie, this 

method ean in principle be applied. SAS is a complimentary method to transmission electron 

microscopy (rEM); rEM makes visible the microstmcture in real space while the SAS 

methods measure in reciprocal space and give quantitative data averaged over macroscopic 

large volumes. 

In this lecture the theoretical basis of small angle scattering with neutrons (SANS) 

should be developed for the topic of the physics of polymers or, as it is said today, of "soO" 

matter und should be c1arified with simple experimental examples. Since the end of 1939 the 

Illethod of SAS was mainly developed by Guinier and Kratky and applied far questions in 

metal physics. In one of Guinier's first experiments scattering from copper precipitates in 

aluminum was correctly interpreted alld the precipitates were identified as the origin of 

hardening in so-ca lied Duralumin. This type of precipitation are so-called Guinier-Preston 

zOlles; they are stil l subject of active research . . Today. neutron small angle scattering 

technique is mainly used for soft matter; the main reason might be the relatively simple 

possibilities of contrast variation using hydrogen and deuterium. whieh seaHer neutrons quite 

differently but do not change the chemistry ofthe polymer. 

14.2. Diffl'actioll of Neutrons at 3-Dimensional Pal'ticlcs 

In this part the basie equations of small angle scattering are discussed. Far qualitatively 

understanding in Figure 14.1 two neutron pencils of rays are depicted in two spheres of 

different size. From this figure it becomes c1ear that diffraction from the larger sphere ocems 

into smaller augles and therefore sm aller scaHering vectors Q. The basic equation of sIllall 

angle scattering is given in Eq.(14.I). 

(14.1) 
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with the macroscopic scattering cross-section d'E / dO in units of [cllf'], the sampie volume 

V, the !lumb er N of atoms in the sampie and the coherent scattering length bj of the atom i at 

the position f..,. . Olle can consider the resultant diffraction pattem as a coherent superposition 

ofspherical waves, emanating from single atoms with an amplitude determined by the 

28 

lJe 

(0 ) (b) 

Fig. 14.1: Two pencils ojrays oj l/te scatlering probe in two partie/es oj different size 

coherent scattering length. In the region of small angle seattering the relation Q <2n / a is 

always fulfilled wilh Ihe lalliec eOllslanl a. Then the sum in Eq.(14.1) ean be approximated 

aeeording to 

by an integral of the eoherent scattering length density per) ::: b, / 0 (atomic vohllne 0) and 

the phase faetor. In this approximation one get the basic relatiol1s!1;p jor SANS: 

dl: (A) 1 If d ( ) ;Q'I' dQ 19 ~ V V 3! P ! e -- (14.2) 

In afirsl example we eonsider an hOlllogeneous sam pie with the constant eoherent seattering 

lenglh density p(rl~p and volurne V. From Eq.(l 4.2) one gets 
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be approximated by aDelta function. Diffraction caused by the mean coherent scattering 

length density of a sampie against vacullm aceurs in the I/cm Q region and is lIsually 

subtracted from the cross-sectiOl1. So, olle gets the expression for the cross-section according 

to : 

(143) 

This fonn of the scattering cross-section fi. is the starting equation for the analysis of 

micellar stmctures, which we will 110t discuss in this lecture. 

14.3. Theory of Small Angle Scattering from linrar Polymers 

\Ve 1l0W consider the main features of diffraction from linear polymer chains. 

14.3.1 Diffrßction front a lincal' homo polymer 

As a model of a linear chain one considers a polygon of z vectors L, whose directions are 

statistically independent. Sueh a polygon ofa freely joint chain is depicted in Figure 14.2. 

R ---, 

Figure 14.2: Model 01 a Ireely joil1llinear chaill 

Each vector Lrepresents a monomer, which the chemical unit ofa polymer ofsegment length 

b. Such a chain caB also be represented by another polygon with larger vectors r: representing 

several monomers. Both polygons correctly represent the global properties of the chain as the 

end-to-end vector ß, which is evaluated from the sum of a11 vectors according to 
, , 

R = "r. ="r*. ~ L-I L.J- I 
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The probability timt a freely joint chain with z monomers takes a conformation with the end­

to-end vector R, is determined by the Gaussian distribution according to 

W(R> Z) ~ (_3 , )312 exp(-~). 
2nzb 2zb 

(14.5) 

On the statistical average the mean end-to-end distallce is zero and its mean square deviation 

is linear proportional to the number of monomers z . 

< R 2 >::::R ~. :::: b2 z 

The radius of gyration is given as R~ :::: R ~ / 6 . A linear "real" chain is different from a freely 

joint chain in so far as neighboring monomers Me correlated. This effect is cOllsidered by the 

parameter Cz in R ; :::: C
Z 

b 2z / 6 or expressed by the statistical segment length according to 

a :::: bJC: and the radius of gyratioll R ; :::: a 2 z/ 6 or respectively the mean square end-to-

end distance R~ ::: a 2 z determined from scattering experiments. So, a statistical segment 

length of polystyrene is determined as aps = 6.8A. As in Figure 14 .2 a realistic chains can 

therefore be represented hy a polygon with vectors of segment length a. 

Thc form factor of a linear chain measured in a SANS experiment is determined from the 

SUI11 of the phase factors from the monomcrs and an averaging over all possible chain 

configurations according to 

(14 .6) 

The meaning of the vectors & becornes c1ear from Figure 14.2. In a macroscopically large 

sampie the number of polymers is sufficiently large, in order to describe the polymer 

conformation with the probability distribution of Eq.( 14.5). Thc average value of the phase 

faetors between the positions i and j within the chain is calculated according to 

< expigßij >~ f d&ij w(R ij li - jl)exp(igß iJ ~ Wij (g) 

\""(Q) _ (_I' - 'I ~Q' ) - W 1'->1 'vIJ - exp I J 6 - 12 . 

For the form factor one gets 
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P(Q)=~ i:expH- iI-"-'- Q' ) 
z ij 6 

and after same calculation olle gets the weil known Debye formula 

2 
P"'''.''DO, (Q) = ,[x -I + exp( - x)] 

x 

(14.7) 

(14.8) 

with x = R.'Q'. In Figurel4.3 the form faetor aeeording to Debye's formula has been plotted. 

1.0 
Debyesehe Fonnfaktor 

0.8 

~ 
0.6 

CI 
~ 
p.. 

OA 

0.2 

0.0 
0 2 4 6 8 10 

, 
x = (R Q) • 

Figure 14.3: Debye/arm/acID" oi a linear chain 

The symbol beside Eq.(14.6) represents the form faetor of a linear ehain determined 

exclusively by i1lfl'omolecular phase factors. Such symbols shollid help to make transparent 

the mealling of scattering laws of more complex polymers. 

There are expressions for the form factor in Eq.(14.6) being approximately valid in the 

regions of small and large scattering vector if compared with the inverse size ofthe polymer; 

they have a much simpler fonn and ean easily be used for the analysis ofthe scattering data. 

So in the region of small Q, e.g. Q «IfR. one finds 

PDb =I-.!.R'Q' or the Zimm approximation: P",,-'= I+.!.R ' Q' (14 .9) 
3 g 3 g 

as depicted in Figure 14.4a. From this plot Olle gets the radius of gyratioll and tiie scattering in 

fonvard direction according to Eq.(14.9), delivering the polymer molar volume and volume 
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FigureI4.4a: So-called Zimm representflf;OIl: lVi/hin/he Zillll11 approximation Ihe plot 0/ / IP 

versus Q' gives a straight Jor tile Debye Jorlll /actor. Tile slope 0/ tile straight lilie is 

proporliol1nllo Rg . 
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Figure 14.4b: "Kratky plot" 0/ Debye 's /orlll /actor:At Imge Q tile represelltatioll 01 
Q2 . P(Q) verstls Q gil'es Cl C0l1stall1 \Iallle. 
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fraction . In the region oflarge Q one gets the expression for Q» I/Rg 

PDb =2/(Q.R,)' (14. 10) 

and according to the representation in Figurel4.4b apower law Of scaling law with a slape of 

-2. The sealing law in Eq.(i4. IO) shows a so-ealled fractal dimensionality D~2. 

14.3.2. Polymer meUs 

We now consider a melt consisting of n linear polymers within a sampie volume Vs. The 

polymers are of the same type and consist of z monomers with the coherent scattering length 

b. In the sampie there are in total N = n . z monomers. The scattering cross section is derived 

from Eq. (14.1) and averaged over.1l confom,.tions .ccording to 

dl: b' I~ igril' b' ~ ,Orij 
-~-< L.. e - > =-L.. < e - - > 
dQ Vs i Vs ij 

(14.11 ) 

Now. Eq.{l4.11) can be spliued into an inlJ'(//lIoleclilal' and i11lermo!ecular interference terms 

P(Q) lind W(Q) according to 

and 

with the coherent scatterillg length density p = bin, molar volume V, the Avogadro number 

NA and the molar vohllne n of the monomers. The corresponding symbol for inter molecular 

interference is the following 

H 
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Equations (14.12) and (14.13) are deteonined by intra- und inlermolecular inlerferences as 

also made visible by the accompanying symbol. 

14.3.3. Babinet Principal 

Incompressible melts show no thermal density flucluations and therefore no diffraction can 

DCCur in such a single type polymer melt . The scaltering cross section musl be zero and 

following Eq. (14.13) one therefore gets the following relationship 

p(Q)~ - nW(Q) (14 .14) 

H 
representing the Babinet principal. 

14.3.4. Melt or deutel'ated and protonatcd polymers with chemically identicalmonomcrs 

or same segment length. 

We now discuss ablend of chemically identical polymers whose components are either 

protonated or deuterated. For further theoretical cOllsideration we introduce an occupation 

operator O"i with the following mcaning 

a ~ {I , 0 (14.15) 

The operator is G i = 1 and G i =0, ifthe monomer at the position i is deuterated and protonated, 

respective\y. The coherent scattering length of a monomer at the position i is then described 

as 

b; ~a; (bo - bH) + bH ~ a; ·lIb+b H 

This expression inserted into Eq.(14.1) gives 

and finally 

cfj; (Q) 1 'b~ iQr, b ~ iQr, 12 
- ::::-< U L..J rYje- + H L..J e- > 
dD. Vs ;:::1 ;=1 
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(14.18) 

with the partial structure faetor SDD. The symbol for Son has the following form 

and describes the intrawand intermolecular interferences between the deuterated monomers. 

Quite generally, the scattering cross sectioll can be described as a surn of the partial s(ruclul'e 

jactors according to 

~(Q) ~_I_ [b ~ SDD +2b DbHSDH +b :, s m, l 
dO Vs 

with the corresponding symbols 

D D H D H H 

~ H 
In ease of an incompressible mett the partial stmcture faetors are related according to 

Soo ::::: SHH = - SOf! 

and Ihus one gels in correspondence with Eq.(14.18) 

~(Q) ~ ilb ' s . 
dO Vs DD 

(14. 19) 

( 14 .20) 

(14.21) 

The definition of the occupation operators in Eq .(14. 15) implicitly contains the condition of 

incompressibility, as no ffee volume is included . The partial structure faetor of the deuterated 

monomers is given 

(14.22) 

with volume ffaction cI> of the polymer component D. Because of the Babinet principal one 

has z P(Q) ~ - nW and one gels 
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eil: (Q) ~ ~p2 <1>(1 - <1» V p(Q) 
dO N ' • ' 
~ S(Q) 

(1 4,23) 

K 

wilh the stmcture raetar 

S(Q) ~ <1>(1 - <1»V P"" (Q) , (14 ,24) 

So, the variation of contras! of chemically identical polymers enables the experimental 

detennination of the form raetor of a single chain in a melt of chemically identical polymers. 

In Figure 14.5 an experil11e11fal example is shown for a polystyrene melt. 

•••• d-PS/PS $=0,48 

V", =0,91-106 cm 3/mol 

102 
10~-'3~~-L~LU1LO_02--~~-u~ll1~~1~ 

Q [Ä- l J 

FigureI4 .5: Slruclure factar 0/ a 50% mix/ure 0/ polystyl'elle in double logal'ithmic 
repl'esenlatiol1. The power Iml' bellaviot al/arge is descl'ibed by slalislical chain 

14.4, H-D Polymel' blend in solution 

Ne>.:t we derive the scattering law of an isotopic polymer blend in solution. Again we 

introduce occupation operators with the meaning 

bj = bo 

bj ;::; bH oderbo 

(14,25) 
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and which lead to the scattering cross sectiOil 

~(Q) = ~ <1±(bDaDü;)+ bHaH Ü;) + bo(l - aD(r;)-a H (u)k2'; I' > 
dO: Vs i"J 

which after some calculation leads to the form 

(14.26) 

and, finally, to a Sllm of partial structure factors weighted with corresponding contrast factors 

according to. 

The partial stmcture factors are given as: 

D(H) D(H) 

SDD = <l>nz'P(Q)+<I>'n 'z'W(Q) 

Sm; = (I-<I»nz ' P(Q)+<I>'n ' z' W(Q) 

H SDH = <I>(I - <I»n ' z' W(Q) 

H D 

and finally one delivers the followillg scattering law 

~(Q) = ~ tb D - b" )'<1>(1- <I»n z' p(Q)+ (bp.~ - boY!n z' r(Q)+ n' z' W(Q)ll 
dQ V, 

(14.27) 

(14.28) 

(14.29) 

(14.30) 

(14.31) 

For this systems the Babinct principal is not valid as it contains polymers and solvent 

molecules. Ir Olle matches the scattering length of the solvents and the averaged Olle of the 

polymers (bp,,. =<I>b D +(I-<I>)b,,) according to bp," =bo ("zero" contrast), the second term 

in Eq.(14 .31) does not contribute to the scattering and, consequently, olle again detemlines 

the form factor of a single chain according to 

dl: 
-(Q) = c · <1>(1- <1» Vr(Q)K 
dQ 

IH I 
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with c the volume fraction of polymers in solution and the co nt rast factor K . This again is a 

demonstration of the possibilities of contrast va riation with neutrons allowing to measlIfe the 

form faetor P(Q) of a polymer ehain in solution. 

14.5 Scattcdng f .. om • Block Copolyme .. 

Figure 14.6: Presenlalioll ~r a Diblock Copolymer 

We 1l0W derive the scattering law of a linear polymer, consisting of the two blocks "A" and 

"Bu of different polymers and which are symmetrie with respect 10 the number of the 

monomers z = 2zo = 2z ll . The scattering cross sectiOll is given as 

dE =J...- lIb 'S 
dQ V 0 0 , 

(14.33) 

with the rclalionship SDn = SHH = -SOH because of assuming an incompressible melt . The 

variolls partial stmcture faclors are given as: 

(14.34) 

(14.35) 

(14 .36) 

The symbolic representat ion of the Siructure f.,ctor of diblock co polymers has the form 
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For the intramoleeular and intennoleeular terms of interferenee one has roo = PI-D-I and 

WT = Woo = W~fH = WOH · Beeause of Z2 PT = Z(Z/2YPDD + 2(z/2YPoli the form faetor of 

the total ehain is given as 

(1437) 

wluch \Vith 11 WT ~ - PT (Babinet principal) finally leads to the partial stmcture factor 

(14.38) 

and the scattering eross sectiOll 

(14.39) 

deseribed as the differenee of the intramoleeular form faetor of a single block (POO;PDIi ) and 

the total ehain ( PT). These foml faetors of a symmetrical dibloek eopolymer are plotted in 

FigureI4.7. An interference peak is observed whose position is aceording to Q* ·Rg =1.9 

rel.ted to the radius of gyration and Q* therefore has to be observed at 1.9·\0-2 k ' . The 

observation of an interferenee peak in dibloek eopolymers becomes plausible from the 

eonsideration, that eomposition fluetuations of the blocks A and B can only oeeur on the 

length seale of the polymer. As an experimental example we show the stmeture faetor of a 

melt. 

0.20 

0.8 Po, Diblockcopol>mer I I Diblockoopol)ll1cr I 
0.15 

0.4 R!~ IOOA 
Q' 

g 0.0 
p & 0.10 

P- O::' 

-0.4 -P, R." JOoA 0.05 

-0.8 

0.00 
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.D4 0.06 0.08 0.10 

Q[A'] Q [A'] 

Figure 14.7: Form jactor 01 a symmetrical diblock copolymer 
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Figure 14.8: Sl/"IIcIlIl"jaclol" ~r a PEP-PDMS diblock copolYlllel" 

"14.6. Binary Melt witli different Polymers 

PEP-POMS 

T=170OC;P==13 65 bar 

Thc structure raetar of an ideal binary melt is evaluated within the "random phase" 

approximation (RP A) according 10 

(14.40) 

The inverse structure raetor is obtained from the sum of the inverse form factors of both 

"ideal" clmins weighted with theif molar volumes and vohllne fractions. Eq. (14.40) 

corresponds to an ideal solution of two components with mixing energy being zero and 

therefore 110 phase transition phcnomena. Those ideal solution are usually 110t fallnd in reality; 

as demollstrated in Figurel4.9 cven isalopie mixtures of chemically identieal polymers show 

phase decomposition at low temperatures beeause of a small but finite ntixing interaetion 

energy. For polymer blends such interaction is described by the Flory-Huggins (F-H) 

parameter 

(14.41) 

The FH-parameter has the meaning of a free enthalpy of mixing with the enthalpie and 

entropie terms rh and r o > respeetively. In the RPA approximation the interactioll parameter 

added according to 

(14.42) 
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Figure14.9: Phase diagrom aud FIOly-Huggil1s il1leraclioll parameIer 0/ an isotopic d-PSIPS 
blel/d 

the stmelure faelor of an ideal mixt ure. For small Q Eq . (14.42) ean be approximated in 2illllll 

approximation according 10 

S-I (Q) ~ S-'(O) + AQ' (1 4.43) 

with the inverse structure factor S-I(O)=2[rs - r] at Q=O and the FH-parameter at the 

spinodal tempcrature, 2fs = _1_ + ( 1) , being inversely proportional to both chain 
<l>VD 1-<1> VII 

molar volumcs and being related to the translatorial cntropy of mixing. In experimental 

reality olle tries to measllre al suft1cienlly small Q in order 10 be able to use Eq.(14.43) far 

analysis of the scattering data. As shown in Figure 14.9, the spinodal tcmperature represents 

the phase boundary betwecn the metastable und unstable two-phase regions and the unstable 

region touches the stable one-phase region at the critical point. In the single homogeneous 

phase at high temperatures the FH-parameter is smaller than f c = 2/ V in accorda.nce with 

tlte Gibbs eondition of stability of a positive S(O); S(O) represents a susceptibility whielt 

aceording to the flllctllation-dissipation theorem is related with the free enthalpy of mixing 

liG aeeording to 

S-I(O)~ a' (liG /RT) . 
8<1>' 

(14.44) 

In ease of f > rc the system decomposes with the mechanism of spinodal decomposition in 

two macroseopieally large phases which one polymer cOlllponent dominating. The free 

enthalpy of mixing of polymer blends was originally formulated within the mean field 

approximation by Flory and Huggins, it gives the same resliit as the random-phase 
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approximation being a mean field approximation as weil. According to RP A the slope A in 

Eq.(14.43) is related to the square of the radius of gyration of both ehains assumed as being 

undisturbed. 

Next we diseuss an experimental example of a binary blend of a deuterated polystyrene (d­

PS) und polyvinylmethylether (PVME). This mixture shows the specialty being miscible at 

low temperatures and decomposes in two macroscopic phases at high temperatures. The 

reasons are a preferred interaction between PS und PVME (rh < 0) and an increase of the 

total free volume during decomposition (ro < 0). The free vollllne is relatcd with the entropy 

f o and in case of f o > rc becomes dominant and the driving force for the process of 

decomposition at high temperatures. The SANS experiments were exc1usively performed 

within the homogeneous one-phase region. In Figure 14.10 S(Q) is plotted in 2il11111 

representation (a) and IIS(O) versus Irr in (b). One c1early realizes the inereasing scattering at 

higher temperatures (the inverse S(Q) is of course decreasing), from which Olle can conc1ude 

to strenger thermal composition fluctuations. The inverse susceptibility is linearly 

proportional to Irr, it is zero at the spinodal respectively at the critical point, and its slope 

directly gives l h . The observed linear shape of S-I (0) with 1fT is representative for the 
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scalillg behavior of the susceptibility \Vithin the universality cJass of mcan field 

approxinmtion (Ihe corresponding critical exponent is'Y = 1). 

This experiment follows the mean field approximation quite weil and can be sufficiently 

weil interpreted with the theoretical approach prescnted hefe. The eeason is the relatively 

(arge molar volume ofseveral IOsem J Imol. which allows observations ofdeviation from the 

mean field approximation only VCI)' near (abaut lK) the critical temperature. \Vhen the 

thermal COIllpositiol1 fluctuations are sufficiently large. 
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15. Polymer Dynamics 

D. Richter 

15.1 Introduclioll 

In aUf cvcry day Iife plastics er polymers playa very important role. Polymerie materials are 

llscd, because they are durable, cheaply 10 produce. easily 10 process aud because they exhibit 

vcry versatile and favorable mechanical properties. e.g. depcnding on temperature Cf time Ihe 

same polymer may bc yiscosc, mbber clastic, very tough witii high impact strength cr cven 

brittle. In the simples! case polymers are lang linear chain molecllles, build from olle 

repeating unit, the monomer; such polymers are called linear homopolymcrs. 

Since in general rotation al isomers may be easily fOntlcd at each bond of the chain backbonc, 

lang chain polymers possess a very large numbcr of intcmal degrees of freedom which 

contribute importantly to the entropie part of the moleeules free energy, At length seales 

somewhat Iarger thall the size of the monomer, the detailed ehemieal stmcture of the ehain 

building blocks eeases to be of importanee and very general properties detemlined by the 

statistieal meehanies of the ehains prevail , e,g, (he eonfonnational entropy follows from the 

nllmber of possible arrangements of a chain sequence in spaee, Aeeording to the centrallimit 

theorem the most probable arrangement is that of a Gaussian eoil, e,g, the polymer chain 

perfonns a random walk in space, If pieces of the chain are now stretched an entropie force 

arises and aets on these stretehed segments endeavouring to res tore thcm to the most probable 

eontorted state. Such forces are the basis ofmbber elastieity. 

This lecture aims to identify general prineiples of chain motion on a moieeular seale whieh 

underlie the maeroscopie mechanical properties, and presents concepts and experimental 

results on these motional meehanisms in space and time. Thereby, we rest riet ourselves to 

melts of homopolymers. 

Neutron seattering with its spaee time sensitivity on a moleeular and atOlnie seale unravels the 

details of the moleeular motions in question, Commeneing at the seale of the single bond, 

where movements take place at a pace as in normal Iiquids, quasielastic neutron scattcring 

(QENS) provides insight into loeal relaxation processes. At longer lengtll seales first the 

cntropy driven Rouse motion and at cvcn larger distanccs the effect of cntanglement 
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conslrainls duc to the mutual inlcrpcllclralion of ehains comes inlo Ihe observation range. The 

most powerfulleclmique suilable for these investigations. the neutron spin echo spectroscopy 

(NSE) operatcs in the time domain and uncovers a time range from about 2ps to 200m snd 

accesses l110mentum transfers between O.OIÄ·! and 3A·!. The second important high 

resolution technique is neutron backscattering providing an cnergy resolution of about J pe V 

and covering a Q-range 0.1 5 Q 52,t'. 

This lecture naturally is not able to review exhaustively tlte contribution of high resolution 

neutron seattel'ing to the fjeld of polymer melt dynamics, but ralher wants in an exemplary 

way to display importatlt eontributions by example. First in Chapter 2 we will discuss ncutron 

results on the loeal ehain dynamies, addressing self and pair correlatioll funetions. These 

experiments are of impol'tanee in conneetion with thc glass transition in polymer metts. Then 

in Chapler 3 we deal with Ihe entropy driven dynamics, the Rouse motion. Chapter 4 

disclisses Ihe large scale chain motion eluding to Ihe reptatioll process and Chapter 5 finally 

concludes this lectllre. 

15.2 Loc.1 dynamies 

The c1assical relaxation processes in polymers, Ihe a- and ,ß-relaxations, have been studied 

since more than 50 years by spectroscopic teclmiques, like dielectric speetroscopy, 

meehanieal speetroseopy and NMR. Fig.15.1 displays a typical outeome ofsueh experiments 

for the ease of polybutadiene (PB) [-e, H,-)". The dominant relaxation proeess, the a­

relaxation, is related to the macroscopic flow and freezes at a finite temperature, the glass 

transition temperature Tg. Aside from this proeess a secondary relaxation, Aloll" departs from 

the a-relaxation at a tempcrahlre about 20% above Tg• This relaxation displays an Arrhenius 

behaviour and passes unchangcd throllgh the gl ass transition. 

As already mentioned. the a-relaxation is behind the viseous flow of polymers. Hs relaxation 

function may be phenomenologically dcscribed by a stretched cxponential 

?la(,)~exp{-(-' )'} 
TKII'JI' 

(15.1) 
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TKWII' is the Kohlrausch-William-Watts relaxation time and jJ< J the stretching exponent. 

TKU'lI' in good approximation follows a Vogel-Fulcher temperature dependcncc, 

(15,2) 

Thc temperaturc offset in the dCllominator of the exponent leads to a divergence of TKWII' at 

Ta, a temperature below Tg which, however, may nevcr be reachcd in equilibrium. 
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Figure 15.1: Relaxation landscape ofPB. aand !lsfoM' correspond to the c1assical relaxation 
processes and are treated here. 

Thc dielectric prclaxation is considered to be a result of a partial reorientation of the 

molccular dipoles in the substanee. It is intcrpreted as a loeal activated proccss, where thc 

dipole hops between two positions separated by an activatioll energy E. The relaxation time 

follows an Arrhenius behaviour 
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(15.3) 

due to the disorder in the material the activation energies E are distributed around an average 

valuc Eo. For the distribution functiOJl in general a Gaussian is assumed. 

(15.4) 

Empirieally it is found that the width orT) deereases with inereasing temperaturc. Though 

such processes have been investigated weil by spectroscopic techniquesJ their molccular 

origin is still unciear. Here QENS with its ability to providc space time resolution on thc 

proper seales contributes 10 a further exploration of the molccular mechanisms behind these 

relaxations. 

15.2.1 Dynamic structurc faetors 

We commence with the derivation ofthe dynamic stmcture faetor for the ,8-process which we 

cOl1sidcr as a hopping process between two adjacent sitcs. For such a process the self 

correlation function has been derived in the lecture on quasielastic scattering, it is given by a 

sum oftwo contributions. 

S (Q I)=.!. [1+ sin(Qd)]+.!. 
, '2 Qd 2 [

I Sin(Qd)] exp(-~) 
Qd T(E) 

(15.5) 
. . 

Sl~el 

Here d is the distance bctween the two sites and r(E) is the jump time corresponding to an 

activation ellcrgy E. The eomplete seaHering fUlletioll is obtained in averaging Eq.[15.5] with 

the barrier distribution funetion g(}:.; obtained e.g. by dieleetric spectroseopy. The Q­

dependenee of the two eontributions to Eq.[ 15.5] is displayed in Fig.15 .2 as a fUlletion of 

Q (d = I.5A). Fmm the oscillation of both eontributions with Q the jump distance may be 

obtained. The associated time seale may be found from the time deeay oftlte inelastic part. 
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Figure 15.2: Elastic and inclastic contribution to the incoherent scattcring function for jump 
motion betwcen two sitc. Thc Figure assumcs a jump distance of l.sA. 

Thc associated pair correlation functiol1 is more dirneult to obtain. since now we have to deal 

with a change of configurations of atoms falher than with single atom jumps. The conceptual 

difference between the pair and the self correlation function for jump processes may be 

visualizcd most easily considering rotational jumps. Let us rcgard e.g. the 1200 rotational 

jumps of a methyl group around its symmctry axis. An incohercnt study would revcal the 

atOlnic jumps of the associated hydrogcns. Tlte pair correlation function reneets the change of 

atomic configurations before and after the jump. Since a 1200 jump does not change the 

configuratioll. a cohcrent scattering experimcnt would not rcveal anything. 

Back to the pair correlation function for the ,8process. where we will introduce a simple 

approximation. We know that far t = 0 the pair carrelation function is reflected by the static 

slmcture factor S(Q). Therefore for t ~ 0 Ihe corresponding pair correlalion fllnction for Ihc fJ­
process must reveal S(Q). We now assume that the inelastic scattering is related to 

uncorrelated jumps of the different atol11s. Then all interferences far the inelastic process are 

deslructive and Ihe inelaslic foml faclor should be identical to thai of the self correlalion 

function. For the narmalized dynamic structure faetor far the ,Dprocess we arrive at 

( 
S (Q) - s.'''' (Q) + S",' (Q) e -''' '(t)) 

S(Q) S(Q) ,(tl 

(15.6) 
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This incoherent approximation does not reveal e.g. symmetry related cancellations, but 

displays a major feature of the corresponding dynamic structure factor, namely the relative 

suppression of the inelastic contributions from loeal jump processes at the maximum of the 

stmetnre faetor. Fig.IS.3 displays the situation for polybutadiene. There a ,ß-proeess 

eorresponding to a jump length of d = I.SA has been found. The eorresponding inelastie 

dynamie slmcture faClor is strongly reduced at the position of the first peak, while it 

eontributes strongly at higher Q. Fig.IS .3 suggests a Q seleetivity for the different relaxation 

processes: al the structure factor maximum local jump processes should not contribute alld the 

relaxalion due to flow should dominale. On the other hand at targer Q, in particular in the 

minimum ofthe structure factor, the secondary relaxation should reveal itself. 
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CI 0.6 ~ 

r/) r/) 
~ -- 10 0; 0.4 ~ 

c 
'(,j 

0.5 0.2 
d = 1.5 .\ 

0 0 
0 2 3 

Q (,\."1) 

Figure IS.3: Stalic slructure factor S(Q) and normalizcd inelaslic contribution S{MI to 
S(Q) 

S(Q.t1J)/S(Q) for PB. 

We now assume timt Ihe a- and the ßrclaxation are statistically independent. Thcn, in real 

space Ihe joint correlation function is given by a convolution of the corresponding funclions 

far bath separated processes. In Q-space this convolution becomes a product and we may 

writc the tOlal scattering function as a product of the Slmcture factor duc to the a- and fJ­
processes. 
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S;~;) = S. (Q,I) SP(Q,I) I S(Q) ( 15.7) 

The approximation behind Eq.[15.7] is called Vinyard approximation and approxil113tes lhe 

proper pair correlation function by its self counter part. The self correlation funetion for a 

diffusive process relales directly to the mean square displacement. 

(15.8) 

where (/,2(1)) is the mean sqnare displaeement of the fl owing partiele. Aeeording to 

Eq.[15.1] this should bc deseribed by a stretehed exponential with the eonsequcnee 

and T KJl1f = Q2IPD~- IIP (15.9) 

the eombination of Eq.[15.8] and [15 .9] invokes sublinear diffusion of the polymer segments 

as the undcrlying reason for the strctchcd exponential behaviour. Its signaturc is apower law 

depcndcnce ofthe Kohlrausch-William-Watts relaxation limes TKU11' wilh an exponent 21ft 

15.2.2 Experimental resulls 

15.2.2.1 Self eorl'elation funetion 

We commence with thc secondary relaxat ion taking polyisobutylene as an example. Fig.15.4 

presents the relaxation map of PIS , The solid line corresponds to the dielectric P.relaxatioIl, 

the dashed line named "represents NMR restilts interpreted as a methyl group rotation. rand 

l' are theoretically predicted relaxatioIl mechanisT11 s. In the dynamic regime, where thc Q­

relaxation is too slow to contribute, neutron backscattering has been employed, in order to 

unravcl details of the p'process in this polymer. Fig. 15.5 presents as an example a speclrum 

taken at T :::: 270K and Q = 1.7A- 1
• The spectnull is characterizcd by a narrow peak, wh ich 

ncarly coincides with the instrumental resolution fllnction (dashed line) and a broad foot 

revealing the relaxational bchaviour. Such a spectral shape is typical for broad distributions of 

relaxation times, where only apart of it is resolved in the spectfUm. 
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Figure 15.4: Relaxalion map for PIß. 
T marks the a-trace, • relntes to 
dieleclric relaxation experiments on 
Ihe prelaxalion, • restills from 
QENS-experimenls. 

Figllre 15.5: Backscatterillg spectnull 
from PIB al 270K at a Q-value 
Q ~ 1.7 A. The dashed line gives Ihe 
resolution function, whilc the solid 
line displays Ihe fil wilh Ihe model 
(sce lexI). 

Figure 15.6: EISF for PIß (.: 250K, .: 270K). Solid fines : EISF for 
melhylgroup rotation, dashed lines: 
fil result for a jump distance 
d ~ 2.7A. 



Fig.15.6 displays the elastic intensity observed for PIß as a function of Q. The data were 

eorreeted for multiple scattering and fitted with Eq.[15.5). This elastie ineoherent stmeture 

faetor (EISF) (see leeture Quasielastie Scattering) reveals a jump distance d ~ 2.7A. For 

comparison the solid Iincs display the prediction for methyl group rotation, which was 

invoked by NMR speetroseopy. Obviously the neutron data point into the direetion of a larger 

motional amplitude. 

The squares in Fig.15.4 display the neutron results for the ptime seale. Within a faetor of2 

they agree with the diclcctric spectroscopy results. Since the undcrlying process has an 

amplitude of 2.7A and is also dieleclrically activc. it cannat be understood as duc to a 

mcthylgroup rotation alone. A possible interpretation is a combined back bane and methyl 

motion which is also supported by simulation results. 

Wc now turn to the a-relaxation and ask, whether the sub linear diffusion argument is 

supported by quasielastie .neutron scattering. Fig.15.7 displays Kohlrauseh-William-Watts 

relaxation rates obtained for four different polymers, polyvinylether (PVE) at 340K, 

polyisobutylene (PIß) at 365K, polybutadiene (PB) at 280K and polyisoprene (PI) at 340K . 

Figure 15.7: 

.. .. 
10 • • "'-

~ 

,-., 0 
Vl 
t=l • '-' PVE 340K ~ 
b' 
'-' 

PIB 36SK 
• PB 280K 

0.2 0.4 0.6 0.8 1 PI 340K 

(TKlI'lI't for 4 different polymers as a funetion of Q. The solid lines displaya 
Q' power law. 
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In order to test Eq.[15.9) the relaxation rates have been exponentiated with the exponent fJ, 

obtained from the stretching of (he relaxation functions in these polymers in dielectric 

spectroscopy. According to Eq.[l5.9), I' should be proportional to Q'. rhe solid lines in 

Fig,15.7 display this power law relation. As may be seen, in al1 cases within experimental 

errar Ihe experimental relaxation times again obtained by backscattering spectroscopy follow 

Ihe predicted power law bchaviour. Tltus, the experimental evidence supp0l1s a sub linear 

diffusion process as undcrlying the a-relaxation. We remark timt this result is in dis agreement 

with assertions that Ihe stretched exponential relaxation function of the O'.-process originales 

from heterogeneaus motion al processes, wltere polymer segments in different parts of the 

sampie would relax at different relaxation rates. 

J 5.2.3 Pair cOl'I'clatiol1 function 

The dynamic pair correlation functiOll for polymer relaxation has been studied thoroughly on 

polybutadiene as a fUl1ction oftemperature and momcntum transfer. Fig.15.8 gives a synopsis 

of these resuHs. rhe dynamic data presented have been taken at the positions of the first and 

second peaks in the static stmcture faetor of this polymer. As may be seen from the middle 

part of Fig.15 .8 the first peak of the static stmcture faetor moves strongly with temperature. 

This peak originates from interchain correlations, where weak v. d. Waals interactions lead to 

themml expansion. The second peak relates mainly to intrachain correlations as may be seen 

from the temperature independence of its position indicative for covalent bonds. The 

temperature dcpendent relaxation spectra were rescaled in thcir time dependencc with the 

characteristic time for viscosity relaxation T" (actually the time dependent monomeric rriction 

coerticient was used, see next paragraph). By this procedure the time correlation functions at 

the first peak assemble to a master curve, showing that the dynamics at the interchain dislance 

follows the same relaxational behaviour as the macroscopic flow. On the other hand as 

evideneed by the lower part ofFig.15.8 at the second stmeture peak, such a scaling does not 

reassemble the dala points 10 a master curve. Obviously the dynamics 3t the second peak at 

higher Q follows different dynamies. 

15-10 



. (a) 
~~nO.o~ 

0.8 '~ 
~ 

[Jo(§ ~u. 

0.6 

O~\. '" 
~ 0.4 

'" ~\ 0.2 
o~ 

0 11' , !I 11" ! , "11 "6> 

10'4 10') 10"2 10,1 10' 10' 

tI'tT) 

8104 (b) 

~ 
" 0 6104 
~ 

8 
i7> " 160K .. 

4104 

l . - 4K 

0 2 3 
Q (k') 

• 
~ "~::: •• 1. • (c) ~ y ~. ~~ ~'lt"" •• 

0.8 , ... '. '~. 
Ci 

. . ... " 
8 0.6 I 

'" 
~ 0.4 , 
'" 

0.2 

0 
10,12 IO- JO 10'8 10< 104 10'2 10' 10' 

, " " 
Figure 15.8: NSE speetra from PB taken at the first and seeond strueture faetor peak. The 

time is rescaled with the temperature dependence from flow relaxation. Center: 
S(Q) for different temperatures. 

Fig.15.9 displays the temperature dependenee of the eorresponding relaxation rates. \Vhile the 

data at the first peak niccly agree with the temperature dependence of the a-rclaxation, as 

already evidcnced by the scaling, the relaxation rates taken at the second peak follow an 
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Arrhcnius temperature dependencc with a same activation energy as timt ofthe eorrcsponding 

dicleetrie ,ß-proecss. 
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Figure 15.9: Relaxation rates at the first and seeond stmeture faetor peak of PB in an 
Arrhenius rcpresentation. Solid lines: a- and fltraees for this polymers. 

An evaluation of the stmen"e faetor following Eq. [15.6) and [15 .7) reveals a jump distanee 

for the ,ß-process of d = 1.5A. It also shows that the assumption of statistically independent ll'­

and prelaxatiolls is supported by the temperahll'c and momenhun transfer dependent speetra. 

15.3 Entropy driven dynamics - the Rouse regime 

As outlined in the introduction, the eonfonnational entropy of a ehain acts as a resouree for 

rcstoring forees for ehain confonnations, deviating from themml equilibrium. In this Chapter 

wc deal with these entropy driven dynamies in terms of the Rouse model and prcsent NSE 

results on the spaee-time evolution of the Rouse relaxation and finally diseuss reeent 

moleeular dynamie simulations whieh have been perfonned in parallel to NSE experiments, 

in order to explore the limits ofthe Rouse pietl.lre. 
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15.3.1 Entropie fOl'ces - the Rouse model 

As the simplest model far chain relaxation, the Rouse model considcrs a Gaussian chain in a 

heat bath. The building blocks of such a Gaussian chain are segments consisting of several 

monomers, so that their end 10 end distallee follows a Gaussian distribution. Their 

confonllations are described by vectors Q,t = [n - !:A+/ along the chain. Thcrcby !:.n is the 

position vcctor of the segment "11 ". The chain is describcd by a succcssion of freely 

connected segments oflength e. \Ve are interesled in the motion orlhese segments on a lenglh 

seale 

e < I' < Re, wltere R/ = n e2 is the end 10 end distance of the chain. Thc motion is described by 

a Langevin equation 

dr 
So---="- = V',F(r,)+ f (t) , dt -, (15 .10) 

where (0 is the monomeric friction coefficicnt. For the stochastic force .fn(t) we have 

(L(t))=O and a, and jJ denote the 

Cartesian components of [. F(r,J is Ihe free cnergy of thc polymer chain. The force term in 

Eq.[l5.10] is domina ted by the eonfonnation.1 entropy of thc ehain 

where W({!:II}) is Ihe probability for a chain conformatioll kll} of a Gaussian chain of 11-

segments. 

__ 3_, exp { }'" 2rr e (15 . 11) 

With the boundary eonditions offoree free ends Eq.[15.10] is readily solved by eosine Fourier 

transformatioll, resulting in a speclrum of normal modes. These solutions are similar to e.g. 

the transverse vibrational modes of a linear chain except that relaxational motions are 

involved instead ofperiodic vibrations. The dispersion oflhe relaxation rates J/rp is quadratic 

in the number of knots p along the chain. 
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(15.12) 

where TR is the Rouse time - the langest time in the relaxations spectrum - alld IV is the 

elementary Rouse rate. The mode correlation fUllction for the Rouse modes is obtained as 

(15.13) 

( .a() .P ( ))_ .0 2k.T 
'\0 t -'0 0 - uaP --I 

Nt;, 

Thereby x; is the a -component of the number p nennal mode alld x; is the ceutTe of 1113SS 

coordinate. In order to study Brownian motion, Ihe segment corrclation functions in the real 

space t,,~2. (I) = (( I~ (I) -I~ (0))') are required. They are obtaincd by retransformation of the 

110n11al coordinates Icading to 

4Nf' N +-,-L: 
n p .. L 

1 -cos 
p' (PIr 111) (PIr 111) (1 (P'I)] -- cos -- -exp--

N N T, 
(15.14) 

in Eq.[15.14] we use the fact that the mean square displacement of the centre of mass 

provides the diffusion constant. For the special case of the self eorrelation function (/2 = 111) 

L1J'nn (I) revcals the mC8n square displacement of a polymer segment. We obtain 

(15.15) 

In contrast to normal diffusion 81~ does not grow linearly, but with the square route oftime. 

For the translational diffllSion coefficient DR =kBTIN(o is obtained. DR is invcrsely 

proportional to the number of friction perfonning segments. 
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By meaus of neutron scattering two different correlation functions may be accessed. In the 

ease of coherent scattering, all partial waves emanating from different scattering centres are 

capable of interfcrcllee - the Fourier transform of the pair correlation function of a single 

chain is measurcd. In contrast incohcrent scattcring, where the interferences from partial 

waves of different scatterers are dcstnlctive, measures the self correlatioll functiOI1. The self 

eorrelation function leads directly to the mean square displacement ofthe diffusing segments. 

In Gaussian approximation for t < TR we have 

(15.16) 

in thc case of coherent seattering, which observes the pair correlation fUllction. interfercllecs 

from scattering waves emanat ing for various segments complicate the scattering functiOlt. 

With Eq.[15.14] we obtain 

S(Q,t)=~exp [-Q1DRt J Lexp {-.!.III -mi Ql el } 
N nm 6 

(15.1 ?) 

for small Q (QRE < I) the second and third terms are negligible and S(Q,t) describes the 

centre of mass diffusion of the chain. 

S(Q,t) = N exp (- DRt) (15.1 8) 

For QRE > 1 and t < 'R the internal relaxations dominate. Converting the sums in Eq.[15.1 ?] 

to integrals and after some algebra de GelUlCS has derived an expression far the dynamic 

structure factor. 
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S(Q.t) = 1,2, }'" exp (-II-(ni)"'" (lI(nRtr'")) 
Q e 0 

"(y)=2 j dr eos\x
y
) (I-exp(- x')) 

Ir 0 X 

(15.19) 

We obsel'vc Ihal in spile of Ihe eompliealed funelional fonn S(Q.t). Iike Ihe self eorrclalion 

funetion, only dcpends on onc variable, the Rouse variable. 

(15.20) 

Sincc lhere is 110 length scate in the problem, for different momcntulll transfers the dynamic 

stmcture factors are predicted to collapse 10 onc master curve, if they are represented as a 

function of Ihe Rouse variable. 

15.3.2 Neutron spill ccho I"csults 

Thc self correlation funclion of a Rouse chain was first observcd on polydimcthylsiloxane 

(PDMS). Sinee a slraighl forward sludy oflhe ineoherenl sealtering by NSE is very diffieult ­

duc 10 spin flip scattering a severe lass of polarizatioll oceurs leading 10 very weak signals -

the measurements of Ihe self correlation funetion werc pcrformed on high molecular weight 

deuterated PDMS chains which contained short protonated labels at random positions. In such 

a sampie the scattcring essentially originates from Ihe contrast betwecn the protonated 

sequenee and a deuterated environment and therefore is eoherent. On the other hand the 

sequenees are randomly distributed, so that there is no constmctive interference of partial 

waves arising from different sequences. Undcr these conditions Ihe scatterillg experiments 

measurcs the self correlation funetion. 

In Fig.15.10 Ihe eorresponding NSE speelra are plotted againsl Ihe sealing variable of Ihe 

Rouse model. The results for the different momentum transfers follow a common straight 

line. In Gaussian approximation far thc ease of Ihe self correlation funetion the scattering 

funetion directly measures the mean square segment displacement, wh ich aecording to 

Eq.[I5.15] obeys a square rool law in lime. This behaviour may be direetly read off from 

Fig.15 .10. 
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The pair correlation functiOll arising from the segment motion within one givcn chain is 

obscrved, if some protonated chains are dissolved in a deuterated matrix. Fig.lS.ll displays 

the obscrved speetra from polyethylethylene (90% dPEE. 10% hPEE) at a moleeular weight 

of M", = 20.000. The solid lines give the predietion of the dyn"mie stmeture faetor of 

Eq.[ 15.19]. Obviously very good agreement is aehieved. 
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Figure 15. 10: SelfeolTelotion for a PDMS melt T = looe. The data at different moment11m 

transfers are plotted lIS the sealing variable of the Rouse model «J " f). 
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Figure 15.11 : Single ehain struelure faetor from a PEE melt at 473K. The solid lines 
represent a joint fit with the Rouse model. 
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We now use these data, in order to investigate the scating prediction inherent in Eq.[lS.19]. 

Fig.lS.12 presents a plot of the data of Fig.lS.ll, now as a funetion of the Rouse scaling 

variable (Eq.[lS.20]). 
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Figure 15.12: Single chain stmcturc facter from PEE mclts as a function ofthe Rouse scaling 
variable. 

The data follow with satisfying precision the scaling predietion. The small deviations are 

related to the translational diffusion of the chains. This beeomes evident [rom Fig.lS.13, 

where the obtained relaxation rates !TQi are plotted versus Q in a double logarithmie fashion. 

Figure 15 . 13: Relaxation rates from PEE melis vs. Q for two different temperatures. 
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Thc dashed line gives the ROllse prediction r oc IV eQ4 . While at larger momcntum transfers 

the experimental results follow very weil this predictioll, towards lower Q. a systematic 

relative increase ofllte relaxation rate is observed. Including the diffusioll, we have 

(15.21) 

the solid lines in Fig.15 .13 represents the predietion of Eq.[15.21]. Perfeet agreement is 

obtaincd. 

15.3.3 Computer simulation 

In order to leam about the limits of the Rouse model. reccntly a dctailed quantitative 

comparison of molecular dynamics (MD) computer simulations Oll a 100 C-atom 

polyethylene ehain (PE) with NSE experiments on PE ehains of similar moleeular weight has 

been perfonllcd. 80th, the experiment and lhe simulation were carried out at T = 509K. 

Simulations were undcrtaken. ballt for an explicit (ea) as weil as for an united (lla) atom 

model. In the laUer the H-atoms are not explicitly taken into accmmt but reinserted when 

calculating the dynamic slmcture faeter. The potential parameters for thc MD-simulation 

were either based on quantUtll ehemieal calelilatiens or taken from literature. No adjusting 

parameter was introduced. Fig.15.l4 compares the results from the MD-simulation (solid and 

broken lines) with the NSE-speetra. The time axis thereby is sealed with the eentre of mass 

diffusion eoemeient, in order to eOITeet for the slightly different overall time seales of 

experiment and simulation. From Fig.15.14 quantitative agreement betwecll both results is 

evident. Fig.15.15 compares the same experimental data l whieh agreed quantitatively with the 

simulations with a best fit to the Rouse model (Eq.[15 .17). Here a good deseription is 

observed for small Q-values (Q .5'O.14A"), while at higher Q important deviations appeal'. 

Similarly also Ihe simulations ealUlot bc fit in detail with a Rouse structurc faetor. 
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Figure 15.14: NSE data from PE melts vs. computer simulations (see text) . 
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Figure 15.15: NSE data from PE m.lts in comparison to a best fit with the Rouse model 
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Having obtained very good agrecment bctween experimcnt and simulation, the simulations 

which contain complete information about the atornic trajectories may be furt her exploited, in 

order to rationalize the origin foe the discrepancics with the Rouse model. A number of 

deviations evolve. 

1. Aeeording to the Rouse model the mode eorrelators (Eq.[15.13] should decay in a single 

exponcntial fashion. A direct evaluation from the atomic trajectorics shows tllat the 3 

contributing Rouse modes decay with stretched cxponentials displaying stretching 

exponents ß of (1:/1= 0.96 alld 2,3:fJ= 0.86) 

2. A detailed serutiny ofthe Gaussiall assumption (see e.g. (Eq.[15 .16] and [15.17]) reveals 

that for I < TR dcviations oeeur. 

3. While the ROllse model predicts a linear time evolution of the mean squared ccntre of 

mass eoordinate (Eq.[15 .17]), within the time window of the simulation (I < 911s) a 

sub linear diffusion in fornl of a stretched cxponential with the strctching cxponent of 

/1 = 0.83 is found. A detailed inspeetion of the time dependent mean squared amplitudes 

reveals that the sub linear diffusion mainly originates from motions at short limes t < 'ZR = 

211s. 

The prediction of a time depcndent centre of mass diffusion coefficient has recently been 

eorroborated by NSE-experiments on short ehain polybntadienes. Fig.15.16 displays the moan 

squarc ccntre of mass displaccment from simulation eompared to the same quantity obtained 

from the dynamie stmcture factor at variolls Q-values. 80th the simulation as weil as the 

experimental data consistently lead to a weaker than linear time dependence of the mean 

square cent re of mass displacement. 

The overall picture emerging from this combined simlilational and experimental effort is, that 

foe chains, which should be ideal Rouse ehains, the model is capable of quantitativcly 

describing the behaviour only on time scales of the order of the Rouse time oe larger and 

therefore on length seales of the order of the radius of gyration of the ehains oe larger and in 

the regime, where the chains actually show Fickian diffusion. The self diffusion behaviour for 

limes smallcr than the Rouse time and the relaxation of the interna I mo des of the chains show 
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small but systematic deviations from the Rouse prediction. The origin of these discrepancies 

are traced to interchain interactiol1s. 
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Figure 15 .16: Mean square center ofmass displacement for PB chains in the mclt obtained 

from (1"(1))=--;' eIl S(Q,I). Solid line: simulation resull; dashed line 
Q 

(I" (I)) = D,t. 

15.4 Topologicallntcl'aclions - RClltalion 

The reptation model of dc Gennes, Doi and Edwards proeeeds from Ihe intuitive eoneept Ihal 

the motions of a chain in a melt are heavily impeded in directions lateral to their own profile 

by the other chains encircling thcm. The dominant diffusive motion proceeds along the chain 

profile. A chain twists and tums through a melt like a snake. The lateral restrietions are 

modelIed by a tube wilh a diameier d, parallel to Ihe ehain profile, whereby drelales to the 

plateau modulus of the melt. Thc restrietions of the motion through other c1tains are not 

effective 011 a monomer seale, but rather pennits lateral excursions on intennediate length 

seales (d = 50 .... 1), The experimental observalions for viseosity and diffusion ean be made 

directly comprehensible in this simple intuitive model. 

As it concerns the motion of an individual polymer, large scale lateral diffusion is quenched 

during the life time Td of the hJbe constrains. lnitially for short times the chain relaxes 

according to the Rouse picture nlltil thc mean square displacement reaches about the hlbe 
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diameter d. At that timc (T,) the chain has explored the lateral confinemcllt T
t 

== N; IV; with 
;r 

(d' ~ N,t'). For langer times / 5 TR the Rouse modes relax along the tube (loeal reptation). 

Thereafter longitudinal ereep govemed by the Rouse diffusion eoeffieient DR along the tube 

dominates. This proccss takes plaee until the ehain has len its original eonfinement at a time 

Td =: ..J....- N ). Beyond that time nonnal diffusion takes over. 
W 

For the meau square segment displaeement the reptation mechanism invokes asequellee of 

power laws in the time variable. For short times' < Te Rouse motion prevails and 1'11'2 oc ,112 

holds. Then in the regime of loeal reptatioll wc deal with Rousc modes occurring along a 

eontorted Gaussian tube. Tlte segment displaeement along the tube follows a ,In law, in rcal 

spaee considering the randorn walk nature of the tube, Ihis transfonns to a ,1 /4 law. After alJ 

Rouse modes have relaxed, Rouse diffusion along the eontorted tube takes plaee. A similar 

argument as be fore leads 10 apower law . 81'2 0:: tl12 and only for times longer than Td, the 

lifetime ofthe tubc constraints, 81' 2 oc I holds. 

The tube eonstraints also provoke a strang retardation for the single chain relaxations eausing 

a near plateau regime in the time dependent single chain eorrelation fUl1ction . Negleeting the 

initial free Rouse process de Gennes has formulated a traetable expression for the dynamie 

strueture faetor whieh is valid for , > Te, Le. Ollee eonfinemcnt effeets beeome important. In 

the large Q limit the dynamie strueture faetor assurnes the form 

S(Q,/) 
S(Q,O) 

{I-CXP [_(~d)']} exp(/iTo) elfe (~) (15.22) 

For short times S(Q./) deeays mainly duc to loeal reptation (first tem,), while for longer times 

(and low Q) the seeond term resulting from the ereep motion dornillates. The two time seal es 

are given by 
36 , ~---

o Wt'Q' 
d 3N't' S' I . f I . I' an Td = -'--2' IIlce t le ratio 0 t lese time sea es IS 

;r II'd 

proportional to N
J for lang chains at intemlcdiate times Te < t < Td a pronounced plateau in 
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S(Q,t) is predicted. Such a plateau is a signature for eonfined motion and relates not only to 

the reptation conccpt. Besides the rcptation model also other entanglemcnt models have beeil 

broad forward. We diseuss them briefly by eategories. 

I. In generalized Rouse models, the effeet of topologieal hindranee is deseribed by a 

memory funetion. In the border !ine ease of long cllains the dynamic strueturc faetor ean 

be explieitly caleulated in the time domain of the NSE experiment. In this class fall 

entanglement models by Ronca, Hess, Chaterjee and Loring. 

2. Rubber like models take entanglements literally as temporary cross links. Such an 

approach has beeil brought forward recently by des Cloiseaux. He assumes that the 

entanglcment points between chains are fixcd as in a rubber and that under lhe boundary 

eondition of fixed entanglemcnts the ehains perform Rouse motion. This rubber like 

model is conceptually elosest to Ihe idea of a temporary network. 

3. Recently in a mode coupling approach a microseopie theory describing the polymer 

motion in entangled melis has been developed. While these theories describe weil the 

different time regimes for segmental motion, unfortullately as a consequence of the 

necessary approximations up to now a dynamic strueture faetor could not yet becn 

derived. 

15.4.] Experimental observations 

Fig.15.17 presents measurements on allernating polyethylene propylene eopolymer melis at 

496K. The dynamie strneture faetors are plotted linearly against time and qualitatively obey 

the expeetation set by the reptation or other confinement models. For short times S(Q,/) shows 

fast relaxation whieh is transfomled into a slightly sloping plateau above about 15ns. The 

brokenline demonstrates the expected relaxation in the Rouse model. 
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Figure 15. I 7: Dynamie stmcture factor of • PEP melt far different Q-values. Solid !ines: 
Ronea model; dashed !ine: Rouse model at lhe largest Q-value. 

In Fig.15.18 the same data are plot1ed versus the scaling variable of the Rouse modcl 

(Eq.[J5.20J). In contrast to Fig.15.12 the sc. led data da not follow a eommon eurvc but are 

rat her split into Q depcndent branches after an initial common course. This splitting is a 

consequence of the existence of a dynamic length seale wh ich invalidatcs lhe Rouse scaling 

propert ies. Wc note, that this length is of purely dynamieal c1Iaracter and cannot be observed 

in static experiments. In order 10 distinguish belwcen different models measurcments up 10 

Fourier limes 3 cr 4 times larger tban T, are not cnough. Here, (he reeent dcvelopmcnt of an 

ultra high resolution NSE spectrometer (IN15 at the ILL in Grenoble opened new ground in 

pushing the time !imit ofNSE up to about 200ns). 

Fig. 15. I 9 displays recent experimcntal reslllts on a polyethylene melt (M", = 36.000) which 

were carried over a time regime of 170ns. Thc data are compared with the dynamic stmcture 

factors of the reptation model as weil as Ihe models of de Cloizeaux and Ronea. It is apparcnt 

that these data cJcarly favour the reptation model wh ich appears to be the only so far existing 

model yielding adynamie stmchlre factor wh ich is in quantitative agreement with this NSE 

data. The model of Ronea produees a plateau which is tao fl at. From Fig.15.19 it is also 

apparent that the Rubber like model of de Cloizcaux leads to an inconsistcnt Q dcpendencc 

which is most apparent at the larger Q values. We note that the fits were preformed varyillg 
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only OIlC single parameter, the tube diameter d, while the Rouse rate was detennined from 

earlier NSE data taken at short times, With this olle parameter it is possible to achievc 

quantitative agreement both with respect to the Q and the time dependence of the dynamic 

structurc factor, 
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Figure 15 .18: Data from Fig.15 .17 in a scaling representation as a fact ofthe Rouse variable 
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Finally, olle may test wh ether only Ioeal rcptation or also the ereep motion along thc tube is 

imporlant on this experimental time senle. Local reptation corresponds to Cd = CIJ and indccd 

(Fig.15 .19) at low Q a diffcrenee belween loeal reptation only and the global replation 

mechanism appears to becomc distinguishable indicating the presence of cd. Here future 

experimental work will havc to set in. As it stands NSE spcctroscopy acccssing quantitatively 

the dynamic stlUclurc faetar has by now seen cleaT and unambiguous sigllature of reptation in 

a flexible linear polymer chain. Thc da la cover a region of lhe time domaiJl where reptation is 

in principle applicable. Compared with other phcnomenological approaches reptatiol1 is by 

now the only approach providing a consistcnt deseriplion of a11 NSE data. It implics Ihat 

reptation mus I emerge from any sllceessful microscopic theory ofpolymer relaxation. 

15.5 Summal'Y 

High resolution neutron speetroscopy permits to aeeess the moleeular motions simultaneollsly 

in spaee and time. Restricting itself to the dynamics of homopolymers melts this lecture 

attemptcd to transmit a flavour of what ean be achieved in particular by NSE. Choosing 

different time and length seales, we eovcrcd the range of Illoleelliar motions, eommeneing at 

the seale of a few bonds to large seale motions reaching the scale ofthe entire ehain. 

In the regime of the 'classieal relaxations' of polymers ncutron speetroseopy infonl1s on the 

geometrical evolution of the motions in quest ion. We have seen, that the a-relaxatiol1 may be 

understood as a sublinear diffusion process while the prelaxation is in good agreement with a 

local jUI11P process of a few angstrom distanees. 80th processes may be eOllsidered with good 

approximation as statistieally independent. At scales where the detailed chemieal stmcture of 

the monomers ceases to bc of importance, NSE measurements have by and large confirmed 

the predietions of Ihe entropy governed Rouse dynamies both for Ihe self and Ihe pair 

eorrelation fllBction. Recently, an in deplh comparison of specia11y designed NSE 

experiments with computer simulation also pointed out the limits ofthis approach. 

The dynamies of polymer mclls under the influence of topologieal interactions which result 

from the mutually interpenetrating ehains poscs high dcmands both conccptually and also 

experimentally. NSE experiments on the single ehain dynamic struchlre factor of long ehain 

mells, eslablished experimentally the essential predictiol1 of local reptation namely the tube 
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confinement of the relaxation of large scale Rouse modes. Presently there exists no othel' 

theory providing adynamie stlUcture faetor, whieh is in agreement with this data. 
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16 Magnetism 

Thomas Brücke!, IFF, FZ-JUlich 

16.1 Introductioll 

Magnetism is a very activc and eh allen ging subject of solid state seien ce since it represents a 

typical many-body problem and a complex application of quantum-mechanics, statistical 

physics and elcctromagnetism. During the last dccades, new discoveries have emerged in this 

field due to the synthesis of new classes of magnetic materials , due to improved Of new 

powerful techniques Of due 10 advancements in solid state theory. Let us mention a few 

examples of materials of current interest: the high temperature superconductors and the colos­

sal magneto-resistance manganite compounrls, bath cf which have structures denved from the 

perovskite structure, the rare-carth nickel-born carbide compounds with a coexistence of 

magnetisrn and supercondllctivity, the large class of Kondö systems and heavy fennion com­

pounds, spin glas ses and spin Iiqllids er new and rat her complex hard magnetic materials, just 

to mention a few . Besides bulk materials, magnetism of thin films and surfaces became a 

topic of great current interest, mainly due to the improved preparation techniques, Driven by 

pure cmiosity, scientists have discovered many fundamental effects of thin film devices, such 

as the oscillating interlayer coupling or the giant magneto-resistance effects. Within less than 

ten years from their initial discovery, these effects fellnd their applications for example in 

read heads of computer hard disks. A promising new fjeld of application emerges, so-called 

magneto-electronics with spin transistors 01' magnetic randem access memories MR.OM. This 

should serve us as an excellent example, how cUliosity driven fundamental research can find 

new applieations of an effeet known since 2500 years (the discovery of the magnetism of 

magnetite) which are able to change our modern life, This progress is largely due to new 

experimental methods and again we just want to mention a few: developments in the field of 

polarised neutron scattering, such as the 3He-polarisation filter or zero-field neutron pola­

rimetry, the development of the spin resonance techniques, resonant nuclear scattering of syn­

chrotron radiation or magnetic x-ray diffraction. Finally, all this experimental progress would 

be in vain without the improvements of the theory, which provide lIS with a deeper under­

standing of correlated electron systems. Probably the most powerful technique that has 

emerged dming the last years is the density fl1nctional theory which allows one to calculate 
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the ground state of metallic magnets. Numerical methods such as Monte·Carlo simulation 

allows us to test models of complex disordered magnetic systems. 

After having motivated the interest in solid state magnetism, let us corne back to the basic 

magnetic properties. Quite generally, a magnetic system can be described by its magIletisa· 

tion, which denotes the total magnetic moment per unit volume. The magnetisation of a 

sampie can vary in space and time: MCr,I). The magnetisation is coupled 10 the conjugate 

magnetie field !:i(r,t). If the exeitation !:i is very smalI, the response will, to a good approxi­

mation, be linear. In the framework of this linear response theory, we can define a magnetic 

suseeptibility X by: 

M =X · f1 (16.1) 

Here, X is wlitten as a tensor to describe anisotropie magnetic response. In isotropie 

systems, M will align parallel to !:! and X rcduces to a scalar quantity. More generally, for a 

spatially and temporally varying magnetic field, we cun write: 

M v:,t) = ff d 3r' dt'z.V: - (,t - t'). f1v:' ,t') (16.2) 

Every material shows a magnetic response. Most materials are diamagnetic with a negative 

susceptibility X, which expresses Lenz's mle that the induced magnetisation M is anti-parallel 

10 the magnetic field H. Of greater interes! are materials, in which X is positive. Here, two 

classes of materials have to be dislinguished: localised electron systems (e. g. ionic com· 

pounds) and itincrant electron systems (metals). Localised electron systems with X > 0 have 

open shells with unpaired electrons. Spin- S, orbital- L, and total- angular momentum J for the 

free ion are determined by Hund's mies. These va lues can be modified by solid state effccts 

such as the crystalline field or spin transfer into covalent bonds. In itinerant electron systems, 

the conduction eleclrons carry the magnetic moment. Within a simple band piclure. 

magnetism arises from an unequal population of spin-up and spin-down bands. At elevated 

temperatures, systems with X > 0 show paramagnetic behaviour with strongly fluctuating 

magnetic moments. As the temperature is lowered interaction betwcen the moments becomes 

more and more important. In general magnetic dipole-dipole interactions play only a minor 
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role, compared to the stronger exchange interactions, which result from Coulomb interaction 

and the Pauli pIinciple. In ionic campounds, we observe direct exchange. if the orbitals of two 

magnetic ions overlap or super-exchange and double exchange, if the interaction is mediated 

via an intervening anion. In itinerant electron systems, the interaction is mediated by the 

conduction electrons and has an oscillating characler. This indirect coupling of magnetic 

moments by conduclion electrons is referred to the Rudennann-Kittel-Kasaya-Yosida 

(RKKY) interaction. If the energy equivalent kT is in the order of the inleraction energy, a 

phase transition from the paramagnetic high temperature state to a magnetically long-range 

ordered low temperature state can eventually take place. Systems with sponlaneous 

macroscopic magnetisations such as ferromagnets (FM) and ferrimagnets have to be 

distinguished from antiferromagnets (AF), for which the zero-fjeld magnetisation vanishes. 

The microscopic arrangement of spin- and arbital- magnetic moments, the so-called magnetic 

stmcture, can be rather complex, especially in the case of anlifen·omagnets. 

Neutron scattering is a most powerful technique far Ihe investigation of magnetism due to the 

magnetic dipole interaction between the magnetic moments of the electrons in the sam pIe and 

the nuclear magnetic moment of the neutron. We have seen in chapter 3 that for elastic 

events, the neutron scatteIing cross seclion is direclly related to the Fourier transfonn of the 

magnetic moment density distlibUlion. For the inelaslic case, one can show that the double 

differential cross scctiOll for magnetic neutron scattering is connected with the most 

fundamental quantilY, the Fourier transform of the linear response function er susceptibility 

(16.2) xli,t) in microseopie spacc and time variables [ and t, respectively. In contrast to 

macroscopic methods it allows one to stlldy magnetic stmctures, fluctuations and excitations 

\Virh a spatial and energy resolution weil adapted ta atomic dimensions. Traditionally neutron 

scattering is the method to sludy magnetism on an atomic level, only recently complemented 

by the new technique of magnetic x-ray scattering. 

]n what folIows, we will give a few examp!es for applications of neutron scattering in 

magnetism. Obviously it is completely impossible to give an representative overview within 

the limited time, nor is it possible to reprodllce Ihe full fonnalism. Therefore we will just 

quote a few results and concentrate on the most simple examples. Even so polarisation 

analysis experiments are extremely important in the field, we will not disCllSS these rather 

complex expeIiments and refer to chapter 4. 
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Fig. 16.1: Same examples 0/ magnetic strltc/ures: a) Tlle collillear anrijerromaglletic struc­

ture of MIlF'1. Tlle spin moments al (he comers of fhe tetragonal lmit cell poillt along ,he c­

dfree/ion, ,he SpÜl moment ;n tlle celltre of ,he unil cell is arltiparallel 10 fhe lIlomellfs al Ihe 

corners. b) Tlie MnO-type magnetic slrllclure Oll a fee fattice. Spins within 1 J 1 planes are 

parallel, adjacellt planes are coup/ed awijerromag1,etically. c) Tlle spin dellsity wave of 

chromiwlI, whic" can be described by an amplitude varia/ioll along olle af/he cubic 001 axis, 

TIle spill dellsit)' wave CGIl be longitudinal or trallsversally polarised. d) Schematic represell­

faliOIl of fhe magnetie slruclllres of fhe hexagonal rare-earth metals. Spins ;11 the hexagonal 

basal plane are always parallel. The jigure shows, hoU' sllccessive planes along the c-c/il'ec­

tions are coupled. Olle can distillgllish a simple !erromaglletic phase, (l c-axis modulated 

phase, helix and cOlle phases. 111 realit)" ,he maglletic structures are milch more complex with 

spin slip 01' 1Illllti-k structures. Arecent review is given by [1}. 
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16.2 Magnetie Strueture Determination 

As mentioned in the introduction. the magnetic structure of a substance exhibiting magnetic 

lang range order C31l be very complex. In general a magnetic structure can be described by its 

Fourier-components in the ronn 

!!!./,J = L!!.!IJ.1,exp(-iQ'!1,) 
~ 

(16.3) 

where !!l. /,j denates the moment of atom j in cell land g is the so called magnetic propagation 

vector. Some examples fer magnetic structures 3re givcll in figure 16.1. 

Magnetic neutron scattering is the classical method 10 determine magnetic structures. As 

neutral paJ1ic)es, neutrons penetrate deep into most materials aod allow 10 study bulk proper­

lies. Thermal neutrons have wavelcngths in the vicinity of 1 Ä. which is weil adaptcd 10 

studies with atomic resolution. Neutrons carry a magnetie dipole moment 

(16.4) 

with the gyromagnetie ratio y=-1.913 of the neutron and the nuctear magneton 

~l N :::: 5,051 ' 10- 27 J IT . This magnetic moment of the neutron can interaet with the magnetie 

field created by the spin or orbital angular momentum of unpaired eleetrons within the solid, 

see chaptcr 3. If we rcstrict ourselves to elastic scattering of unpolarised neutrons, the purely 

magnetic seauering cross section is given by 

(16.5) 

with yro ~ 2.696 fm. M.l (g) is the component of the Fourier transform of the sampie mag-
2 

netisatioll perpendieular to the seattering vcctor. ~(Q) and L(Q) are the Fourier transfonn of 

the spin- and orbital- angular momentum dcnsity, respectively, The index 1. denotes the 

cornponent of the cOITesponding quantity perpendicular to the scattering vector. Neutrons 
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only "sec" this component and not the component of the magnetisation along the scattering 

vector Q (compare chapter 3). This directional dependence allows olle to detennine the spin 

direction, while the magnetic propagation vector can be detemlined from the position of the 

magnetic Bragg reflections. Finally, the magnitude of the magnetic moment can be 

determined by comparing the intensities of the magnetic Bragg reflections with the intensities 

of nuclear reflections. The scattering amplitude of neutrons by a single fixed nucleus is given 

by the seattenng lengths tabulated in [2]. As an example, the scattenng length far eobalt 

amounts to 2.49 fm, which is comparable to the equivalent magnetic scattering amplitude for 

spin = 1/2 of 2.696 fm. The formalism for magnelie neutron seattenng is detailed by Squires 

(3] and Lovesey [4], the determination of magnetic structures is described by Rossat-Mignod 

[5]. 

Here we want to discuss the most simple example, the determination of the magnetic structure 

of MnF2. For simplicity, we will neglect the scattering of the fluorine atoms completely. 

Then our problem reduces 10 magnetic Bragg diffraction from a tetragonal body centred 

antiferromagnet. In the so called antiferromagnetic order of type I, shown in figure 16.2, all 

spins at the CQll1ers of the unit cell are parallel, while the spin in the centre is anti-parallel to 

the spins at the corners. We asslIIne that due to some anisotropy, e.g. the crystal field effects, 

all moments are aligned along ±c. 

s 

Fig. 16.2: Maglletic slruclUre 01 a type 1 alltilerromagnet Oll a body-celltred tetragonal 

laltice. In the figure is assllmed that c is ,he easy axis, i.e. all spills are aliglled 

along c. 

16-6 



The seatteIing power density ean be ea1culated as a convolution of an infinite three 

dimensional Iauiee, whieh describes the position of the origin of all unit cells, with the 

scattering power density of a pair of atoms loeated at the origin and at the centre of the unit 

cell. Therefore, when calculating the scattered intensity as the Fourier transform of the 

scattering power density, it is given as a product of the Fourier transform of the Iattiee and the 

FouIier transform of the scattering power density of a pair of atoms. The Fourier transform of 

the lattiee is the weIl known Laue function (eompare ehapter 3). It gives Iise to the Bragg 

refleetions at integer h, k, I. The intensity of these Bragg refleetions is being modulated by the 

Fourier transfonll of the scattering power density within the unit eell (here of the atom pair), 

the so ealled elastic stmcture facta,.. The structure faetar for the pure nuelear seatteting is 

given by: 

211i(h...!.ti...!.t/...!.) 

SN(h,k,l)=bCl+e " ' ) 

=bCl+C- l)""')={ 0 
2b 

h+k+/ 

h+k+/ 

ullevell 
(16.6) 

even 

rhe body centring gives tise to an extinction of all reflections with index h+k+! uneven, while 

all reflections with h+k+! even have the same intensity. In complete analogy to (16.6), the 

magnetie stmcture factor can be ca1culated. We only have to take into account that the spin 

direction in the cent re is opposite to the spin directions at the corners, which can be described 

by a different sign for the two spins: 

h + k + 1 //neven. 

h+k+l even 

(16.7) 

The magnetic structure is "anti body centred": all reflections with index h+k+1 even vanish, 

while reflections with h+k+1 uneven are present. In the diffraction pattern, a magnelie Bragg 

reflection appears right between two nuclear ones. rhe intensity of the magnetie retlections 

decreases with increasing moment um transfer due to the magnetie form factor (see chapter 3), 

while the nuclear reflections have constant intensity, if we neglect the temperature factor - see 

figure 16.3. 
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Fig. 16.3: Schematie plot of a neutroll diffraclioll diagram Jo,. file Gntljerromagllet o[ /ig. 

16.2. Top: alollg rhe (hOO) direerioll; bottolll: alollg (001). Magllerie Bragg 

rejlectiolls are illdicated by tlle broken filles. The heig"t 0/ fhe filles is 

represelltative Jor 'he scallered jlltelJsit)'. 

We can detennine the direction of the magnetic moments with the help of the direclional 

factor in eq. (16.5). If onc measurcs along the tetragonal a 01' b directions, olle ohlains the 

magnetie Bragg reflee tions of figure 16.3 a. However, if one measures along e, !i. 11 Q holds, 

Le. all magnetic reneclions of type 0 0 I are extinct and one ohtains the diffraction pattern 

depiclcd in figure 16.3 b. In this simple case, olle can directly dcduce the spin direction along 

c from the extinction of the 0 0 1 reflections. Finally olle can obtain the magnitude of the spin 

moment by comparing the intensities of the magnetic Bragg reflections with the intensities of 

the nuclear ones. 

16.3 Magnetic Form Factors; MagnetisatiOil Densities 

For the magnetic stI1lcture detennination we used a predeterrnined fonn factor, e.g. from 

Hartree~Fock calculations of electronic wave funclions for the free atom [6]. Each atomic site 

was characterised by just one integral vatiable, lhe atomic magnetic moment. A scattering 

experiment can, however, give much more information, if sufficient Fourier components can 

be measured. We can then ohtain the magnetisation density within cach atom, which will 

show deviations from the density of the free atom due to solid state effects. Magnetisation 

density can be transferred to neighbollring atoms by covalent bonds. In metallic magnetic 

systems, the "magnetic" electrons are itinerant and the magnetisat ion density is strongly de­

localised. We leamed in chapter 3 that the magnetic fonn factor is the Fourier transform of 
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the magnetisation density of one atom. Thereforc magnetic form faetor measurements give us 

all the important information abaut such solid statc effects. 

To illustrate the kind of infoffilation we can obtain from such measurements let us quote some 

recent studies of high temperature superconductors or molecular magnets. There are theories 

of high temperature superconductivity, which propose a magnetic coupling mechanism for the 

Cooper-pairs. While na long range ordercd magnetic stmcture IS observed in the super­

conducting state, dynamic magnetic fluetuations have been searched for with neutron 

scatteIing [7,8]. If one wants to detect, which atomic sites are susceptible to magnetism, one 

can study the magnetisation density induced in the material by an external magnetic fjeld [9]. 

Molecular magnets are another active Held of CUlTcnt interest, duc to their very high potential 

for applieations, but also due to fundamental interest. These are organic compounds, where 

the magnetism is not duc to intra-atOJnic exchange ("Hund's mies"), as in the case af 3d or 4f 

metal ions, but due to thc speeific arTangement of bonds. The magnetisation density is 

distributed over many atOinic sites. A neutron study of it's distribution can give us insight to 

the mechanism giving rise to the magnetic coupling and thus guide us in the search for new, 

optimised materials [10]. 

The most cffielent way to measure weak magnetic signals is to use the interference between 

magnetic and nuclear scaUering. Using this interference effect, we can even determine the 

phase of the magnetic structure factors, in addition to their magnitude. In this special case we 

have then solved the phase problem of crystallography. 

\Ve have leamed in chapter 4 that this interferenee term can only be measured with polarised 

neutrons and cancels far unpolarised neutron diffractioll. An interference between nuclea .. 

and magnetic scattering can only occur, if both types of scattering are allowed, i.e. the 

interference can only appear in the "non-spin f1ip" channel, if the nuclear as weIl as the 

magnetic stmcture factor are 11011- vanishing. To maxi mise the magnetic signal, olle ehooses a 

diffraction geometry as in figure 16.4, far wh ich the magnetisation is perpendicular to the 

diffraction plane. This condition can be enforced by applying a strong magnetic field along 

this direclioll. 
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k M = MJ.z 

Fig. 16.4: Scatterillg geometl)' Jor measllring fhe infel!erence term betweell nue/ear- alld 

magnefic scatterillg wilh polarised neUlrol/s, hut WitilOllt polarisation analysis. 

The relevant cross sections to rneasure the interFerence tenn in this geometry are: 

( <Irr) = Ib(g)- Y,I~ M(g f = b' _ 2 Y , I~ bM +(Y" ~)' M' 
<IQ H 21'. 1 t 21'. 21'. 

(16.8) 

b,M real 

(16.9) 

Besides the magnitude square of the amplitude for nuclear- and magnetic- scattering, 

respectively, these cross sections contain one tenn, in which a product of the magnetic- and 

nuclear- amplitudes appears. This interference term is especially useful, if the amplitude of 

magnetic scattering is much smaller than the amplitude of nuclear scattering: 

(16.10) 

This is for example Ihe ease, if an extemal rnagnetic field in duces a weak magnetisation in the 

paramagnetic state, when the ration between magnetic- and nuclear- amplitude is often bclow 

10.3. This implies that the eontribution from magnetic scattering 10 the total signal is in the 

order of 10.6 or less, and thus no longer measurable. However, if we take data in two 

measurements, onee with the neutron polarisation parallel and ollee anti-parallel 10 the 

magnelie fjeld, we can detennine the so-ealledjlippillg ratio: 

16-10 



(16.11) 

Note that the polarisation of the scattered bcam is knowil a primi (only non-spin flip 

processes can oeeuT), so that thc experiment is being done with a polarised beam, but without 

polarisation analysis. The flipping ration (16.11) depends linearlyon the magnetie strueture 

factor, instead of quadratic as the scattered intensity. Therefore much smaller values of the 

magnetic stmcture factor can be determillcd. 1f the nuclear stnlcture fnetoT is known (e.g. 

from a prior neutron diffraction experiment), these measuremenls of the flipping ratio give 

access 10 a highly precise determination of the phase and magnitude of the magnetic structure 

factor. 

An example is given by the measurement of the [Olm factoT of chromium. Cr is the 

archetypal itinerant antiferromagnet. Therefore the magnetisation density is very de­

localiscd. As a consequenee, the magnetie form faetor drops extremely rapidly with 

increasing momentum transfer. In arecent synchrotron x-ray experiment, we eould 

demonstrate that this form faetor is spin only [11]. However, in a polarised neutron 

diffraetion experiment we could show [12], that a magnetisation induced in the paramagnelic 

state by an extcmal magnetic field is mueh more localised around the individual atoms. 

Therefore. the ficld-indueed form faetor decreases much slower, compare figure 16.6. It has a 

large contribution (60 %) of orbital angular momentum, quite in contras! to the fonn facter in 

the ordered state. By me ans of a Fourier transform or with the so-called Maximum Elltropy 

Met/IOd a magnetisation density distribution within the unit cell can be reconstmcted 

(compare figure 16.7). Such data are of utmost importanee to test and improve modem band 

theoIies, such as the fully relativistic dellsity fimctiolla! Ihe01)' and thus 10 oblain a better 

understanding of tlte metallic state. 
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16.4 Magnetic Phase Transitions 

Fig. 16.7: Projeclioll o[ I"e 

im/lleed magllet;satioll dellsity 

distribution olllo fhe <110> plane. 

above: Fourier lrans/o11Jl 

Befaw: Maximum ell/rapy 

recollstmctioll 

Phase transitions can occur bctwccn different magnetic phases as a function of various 

thcrmodynamic parameters, such as magnetic fi eld, temperature or pressure. Here we will 

restriet ourselves to the most simple ease of a transition from a low temperature ferromagneti c 

(FM) or antiferromagnetic (AF) phase to a high temperature paramagnetie (PM) phase. First, 

we will disclIss this phenomenon qualitati vely, then int roduce the quantitative description and 

finally show juS! one example of a neutron diffrac tion study. 

Thc magnelic long range order discusscd in section 16.2 can only be stahle, as long as the 

thennal energy kn T is small enough compared to the exchange interactions giving rise to 

magnet ic order. At sufficiently high tcmperatures, entropy wins and the magnetic moments 
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fluctuatc in space and time. A phase transition has occurred at a c ritical temperature, called 

Curie temperat/lre Tc for ferromagnets or Nü l temperature TN for antiferromagnets, from a 

10ng range ordered state at low temperatures to a paramagnetic high temperature phase. The 

two phases are characterised by an order parameter, such as the magnetisation for 

felTomagnets or the sublattice magnetisation for antiferromagnets. In the paramagnetic phase 

this order parameter vanishes, while in the low temperature phase it increases towruds a 

saturation value, when the temperature is lowered. Depending on whether the order 

parameter ehanges discontinuously or cOlltinuously at the critical temperature, the phase 

transition is of first- 01' secolld- order, rcspectively. At least für loeal moment systems, the 

magnetic interactions and moments are still present in the paramagnetic phase. Therefore 

above the clitical temperature, magnetic correlations persist. This magnetic short range order 

fluctuates in time and extends over regions with characteristic linear dimensions, called the 

correlatioll length . When we decrease the temperature in the paramagnetic phase towards the 

transition temperature, the correlation length increases. Larger and larger regions develop 

which show short range order characteristic fQr the low temperature phase. The larger these 

correlated regions, the slower the fluctuation-dynamics. At the critical temperature of a 

second order phase transition, the correlation length and the magnetic suseeptibility diverges, 

whi le the dynamics exhibits a eritical slowing down. 

Besides the magnetic phase transitions, there exist also stlUctural phase transitions. However, 

experiments on magnetic model systems provided the basis far aur modem understanding of 

this complex co·operative effee!. Th reason is that magnetic model systems can often be 

described by some very simple Hamiltonian , such as the Heisenberg (16.12), the x-y (16.13) 

or the Jsing model (16.14), depending wh ether the system is isotropie, has a strong plan ar- or 

astrang uniaxial anisotropy, respeetively: 

Heisenberg: 

x-y: 

Ising: 

H = LJij ~'·~J 
i,i 

H = LJ, (S"Sj' + S,ySjY ) 
i.i 

H :::; LJij S,:Si/ 

• 

16-13 

(16.12) 

(16.13) 

(16.14) 



Here, Jij denotes the ex.change constant between atoms i and j, Si« is the component a (=x, y 

or z) of the spin operator ~; of atom i. If the Hamiltonian depends on three- (Heisenberg­

model, 16.12), two- (x-y-model, 16.13) or one- (Ising-model, 16.14) components of the spin 

operator, one can define a three-, two- oe one dimensional order parameter. Moreover, there 

are crystal structures. where the magnetic atoms are aligned along weil separated chains or 

planes, so that besides the usual three dimensionallattice. there ex.ist magnetic model systems 

in one and two space dimensions. Finally, depending on whether the system shows covalent 

or metallic bon ding, the exchange interactions can be short- or long ranged. respeclively. 

Thc experimental investigation of continuous (second order) phase transitions in many 

magnetic model systems revealed a quite surprising behaviour in a critical region (a 

temperaturc range around the ordering temperature with a width of by and large 10 % of the 

ordeIing temperature) elose to the phase transition: independent of the precise nature of thc 

system under investigation, the phase transition shows universal behaviour. These 

experimental results laid the foundations for the fonnulation of a modem theory cf second 

order phase transitions, the rello17llalisatioll grollp tlleo,.)'. 

If we define a redllced temperatllre as 

T-T T= __ c_ 

Tc 
(16.15) 

then all relevant thermodynamical parameters show a power-Iaw behaviour elose to the 

second order phase transition: 

specific he at: c
II 

oe r-a (16.16) 

order parameter (T<T cl: m=(-T)ß (16.17) 

susceptibility: X oe 'l" - r (16.18) 

correlation length: ~ = T"" (16.19) 

The surprising discovery was that all systems can be classified into tmiversality classes. 

Within a given universality elass, the values of thc critical expollellls a, ß, y and v are the 
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same and da not depend on the detailed nature of the system. Moreover, Ihe critical 

exponents far a given system are not independent, but fulfil celtain scalillg relations, see e.g. 

[13]. To which universality cJass a system belongs is determined by three criteria: 

Dimensionality of the order parameter n 

Space dimensionality d 

Range of the interactions (Iong- or short ranged) 

Table 16.1 lists va lues of the critical exponents for some universality classes. 

n I I 2 3 

d 2 3 3 3 

a 0 0.106 -0.01 -0.121 

ß 0.125 0.326 0.345 0.367 

Y 1.75 1.238 1.316 1.388 

v I 0.631 0.669 0.707 

Tab. 16.1: Val lies oJ the critical expone1llS Jor a Jew 1lI1iversalit)' classes according 10 {l3J. 

As an example we have selected a rat her unusual magnetic phase transition, which turns out 

to be of first order (discontinuous) and thus cannot be classified by the above crileria. Let us 

briefly diseuss the AF-PM phase transition ofMnS, [14]. 

Thc magnetic semiconductor MnS2 orders with the type-TII antifelTomagnetic slructure on the 

fee lattiee with the wave veetor g=(I,1/2,0) (compare (16.3». The antiferromagnetie phase 

transition at TN = 48.2 K is found to be of first order, quite in contrast to the e1assical 

behaviour for such a compound. We performed a neutron scattering study in a search for Ihe 

driving mechanism. Figure 16.8 shows a coulour plot of the magnetic diffuse scattering in the 

(001) plane in the paramagnetic phase about 17K above TN. One can cJearly see, how the 

magnetie diffuse scattering is eoneentrated at the positions (1,112,0), (1,3/2,0), (312, I ,0) ete, 

where in the long range ordered phase the magnetic Bragg reflections appeal'. However, a 

e10ser examination shows that the positions at which Ihe diffuse scattering is centred, are not 

the rational positions listed above. 
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Fig. 16.8: COlltollr plot of fhe magnetic 
diffuse scatterillg illfensiry of MnS2 ;n fh e 
(001) plane al 65 K. Above: measllremefll; 
befow: calclllarion 

Fig. 16.10: Maglletic diffuse neutron 
scattering of M"Sz ;11 reciproeal lattice scalls 
parallel 10 fhe modulation \'eetor. 
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Fig. /6.11: Magnet;c diffuse neutrOll 
seatterillg o[ MIlS2 ;11 reciprocallattice scalls 
pelpend;clliar fo fh e modulation veclor. 
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Figures 16.10 and 16.11 show the magnetic diffuse neutron scattenng of MnS2 at different 

temperatures above TN and the magnelie Bragg peak at 4.9 K (topmost figure). We ean 

clearly observe, how with decreasing temperature the diffuse scattering becames sharper in 

reciprocal space and how the peak intensity increases strongly. However, far seans along 

(l,k,O) the diffuse scattering is not centred at the low temperature Bragg position, while it is 

centred for the perpendieular seans in the (h.k.O) plane. The magnetie short range order is 

"illcommellsurate" with the lattice. This roeans that the periodicity observed in the diffuse 

magnetic scattering is not jusl a simple rational multiple of the chemie al uni! cell periodicity. 

Figure 16.9 shows the temperature variation of the incommensurate component of the veclor 

at which the diffuse scattering is centred. Note Ihe jump characteristic for a first order 

transition. Figure 16.9 demonstrates that we can understand the paramagnetic-

antiferromagnetic phase transition in MnS2 as a transition from incommensurate short range 

order to commensurate long range order. Now it is weIl established that such "lock-in­

transitions" are of first order, which explains the unusual behaviour of MnS2. The problem 

remains which interactioll leads to the shift of the diffuse peak as compared 10 Ihe Bragg 

reflcction. This quest ion can be solved with model calculations, such as the ones depicled in 

figure 16.8 [14]. It tums out that an anisotropy tenn in the Hamiltonian can give rise to Ihe 

observed effeet. 

Finally we want 10 show an example for a true "classical" second order transition, the PM-AF 

transition in MnF2• In this case, we havc perfonned the rneasurements with high energy 

synchrotron x-rays duc to thc better rcciprocal space resolution as compared 10 neutrons [15]. 

Figure 16.12 shows a double logarithmic plot of the reduced sllblattice magnetisation m (m = 
MIMs, where Ms is the saturation value of the magnetisation) versus the reduces temperature 

~. defined in eq. (16.15). In this plot. the data points nicely line up along a straight line. 

cOITesponding to apower law behaviour as expcctcd from (16.7). The critical exponent ß of 

the sub-Iattice magnctisation can be obtained to great precision: ß = 0.333 (3), corresponding 

roughly to the exponent expeeted for an Ising system (n=l. d=3) aceording to table 16.l. 

However, the calculatcd und measllred value da not quite coincidc, at least to within two 

standard deviations, wh ich demonstrates that the precise valucs of the critical exponents are 

still not very weil established. 
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Fig. 16,12: Magnetic Bragg diffractioll /1'0111 MIIF2. The illsel shows fhe femperalllre 

dependence 0/ the imellsity 0/ fhe maguetie 300 rejleclioll from 5 10 80K. In fhe 

11Ia;1I graph is plotted fhe redllced sllb-faltiee maglletisatioll as a filllClioll 0/ 

redllced temperatllre 011 a double logarithmic seale toge/her will! a fit employing a 

power·law fim ctioll. 

16.5 Summary 

We have given a few examples of the applications of neutron scattering in magnetism. We 

have seen how neutrons can be used to investigatc the magnetisation density distribution on 

an atomic level. Besides the rather new technique of magnetic x-ray scattenng, no other 

method can provide the same infOlmation on magnetic structurc and magnetisation density. 

Neutrons are ideally suited to study magnetic phase transitions, which are model examples of 

co-operative phenomena in many body systems. Unfortunately, we were not able to cover 

other subjects, such as the important ficlds of magnetic excitations or thin film magnetism. 

Neutron scattering is the technique to measure spin wave dispersion relations used to 

detennine magnetic interaction parameters (exchange interaction, anisotropy) - see chapter on 

excitations. In itinerant systems, the transition from collective spin wave Iike excitations to 

single particle likc "Stoller" excitations could be observed with neutrons. CllITently, more 

"exotic" excitations are in the centre of attention, such as the "resonance peak" in high 
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temperature superconductors, or excitations in low dimensional rnagnets. Finally, thin film 

magnetism is of high current interest duc to it'5 applications in "magneloelcctronics". In this 

field, neutrons provide the crucial infonnation about (he magnetic structure and morphology 

of thin film devices, compare chapter on reflectometry. Whilc we could not give a 

comprehensive review, the Jiilich group is active in all these fields and we refer to our web 

page [J6] for further information. 
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17. Translation and Rotation 

M. Prager 

17.1 Introduction 

Atomic all el molecular motions in liquids and solids are d riven by the thermal energy of 

thc s8mple. F luctuations may conccllt ralc kinctic energy on OIl C atom, which thcn is able 

to cross a potent ial baITier into a new sile. Such transport or orientational jumps aceur 

randomly anel give rise ta quasielas tic scattering. 

At law tcmperature the classical motion dies out on the t imescalc of neutron spcc· 

1r0l11etcr5. T he (classical) potentials are s till present, however. T hcy HO\\' cha ractcrise the 

qua ntummechanical cxcita t ions of thc lattice abject : librations and tunnell ing. Theories 

used are tnosUy single particle 01' mean field theol'ies. 

By studying bath , c1assical quasielastic scattering allCl quantum excita t.ions a deta iled 

information on the shape and the strength of potent ial baiTiers can be obtained since neu­

t ron propcrt ies a llow a resolu tion in space and t ime. Ir t he crysta l structure of a material 

is known olle can calculate the potent ials from fund amental intermolecular interactions. 

T he conccpt of Utransferable pai r interactionsl! may fina lly allow to predict potent ials of 

ne\\' materia ls. 

Stoehastic motions oeeur in man)' materials so me of which a ttract technieal interest. 

Hydrogen in metals is uscd for cnergy s torage, microporous framework structures as ze­

oli t hes oUer cata lytica lly ac tive surfaees , polymers can aggregate to secondary st.ructures 

like mice lIes with sometimes technically interest ing proper ties . T hcy mix or phase sepa­

rate by d iffusion . Adsorbates, intercalates, molecular and liquid crys tals, mat rix isolated 

specics und liquids may be studied this way. It was especially the invention of high res­

olu tion neut ron scattering instruments (since "-'1972) wh ich gave an impact to this topic 

which s t ill holds. 

17.1.1 G a ussia n approximation 

T hc scatlering flltlctio ll of a rare gas can bc calclilated exact ly on the bas is of plane wave 

fnn cUons und t ransit ion mat.rix element.s. It happens t.o have the shapc of a Gaussian. 

\Vi t h ß ;:;;:; k~T and the recoil energy Er = r~,W 

ß· ß 2 S(Q,w) = (-E )' exP( - ,----E (f.w - E,) ) 
41f ' r "t'r 

(17.1 ) 

17- 1 



Fouriertransformahon in space alld time yields the correlation function (Chapter 5): 

3 1'2 

G~'(r, t) = (21Ta'(t.)t ' exp( - 2a'( t)) (17.2) 

with 

a'(t) = t(1 - i fI ß)/Mß (17.3) 

(12 is related to the mean square displacement. T he theory yields the generally va lid 

relation 

(r'(I )) = 3a'(t) = 41T /,00 r'G~'(r, I)dr (17.4) 

In the gaussian approximation one uses this relation also for any other translational 01' 

rotatiOllal motion despite they have time dependences a(t) different to that of a rare gas. 

The problem is thus reduced to detcnnine the meau square displacement of a dynamical 

process. Thc justification of the gaussian apprOX itllatioll is timt it works. 

17.2 n'anslation 

T he simplest translation is that of a rare gas. Hydrogen on interstitial s ites in a metal is 

often treated as a lattice gas. Self diffusion elose to the melting point via vacancies has 

a s imilar character. AtOlnic liquids represent the simplest examplc for diffusion . But the 

most common liquids are made up by moleeules whieh show additional rotation al degrees 

of freedom. 

17.2.1 Macroscopic diffusion 

Diffusion of a mOlloatomic liquid obeys macroscapically Fickls law 

iJn(r, I) Dn ' ( ) ---= vllrt iJt - , (17.5) 

with the number density n(rl t) rv Gs(r , t) and the diffusion constant D. For isotropie 

diffusion 
iJ' 2 iJ 

V"= - + --
iJr' r iJr 

in spherical coordinates. G,(r,t) fwm (17.2) is a solut ion of 17.5 if 

d
l 

a'(t.) = 2D 
ct 

a'(t) = 2D I t I +c 

(17.6) 

(17.7) 

For lang times (small energy transfer c.li.w) c can be neglected and Fourier-transformation 

(FT) in space and time yields the scattering fUl1ction 

I DQ' 
S(Q,w) = 1Th w' + (DQ')' 

17- 2 

(17.8) 



Bath, half width and scat,tering intensity of this Lorentzian allow adetermination of the 

diffusion coefficient D via 

r 2r,nQ' 
1 

5(Q,0) 
7rIiDQ'-

17.2.2 Diffusion, microscopic approach: Langevin equation 

(17.9) 

Für atOinic distances and short times the abovc conti nu um theory has to be modified. A 

microscopic model leads to the Langevin equation. A particle of mass lvI in a thermal 

bath is exposed to stochastic kicks E(t). After the kick it is slowed down by internal 

friclion proportional to its vclocity with the viscosity 1} as proportionality factor. 
dv v 

,\{ -= --B- +E(t) 
dt 
d1l. 
dt -'w + [(tl (17.10) 

To keep the energy of the system eOllstant the tWQ terms on the right hand side are related 

by the Auetuation-dissipation theorem 
2k T 

(J(t)f(O)) = l\~ ryo(t) (17.11) 

whieh means in words, that the stochastie force takes its energy from friction losses. 

Integration of (17.10) yields 

jI(t) = exp( - 7)t) loo exp(7)t')f(t')dt' (17.12) 

This result is used ta calclilate the veloeity-velocity correlation function. For one compo­

nent it is 

(v(t)v(O)) exp( - 7)t)(loo dt' i~ dt"cxp(qt')f(t')exp(7)t")f(t")) 

exp(-,)t) l oo ,U' l oo dt"(J(t')f(t"))exp(7)(t' - t") 

and using (17.11) (faetor 3 for veetors) 

3knT 
(l!(t)jI(O)) = ---x:Iexp( -7)t) (17.13) 

Integrating the velocity-velocity correlation function yields the mean square displacement 

[1 J 

1 r' :3 Ja (t - ttl(l1(t')l1(O))dt, 

110' 3kB T - (t - ttl-\1 exp( - 7It )dt, 
3 0 l ' 

- t - - (1 - exp( -,)t)) knT ( 1 ) 
M7) 7) 

t 
D(t - T,(1 - exp( - - )) 

T, 
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Figure 17.1: Mean square displacement ,(t) of a Gaussian self corrclation function for 

the ideal gas, Fick's (ascii!.) diffusion, Lallgevill dynamics. For comparison the ease of 

an atom in asolid i8 presented toD. 

The fig. 17.1 summarizes the mean square displacements of various translatiOllal 

mol ions in Gaussian approximation. \Ve callsider the limits: 

t » T r : The exponential tenn ean be ncglcctcd. Compared to Fick's law the Langevin 

equatioll yields a retardation of the diffusion process. 

t « Tr : having expanded the exponential funetiOlI OIlC gets , (t) = ~t2. The Illean 

square displacement i8 proportional to t2 (frce ftight) like in thc ideal gas. 

As an examplc wc take water [2 ). The fig.17.2 shows the broadcning of the Lorentzian 

with Q2. From the initial slope one gets the diffusion const.ant D = 1.9 .10-5c;:~. 

17.2.3 Jmnp diffusion on a Bravais lattice 

Diffusion in the solid state occurs in many cases by jumps on intcrstit.ial sites. That's 

why the mobile speeies can and is called a lattice gas. The simplest system is hydrogen 

in fee palladium. Hydrogen oceupies octahedral sites. All sites are equivalent and form a 

eubie Bravais lattiee with Z=6 lIeighbour sites (fig. 17.3). 

At law concentration all neighbour sites are cmpty. \~'e cal! P(L, t) the probability of 

finding a proton at time t on site [. The change of population is the difference between 
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Figure 17.2: Full width at half maximum of the Lorentzian for water at T=300K. The 

diffusions coefficicnt [0 110\\'5 from thc ini t ial s lope. The best description at large Q is givcn 

by a jump model with a continuolls dist ribution of jump lengths. 

aH jumps into and out off the site and is detcrmincd by the rate equation 

a 1 z 1 
" P(r , t) = -z L - (P(r + §k, t) - P(t, t)) 
ut k=l TA: 

(17.15) 

~k and TA: reprcsent.s possiblc jump vcctors and res idence times connecting the actual 

hydrogen site wi th possible neighbour sites. Ir aH sites are equivalent there is a unique 

characterist ic residence time T = TA:. P(L, t) represents dircctly the correlation function 

Gs(r,t). \Vith t hc initial condition 

P(r, 0) = ö(r) (17.16) 

thc infinite system of coupled differentia l equations (17.15) is solved by Fourier transfor­

ma tion . FT of with respect to space leads to the intermcdiate scattering fUllction 

(17.17) 

The initia l conditions 1 (9,., 0) = Imeans that the proton exists somewhere in the sampie. 

\-Ve make thc cxponcntial ansatz 

I(Q , t) = exp( - f(Q) .!. ) 
- - r 

(17.1 8) 

with 

(17.19) 
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Figure 17.3: Left: Unit cell of fee-Pd (0) \\'ith octahedl'al hydrogen intel'stitial sites (.). 

Right: octahedral sites in a bcc lattice far comparisoll. 

FT in time yielcls as scattcring functioll a pure Lorent:dal1 

1 
S(Q w) = T 

~, 'iT w2 + (f~Q)F (17.20) 

Thc lack of an elastic term menus , that the proton ncver returns ta its starting point. 

The scattering fUllction of a polycrystal is obtained by averaging Qver alt crystal ori­

entations 
1 r 

S(Q,w) = ;;w' + r' 
Für small momcntum transfers Qßk « 1 one can expand /(9) and obt.ains 

2
82 

2 r = 2Q - = 2Q D 
67 

(17.21) 

(17.22) 

The second relation allows an interpretation of the macroscopic diffusion cocHicient D of 

(17.5) by the microseopie jump rate. \ 'Vhile for small Q thc macroscopic behaviour with 

the Q2 dependence of the linewidth is observed the data allarge Q show the elementary 

step of a diffusion process. The fig. 17.4 shows result.s for H in Pd. 

Transport jumps are thermally act.ivated and follow an Arrhenius law 

E 
7 = TOCXp( - -"-) 

kBT 
(17.23) 

From this relation the barrier height between neighbour sites is obtained from the tem­

peratm'e dcpcndcllcc of the lincwidth r '" ~, 
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Figure 17.4: Q-dependcncc of thc quasielastic linewidth in a PdHz single crystal in (100) 

und (110) direction. The clata confirm a diffusion on octahedral interstitial sites. 

17.2.4 More cmnplex eases 

More than one sublattice 

Für bec metals (fig. 17.3) , intermetallic compounds cr metallic glasses one finds non 

equivalent hydrogen sites with different coordination numbcrs and jump rates. In ease 

of bec lattices protons may occupy octahcdral 01' different types of tetrahedral sites. 

The scattering funetiOll requires the integration o\'c1' the man)' possible different starting 

configurations. S(Q,w) consists HO\\' of a nu mb er of Lorentzians with different widths 

and partly ra tc dcpcndent intensities [3). The formalisme is more complex but basically 

identical. 

Blocking 

\Vith increasing hydrogen concentration the diffusion changes sincc some jump dircctions 

may be blockcd by a hydrogen neighbour. uBlocking" leads also to an increased probability 

of back jumps, sillce the starting site is wilh certainty cmpty after thc jump. 

Phonon-assisted Tunnelling 

In same eases like NbHo.02 the temperature dcpcndence of the diffusion coefficient deviates 

from classical behaviour. The observation of an inercascd jump rate at low temperatm·e 

lead ta the idea of uphonon-assistcd t lll111ellil1g" : phonons of sllited symmetry ean in­

ereasc tcmporarily the distance betwcen the atoms of the host lattice which dcterminc 

the jump baITier. The decreased baITier increases the probability for quantum mechanical 

tunnclling of the proton ami thus accclerates thc diffusion process. 
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Diffusion in the presence of traps 

Hydrogen traps in Cl metal lattice can bc created by chemical impurities. In a latticc 

with traps the proton dynamics splits into a local motion around the trap and a diffusion 

bctweell traps. A corresponding two state model [3} yielels a scattering funetion consisting 

of 2 Lorentzians. At sm all Q diffusion, at large Q jumps around the trap dorninate 

scattering. Since jumps around a trap are qualitativei)' ver)' similar to rotations of a 

lI10leeule around its center of mass the same theory ean be applied to gel classical jump 

rat~s anel loeallibratiolls. 

17.2.5 Librations 

Usually thc 3-dimensional potent,ial of a proton at cquilibrium site is expandcd harmon­

icall)' and completed by anharmollic terms consistent with symmctry requirements. It 

detennines it.s eigenenergies. Viee versa the librations allo\\' to deduee the potential. This 

information refin es the potential beyond the pure knowlcdge of the balTier height obtained 

froll1 QNS. 

17.2.6 'l\'anslati'onal tunnelling 

At low temperatures the proton loealises in a packet of the potential. If the barrier 

betwcen such poekets is weak, the proton wavefunetiolls of neighbouring poekets overlap 

ami thc c1 egenerate libration al states split into tunnclling substates. This translation al 

tUl1nelling is fOl'mally almost equivalcnt to thc rotational tunnelling to be describcd below. 

NbOo.oOlHo.oOl (Fig. 17.5) represents an especially c1ear case. The oxygen defecL 

clistorts the lattiee locally allel makes exaetly two hydrogen sites - almost - equivalent. 

Almost: the presenee of thc particle itsclf in olle minimum introduces an asymmetry. T hus 

one has to ealculatc thc scattering function of an atom in an asymmetrie double minimum 

[31. Wave fun cLions IV are seL np from basis fnncLions 101 > and 110 > which dcscribe 

the two possible proton sites. The two configurations ean transform into each other 

by tunnelling due to a finite tunnel matrix element t. T he eorresponding Schrödingcr 

cquation H'l! = Ew in matrix form Icads to the eigenvalues problem (symmetrie ease 

assullled for simplicity! ) 

The eharaeteristie polynom yields eigenvalucs '\ 1,2 = ±t. T hey are eonnectcd with the 

tota lly symmetrie eigenvectorr ~(1) = ~(1 1 10 > + I 0, 1 » alld the antisymmetrie 

eigenveeto l' ~(2)~(l l , 0 > - 10, 1 », respect ively. Undcr thc assumption of a special 
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shapc of thc doublc minimum potential , e.g. [41, 

V(x) = x4 
- ax' (17.24) 

one ean relate the phenomenologieal tunncl matrix clcmcnt t with the parameters of thc 

potential. The observed tunnel transition is tlW = 2t. Thc full calculation yields for a 

polycrystalline sam pie a scattering function 

1 1 r 
S;,,(Q ,w) = 2(1 - jo(Qd))F"Ir (w _ 2t)' + r' (17.25) 

Here F is a complex expression of the order 1, whieh takes iuto aceount the different and 

temperature dependent populations of the two minima in the asymmetrie potential. This 

a) 
, 

" 1 
'i§ , 
.0 
~o 

"3 b) d 
;;;2 

."o.'~4-~':;;O';2'---:::CO::--':;:02""'-"'O" 
Energy r meV I 

Figure 17.5: Left: Tunnel spectrulII of H trapped by 0 in Nb(OH)o.002' T=O.IK . Instru­

ment: IN6, ILL. Top: supercondueting, bottorn: normal condueting state. 

Right: Possible hydrogen-sites around an oxygen~defeet (.). TUl1nelling ean oeeur bctween 

caeh cquivalcnt sites, e.g. o. 

seattering function is almost identical with that of an 0 - J/ group whieh can assume two 

equilibrium Ol'ientations. It is more or less a semallt.ic qucst.ion to call a tunnel process 

t.ranslational 01' rotatiOIlal. 

\\fith the outlined matrix technique it is also possible to get the tuunelling sub level 

structure of librational states of more complcx potential geometries. 
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17.3 Rotation 

Ivlolecllics represcnt - in first approximation rigid - ensembles of atoms aJl(I allow rotation 

as II CW degree of frcedom. In the simplcst approach the environment is represented as a 

potential whieh determines the single particle excitations. The potential must showat. 

least t he symmetry of t.he malecute. - A c1assical motion is fully characterized by t,he 

motion of a single proton. 

17.3.1 Jump l'otation: methyl gl'OUP in a 3-fold potential 

Orten thc rotatiOllal potential is rather strong and forces the lllo1ecule to stay most time 

in an equilihriulll orientatiolls. Thc dynamics consis ts in this ease of jumps between 

equivalcnt orientations. \\fe eall the atOJnic positions Lj} the average time betwcen two 

jumps T and neglect t.hc jump time itsclf. The self correlatioll fUllction G .1'([, t) is thc 

condi tiona l probability of findin g an atom at time t. at site r. if it was at timc t=O at s ite 

[ = 0. 

G,(I:, t) = L Npj(t)8(I: - tj) (17.26) 
j = 1 

}Jj(t) is the occllpatioll probability of site j at t ime t. The sum averages over all possiblc 

starting condit ions = s ites of the atom. For uncorrelated jumps t he occupatioll probabil­

itics obey a finite system of couplcd different.ial equations, the so-ca lied rate equations 

d 1(1 '" ) -p(t) = - - "" p,(t) - p·(t) dt } T N ~ } 
).= 1 

(17.27) 

The first term describes the all possible jumps into a site, the second the jumps out of 

this sile. For simplici ty it is assumcd that all sites show the same population and t.hat 

jump times between any two s ites are identica l. T he considcrcd atom is in thc sampie: 

(17.28) 

A simple exa mple is the methyl group. Here N=3 a mi proton position are LI =(O,O,O)d, 

[2 =( l ,O,O)d , !:J = (~, ~ , O)d wäth t.hc proton proton distance d=1.76A. \Vith 1/ = * thc 

rate equation for s ite 1 is 

(17.29) 

ami nun. with cycl ic permut.ation. The ansatz (E = (PI,7>2,7>3)) 

l'. = Qexp(At) (17.30) 
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leads to the cigenvalue problem 

( -I' 
" 

" ) ,- :; 
Aq = e -I' " q _ 2 2 -

e " - 11 
2 ,-

Thc eigenvalues and eigenvectors of this 3x3 matrix are 

2 
AI = 0; A2(3 = -31' 

'11 = ~(1 , 1 , 1) ;'12 = ~(l ",,·),'k = ~(l ,t·,t) (17.31) 

with phasefactors t = e.2:p(~) and t;. complex conjugated. Initial conditions are equal 

population. Including normalizatiOll yields 

1 2 3 
PI (t) = - + -exp( --I't) 

3 3 2 
1 

p,(t) = P3(t) = 2(1 - pJt)) 

(17.32) 

( 17.33) 

For t=oo all sites are indccd cqually populatcd. The corresponding average proton clcnsity 

distribution rcprcscnts the jump gcometry. Thc dCllsity distribution is also dynamica lly 

stable, since jumps into ami out off the si tc are in equilibrium. 

Omitt.ing the index at p t.he first t.erm of t.he self correlation function is for [I 

1 
G,(L, t) = 6(dp(t) + :2 (6(L - L,,) + 6(L - L/3)) (1 - p(t)) (17.34) 

The FT of GsÜ':', t} with respect to space yields the intermediate scattering functioll 

1 
1,(({, t) = p(t) + 3(1 - p(t))A(({) (17.35) 

Using abbreviations 1:.12 = f..2 - LI the structure factol" is 

(17.36) 

FT with respect to time yields thc scattcring function of a single crystal. It dcpends Oll 

the orientation of t.he met hyl group, [ij' with respect ta the scattering veetor Q. 

(l7.37) 

In general sam pies are polycrystals. Powder averaging yields 

(17.38) 

wit.h t.he Bessel function jo(Qd) = 5il~~d). 
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.Al = 0 represents the totally symmet.rie stational"y solution. Thc prefaetor of this 

purely elastic term is ealled clastie ineohel'ent strueture faetor (EISF). It only depends on 

the jump geometry ami allows to diseern between different jump models. The presenee of 

a purely elastie term shows that the jumping atom remains loealized around thc malectde 

- in eont.rast to t.ranslational proeesses. Quasielastie seattering is relatecl t.o the degenerate 

eigenvalues /\2 ,3, The two phase faetors reprcsellt cloekwise and anticloekwise jumps. The 

prcfaelor is 110W thc inelastie ineohercnl stl'l1eture factor (IISF). It has its maximum at 

Qd rv '* alld thus gives aeeess ta the jump distanee. The Lorenti':ian width yields the 

jump rate. 

More eOlnplex nlotions 

A transit.ion t.o potent.ials of lligher multiplieity, e.g. \16, introcluees different jump dis-

Iza'c 

96'C 

/-.\ /'~ 

11/ r \: u)lfll 

\ /1:r1~rl · 
.I '\ ••••• ~--~~ 

°OL-----U1~~2~~~3~~ 

01.';;'/ 

62'C 

-'U 0.0 0.1 cu 116 0..5 
.1"..,.., [mtV} 

Figure 17.6: QNS-spektra (right) and EISF (Ieft) ofadamantan. Spektrometer: IN5 , ILL. 

Inset , l'ight.: The moleeule and its rotation axes. 

Solid line: 900 jumps about all C.j axes. Dashec!: 1200 jumps about all C'3 axes. 

tanees and jump times. Correspondingly the seatterillg function eontains more than one 

Lorcntziall with different IISFs [5, 6]. The unhindered motion (multiplieity=oo) allows 

for an)' orientation. This rotatiOllal diffusion and is charaeterized like in the case of 

translation by a rotatiOllal diffusion eocffieicnt [8]. 

Fig. 17.6 shows quasielastie speetra of aclamalltan. The large dimensions of the 
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malecllie allow a gooel determinat.ion of the EISF in the accessible Q range. Tltus pl'ecise 

conclusiolls Oll thc possible rotations can be drawn. 

RotatiOllal jumps are thermally activated allCi abey the Arrhenills law (17.23). 1/0 = 

"* is called attempt. frequency. Its inverse is about the time required by the atom at 

room temperature t.o pass the jump distance. For a methyl group 1/0 "" 10 13sec- l. The 

exponent.ial factor represents the succes rate: the larger thc baITier EUl the rarer a crossing. 

If the shape of a potcntial is given olle gets the potential from the activation ellcrgy Eu. 

lt is assumed that the potential does not change with temperature. 

In general a large Q range is required at good energy resolution to get conclusive 

allswers. Adamantan (fig. 17.6) is an exceptionally gooel example. I3est suited are 

backscattcring inst.rument.s. Timc-of-fiight spcctrometers suffer from a small Q-range. 

i\'Iore complex 3-dimellsional jump models in,:'olve jump matrices of ltigher dimensions 

[6J 
Possible reasons far wrong conclusiolls lIlay be the occurrence of multiple jumps. The 

neutron distinghuishes only the starting and the final orientatioll. Double jumps about 

all easy axis may look as a single jump about a high barrier [7]. The scatterillg function 

is ca1culated Oll the assumption of single jumpsl however. i'vlonte earlo simulations can 

c1arify discrepancies. 

17.3.2 Rotational tunnelling: single particle model 

Stochastic motions take their energy from a thermal bath. At low temperature ther die 

out amI a classical descriptioll fails. A quantummechanical theory is needed. In quan­

tum Illechanics the inclistinghuishable protons of a molecule are connectcd by a comll1on 

wave function. This introduces coherence effects. Eigellcllcrgies of rotation are the so­

called librations in the meV regime - sirnilar to harmonie oscillations - alld the new low 

ellcrgy tunuelling müdes in the peV regime. A "pocket states" formalism e - described 

in more detail below far methyl groups - givcs a qualitative picture. The moleeule can 

exist in three possihle orientations 1123 >,1231 > and 1312 >. If the haITier between 

these orientations is large, the orient.ational subgroups ure decoupled ancI Illolecules can 

perfofm almost harmonic oscillations only (t.hreefold degenerate) . For lower baITier the 

orientational substates are coupled. In qualltUlll mechanicallanguage: the wave funetiolls 

overlap and t.he librational stcHes split by tunnelling. Thus rotatiOl13l tunnelling is not 

a dynamical cvent. Only if olle could prepare a system in a Gedanken experiment in a 

single orientatioll it would move into a new orientation within a t ime t "" l. Tunnelling w, 

energies nw are of the order of l1eV. lvlonographs are [4 1 8, 91. 
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The Id rotor: solution based on 'free rotor ' functions 

Thc canonical strateg)' diagonalizes the hamiltonian matrix. It is important 10 chose 

an appropriate set of basis functioll s 14]. 
The si mplcs1 moleculc consists of two atoms and a llows two oricntations in a double 

minimum potential (H2 , H20 .. ). The case was already cOllsidered in the scctiOll IITransla­

tiOJlal tunneJling" . Here we want to consider a methyl group, thc most intensively studied 

system. It is characterized by its momentum of inel'tia 0 around its symmetry axis or -

equivalently - by its rotatiOllal constant B = ~I~, 
An obviolls set. of basis functions are the free rotor functions exp(imrp). In thc single 

partic1c model the interaction with thc surrounding is renectcd in a st.abe rotation al 

potential V. To get thc Hamilt.onian H the kinetic rotatiOllul energy has to bc addecl 

H ~8J' + V 
2 

= -~~+V 
28 d<p' 

cf' = - B - +V 
d<p' 

A dimensionlcss rcprcsentution of thc cigenvaluc (Schrödinger) equation is 

H E 
- Ij< =-w 
ß ß 

with the scaled rotatiOllal potential \I' = ~ 

N 

V'(<p) = L 11;,(1 - cos(3n<p)) 
n=l 

(17.39) 

(17.40) 

(17.41) 

Thc eigenfunctions are expanded into free rotor fun ctions up to the order 2~\'I+l 

AI 

]![ = L Qmexp(im<p) (17.42) 
m=- M 

with eigenvectors [!. Onl)' a fcw matrix elements dcviate from zero. Thc)' follow from 

orthognality relation of the angular functions 

J exp( ill<p)V (<p )exp(im<p )d<p " = 2
n 

J"nm 

J exp(ill<p)V(<p)exp(im<p)d<p 
V, 

= TJ"n(m±3) 

J . ,f' . - n1 2Onm (17.43) exp( 1Il<p) -, exp( l/1l<p )d<p = 
d<p 
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Figure 17.7: Eigcncnergics of a tunnelling methyl groups. The potent ial \/3=0 represents 

thc free rotor with qURntllll1 number J. Strong \13 approaches a harmonie oscillator model -

quantum 1l\1mber n - with equidistant libration al müdes (not yet reached at \13 = 25meV). 

Für a purei)' 3-fold potential olle obtains thc (2M+l) dimensional Hamilton matrix 

9+ ~ 0 0 
1" 

0 0 0 .:.a. , , 
0 4 + .!1 0 0 

1" 
0 0 .:.J. 

2 , 
0 0 1 + ~ 0 0 

1" 
0 .:.a. , ·1 

H = 1" 
0 0 I " 0 0 II .:.a. .:.a. , 2 ·1 

0 
I" 

0 0 1 + Y.l 0 0 .:.a. , 2 

0 0 
I " 

0 0 .. + Y.l 0 .:.a. , , 
0 0 0 I" 0 0 9 + Y.l .:.J. , , 

Such band matrices are easily diagonaliscd by standard programs. The resulting eigenen­

ergies represent libra tions spli t by the tunnel efrect. 

\Vith increasing libration al quantum number thc tunnel spli tting increases duc ta thc 

increasing ovcrlap of wavefunctions in cxcited states. Fig.I7.7 shows thc eigenenergics as 

a fUllction of incrcasing strengtll V; of the hilldering potentia l. Olle recognizes a huge 

isotope cffect with dcuteration (BD = ~) due a doubling of the scalcd potential V' 

(17.41). 

For zero potentia l the Hamiltoll matrix is already diagonal and the eigenvalues a re 
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t.hosc of thc frcc rotor )2 B. 

The Id rotor: packet state fOflnalislue 

Pocket states are useful basis functiolls far stronger potentials. Thcy represcnt a single 

orientation of a moleeule. Thus 1/1 =1 123 > meaus that proton 1 of the methyl group 

is at position 1, 2 at 2, 3 at 3. A rotat.ion is represeuted by cyclic permutation. \ 'Ve 

cOllsider the groundstate only. As outlined for translational tunnelling pocket states are 

no eigens tat es of the problem. Thcy overlap and thus can transform into each other. Since 

wave functions deea)' cxponentially illto a potential wall (Gamow faetor) the overlap or 

tunnelling matrix element is very sensitive to thc strengtll ofthe potential. The eigenvaluc 

matrix obtained from the Hamiltonian is 

( 

1123 > 

1231 > 

1312 > 

1123 > 

.\ 

t 

t. 

1 231 > 1312> 1 
t. t. 

.\ t 

t .\ 

The charactel'istic polynom yields a unique eigenvalue A = 2t related to the tot.all)' sym­

metrie A groundstate and a doubly degenerate eigenvalue). = -t related to the right and 

left handed E states, respectively. The matrix is formally identical to a jump matrix. The 

meulling of the eigenvalues is very different , however. 

A tetrahedran like met.hanc requires 12 pocket states. The 9 eigenvalues are partially 

clegenerate depending on the envirollmental sYlllmet.ry. The mathematics becomes more 

complicated. 

Ta obtain the scattering function including intensities of transitions the inftucnce of 

proton spins via thc Pauli principle has t.o be taken into account. The complete theory 

with inclusion of spin wavefunctiolls is found in l'ef.[8]. The resulting scattel'ing function 

is normalized to the nu mb er of protons in the rotor 

. 2 2. 
(1 + 2Jo(Qd))J(w) + (3 - 3Jo(Qd))J(w) 

+ (~-~jo(Qd))(J(w+wtl+J(w-w,)) (17.4<1) 

The first term reprcsents purely elastic scattering. Its intensity is called elastic incoherent 

strncture factor (EISF). The second term is due to transitions between different but 

degenerate E-states. Finally there urc inclastic A ~ E transitions bctwccn tunnelling 

substates. The latter terms are 6-functiolls only at low temperature. By coupling to 

phonons thcy broaden all(l shift [10] until they mergc into the single c1assical quasielastic 

Larentzian. The \\'idth of tunnelling lines can be illtcrpreted as a lifetime broadcllillg 
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due to transitions into the first excitcd libration al level E01 of the same symmetry. E01 

aets as act.ivatioll ellergy and can be obtained from an Arrhenius plot. The fig.17.8 

shows t his transition for acetamide CH3CONH2 1 the most. simple moleeule eontaining 

the biologically import.ant. peptide group. The transition is an especially nice example of 

8 

CHJCO NH2 
6 

4 

11 1l 
·50 0 

o o 50 
EnerQy transfer (iJeV) 

T·25.0K 

J 
0 1 o 

Energy tr~.ftr ... (yIV) 
70 

T·3t3K 

1 
o 10 "0 . 

EnervY transfar (pIV) 

Figure 17.8: High resolution spcctra of acetamide at 3 temperatures: transition from 

methyl rotational tunnelling to c1assical jump rcorientation. 

Bohr's correspondance Principle. 

Here thc quest ion arises, why thc tunnelling cncl'gy it.self eloes not appear as activation 

energy. This is a remarquable consequence of the Pauli principle: with change of the 

spatial symmetry the spin state symmctry has to change tao to conserve the symmetry 

of the total wave function. Thus A groundstate amI E tunnel level show different total 

spin. The spinless phonons cannot induce this transition (spin conservation) . Thats the 

reason wh)' the very small tunnel splittings are not smeared out at koT» {IWt. 

Structul'al information 

Tunnel spectra of materials with many methyl groups may show many tunnelling tran­

sitions due to the different. rotatiOllal potentials. Like in Rammt spectroscopy conclusions 

may be drawn on structural properties as moleeules per unit cell or site symmetries. 

17.3.3 Multidimensional tunnelling 

Not always a rotation is a pure mode. It might couple to othcr degrees of freedolll . 

Correspondingly t.he single particlc model is no longer applieable. \Vell established is 

so far a combined rotation of thc Tllolceule and its center of mass [11]. This type of 

dynamies is ealled rotation-translation-eouplillg. 1t is a special ease of many possiblc 

types of Illultidimensional tunnelling. Each new model of coupled motion reqllires the 
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diagonalisation of a He", hamiltonian matrix whieh is always mueh lIlore complex than 

the SPlvL This is hard and somet.imcs impossible werk. The single particle model is slieh 

attractive beeause it involves only proper ties of thc rotating grollp and ean be applied in 

any envirolllnent. 

17.4 Calculation of potentials 'ab-initio' 

The result of an analysis of tunnelling speetra , librational (Eod and aetivation (Ea ) enel'­

gies is thc rotatiOilal potential up to some order of Hs Fourier component.s. Thc cxpollcn­

tial dependence of the tunnel splitting on t.he barrier height makes this probe espeeially 

import.ant. 

The determination of rotatiOllal potentials is a value in itsclr. However, a deepel' 

l1nderstandi ng reql1ires its deduetion from more fundam ental quantities. A st.ep towards 

this goal is a parametrisation of interaetions in asolid by atom-atom potentials 

(17045) 

The first tenn rcprcsents thc repulsive, the seeond thc attraetive van-dcr- \Vaals interae­

tions. In addition elcctrostat.ic terms may be added. The total potential energy is given 

as the sum over all pair potentials. Oue important postulate/property of at.om-atom 

potentials is their tmnjerability - at least within ccrtain classes of chcmically rela tcd com­

pounds. Thus the dynamic proper ti es of an t1nknown material should bc calculable on tlle 

basis of thc structure using establishcd pair potentials. This tcehniquc is used in studying 

react.iOJl pathes in ehemist.ry or fun etionali t ies in biolog)' ami phal'macy. 

\Vith the more and morc increasing power of computers it is possible to do encrgy 

ealculations l'cally 'ab initio '. QuantllTl1 chcmistry programs Ii ke GAUSSIAN98 Ininimize 

the energy of t he eletronic wave functions cf a sys t.em of atoms. The aim is the same 

likc with the pai r potential: e.g. to probe paths of a synthesis and thus avoid expensive 

praet.ical t.ests in preparative ehemistry. 
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18. Texture in Materials and Earth Sciences 

Wolfgang Schäfer 

Mineralogisch-Petrologisches Institut, University of Bonn 
Forschungszentl'um Jülich, MIN/ZFR, 52425 Jiilich 

1.0 Introductioll 

The topic ,texture' has to be assigned to the contributions abaut elastic neutron scattering and 

the detennination cf cryslal and magnetic stmctures by means of Bragg scattering using either 

potycrystaltine or single crystaltine samptes (compare Fig.t8. la and 18.ld, resp.). When 

performing powder diffraction für the purpose of refinemcnts cr even detenninations of 

crystal (ar magnetic) structures. Olle initially assumes statistical distributions of all crystallite 

orientations inside Ihe polycrystall ine material , thtls ensuring that für the measurement of each 

Bragg reflection hkl an almost equal and, with respect to statistical relevance, a sufficient 

number cf crystallites (small single crystals) is in reflection position. This is the prerequisite 

for an even intensity distribution on the Debye-ScheITer cones of a powder measurement (see 

Fig. 18.1.). Non-statistical distributions of crystallites, e.g. in case of plate- or rod-like cystal 

grains or for non-powderized bulk sampIe material, result in preferred orientations of special 

scattering planes hkl and cause uneven (orientation dependent) intensity distributions on the 

Debye-Scherrer cones (see Fig. 18.1 band 18.1 c) appraoching the appearance of single crystal 

spots (Fig. 18.1d). The evolution of experimental intensities in erystal structure analysis is 

generally hampered by the presence of prefelTed orient at ion. For instanee, special eorrection 

terms have to be applied during structure refinement ealculations. 

I \ • 
I ' ' I 

\ ' 
\ ". ' - 1 1 

.- ......... ./ 

(a) (b) (c) (d) 

Fig. 18.1: hkl dilfractioll maxima (here X-ra)' scallering) shown as sections jrom Debye­
Scherrer cones obtained /rom polycryslaWne material 01 random crystaWte oriefllatiolls (a) , 

lVeak (b) alld strollg (c) pre/erred orielltatiolls. (d) sholVs sillgle crystal di/fractioll spots. 

In this contribution, however, we will exclusively foeus on the positive aspects of prefelTed 

orientations in polycrystalline material in view of the characterization and changes of the bulk 

18· 1 



material properties. In material science, mechanical treatment and deformation is artificiaIly 

applied to generate preferred orientation and, thus, weIl defined material properties. In em1h 

sciences, prefelTcd orielltation exists in rocks by natural defonnations over millions of years 

and, thus, bears important infonnation on longtirne geological processes. The study of pre­

felTed orientations in bulk polycrystalline material is an independent scientific discipline; Ihe 

texture analysis [1,2). 

2.0 Anisotl'oPY by Strlleture and Texture 

Texture is a property of condensed erystalline matter. In our daily life, we are often in contact 

with solid state, crystalline matter, e.g. minerals and rocks being Ihe fundamental eomponents 

of Ihe earth's erust, or met als and ceramics which are manufaetured and used as technologieal 

products. Crystalline matter is eharacterized by its specific crystal stmcture which is defined 

by a unit cell with ils symmetrieal atomic arangement and by its three-dimensional 

periodicily. This crystal structure essenlially determines the physical, chemical and techno­

logical properties of a material, at least on a microscopic scale. The microscopic unit is 

considered 10 be a monocrystalline aggregate. 

Generally, lhe properties of a single erystal are anisotropie, Le. Ihey are different in 

different erystallographic directions. The themlal conductivity of graphite represents a typical 

exampJe of such a direction-dependent crystalline property. The sheet-Iike hexagonal crystal 

stmclure buHt up by plane layers of carban atoms with sm all interatomic distances inside the 

layers and large distances between neighbouring layers (Fig. 18.2) is responsible for a strong 

anisotropy. The thermal conductivity within the layers is abaut four times larger compared to 

the conductivity perpendiclilar to the layers 

Fig. 18.2: Graphite Slrucfure built up 
by plalle sheels ofe alollls (halched) 
arrmlged perdelldicular 10 fhe hexa-

gonal c-axis 

100lJ 

Ihk!! 

10101 

11001 

Fig. 18.3: Property sill/ace oflhe YOIlIIg 
modll/lls ofiroll (Ieft)for allY direCliolls [hk/j 

oflhe cllbic cryslal syslem (riRht) 

FlIrther important structure related anisotropie properties of special technological rele-

vance are e.g. mechanical hardness, elasticity, thennal expansion, electrical conductivity, 

magnetic induction 01' corrosive resistance. The single-crystalline anisotropy may be 
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deseribed by a direction dependent three-dimensional praperty-speeific surfaee as shown in 

Fig. 18.3 for the linear (elaslic) Young moduills of iran with its ellbic crystal strueture. The 

direetional dependenee of a property E is a funetion of well-defined erystallographie 

directions !r 

E (g) - f(h) - f(hkl) (I) 

With repect 10 any direetion g in the three-dimensional spaee, Ihe direelional dependenee of E 

ean be expressed mathematieally as aseries of spherical hatIDonics T wilh parameters A, JJ. 

and v and its coeffieients e according to 

E(g) - I: I: I: ef"Tf'" (g) (2) 
). J-I " 

The vast majority of solid crystalline matter, however, does not exist in fonn of single 

erystals but is of polycrystalline nature. The material is built up macroscopieally by a multi­

tude of erystallites or grains which can be arranged in many different orientations (eompare 

Fig. 18.4). In case of a statistical orientation distribution of the erystallites the stmeture­

specific orientation dependenees of the properties disappear macroseopically and the material 

beeomes quasi-isotropie. 

Fig. 18.4: Schematje represelllatioll o[random (left) and pre[erred orielllatiolls (right) o[ 
!1raphit-type crystallites (compare Fi!1, J 8,2) 

This lass of anisotropy can be compensated for by the existence or the generation of texture. 

Texture is defined by 'he spatial orientation distribution of erystallites in polyerystalline 

matter. In case of a statistical orientation distribution one speaks of a random texture. The 

above definition of texture which is widely accepted and used today disregards any effects 

due to different shapes or sizes of the erystallites. A (non-random) texture perfonns a transfer 

of structure relevant microseopie single-cryslalline anisotropies to the polycryslalline bulk 

material. Texture is an important parameter in view of the properties of condensed crystaJline 

matter, besides of other material parameters as structure, phase composition, grain boundaries, 

or strain [3] . The formation and changes of texture are driven or controlIed by outer 

influences, either already du ring cystallization by e.g. the existence of non-hydrostatie 

conditions during crystal growth or after erystallization by natural deformation due to tectonie 
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events with regard to geological material or, with regard 10 manufactured materials, by 

artificial deformation of products by mechanical treatments like rolling or casting. 

The mean value of a property E of a textul'ized polycrystal is expressed, according 10 

equation (2), by an integration of over all crystallite orientations with the aid of a so-ca lied 

orientation distribution function f(g): 

J E(g)f(g)dg 2:2:2:-1- ere:,' 
J. Jl " 22+1 

(3), 

Timst E is expressed malhematically by a folding of structural coefficients e and texture 

coefficients C. The full mathematical decription of this so-ca lied hatmonic series expansion 

method has been developed by H.J, Bunge [4), The actual goal of a texture analysis is the 

experimental detennination of the orienlation distribution function by diffraction measure-

ments. 

3. Orientation Distribution Functioll 

'The texture af a polycl'ystalline sampie is expressed by its orientatian distribution function 

f(g), generally abbreviated as ODF, according to the definition 

f(g) _ --'- dV 
V dg 

(4), 

Thus, the ODF is defined by the volume fmction of crystallites that have the orientation g 

within a certain infinitesimal orientation element dg. The orientation g can be described by a 

transformation matrix [gik] representing the orientation af the individual crystallites (coor­

dinate system KK) with reference to a common sampie coordinate system Kp (Fig. 18.5). The 

axes of the cartesian Kp coordinate system are selected in accardance with extern,,! (or 

visible) defomlation or texture characteristics of the sampie. Some commonly used 

arientations of the sampie coordinate system are shown in Fig. 18.6. 

Fig. 18.5: Schematic represellfatio1i 0/ a 
texfllrized sampIe in a coordinate system 
Kp wit" individual oriemation of crystal-

lites and their coordinate system KK 

Fig. 18.6: Usltal definitions oj coordi"ate axes 
0/ cartesian coordinate systems Kp jor roller! 
II/elal sall/ples (Iefl) ami geoll/alerial (righl) by 
direcfioll aud plane ojrollillg and by lineatioll 

amI plane oj joliafioll, respecfively, 

For material/metal textures the Euler space is traditionally used as orientation space by 

describing the orientation g of the crystallites by the three Eulerian angles <PI, $, <P2. 111C 
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corresponding coordinate transfomlation is perfonned by three subsequent rotations about the 

Eulerian angles in Ihe sampie coordinate system as depicted in Fig. 18.7. It is then 
, , 

, 
(0) , , 

" ., 

x 

(b) 

(d) 

Fig. 18.7: Definition afthe Eulerimi 
allgles f{Jj, rJ>, 'Pi alld transformations 

of sampie (Kp) a/UI crystal (KK) 
eool'dinate sylems: 

(a) idelltieal orientatioll ofthe axes of 
Kpaml KK 

(b) rotatioll of the z-axi,. of KK by 'PI 
(c) rotatioll ofthe x-axis of KK by qJ 

(d) rotatioll of the z-axis of KK bei 'P 

convenient to plot these Eulerian parameters as cartesian coordinates in a three-dimensional 

space whieh is ealled Ihe Euler (orienlalion) space (Fig, 18.8). Eaeh cryslal orienlalion is 

represented by a point in the Euler space. Th~ orientations of all eryslallites of the ensemble 

are then represented by a point distribution in Euler space. A texture obtained as a continuous 

distribution function can be represented by equilevel contour lines (Fig. 18.8) which may be 

completed to equilevel surfaces as it is shoWIl in the example in Fig. 18.9. and its plan ar 

sectiolls in Fig. 18.10. The Euler space is a distOlted space with a metric quite different from 

the usunl three-dimensional space. Textures of geological sampies are usually visualized by 

ether, more descriptive representations which are eleser te eommen sense (see ehapter 5.1.). 

" 
., 

J t'·{M'., L,t: J@ 
P-*r*r* 
~ "\ "I 
Fig. 18.8: Crystallite orielllat;oIlS;1I Euleriall 

{llIgles: olle crystallie (Ie/t). oll crystallites 
(middle) witll eqllilevel cOlllaur fines (riXhtJ 

Fig. 18.9: ODF of a 
Cu rollillg texlIlre 
represellted by an 

equilevel orielllatiotl 
surface ill tlle 3-dim 

Euleriall spaee 
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Flg. 18.10: ODF represelltatioll of Fig . 
18.9 by asequellee of eOllst. f./J2 -seetiOlIs 



4.0 Experimental Texture Analysis 

The material texture and its ODF cannot be measured directly without destroying the 

specimen. The ODF can only be constructed. Two different types of measurements are 

applied. The traditional method is the single grain analysis based on optical methods where 

the orientations of representative single grains are directly observed using universal stage 

microscopy on a polished sam pie surface. A faster and much more efficient alternative to the 

rather painstaking single grain analysis are diffraction methods using either neutrons 01' X­

rays. Bragg scattering intensities are measured as a function of the sampie orientation. 

4.1 Definition of a Pole Figure 

A pole figure represents the orientation distributio.n of a particular crystal directioll [hkl] or 

the nomlal to the scattering plane (hkl) of the sampIe. The crystal direction is first projected 

onto a sphere of unit radius around the sampIe. The prenetrating point P on the sphere (Fig. 

18.11) is defined by two angles, a pole distance a and an azimuth ß. This sphe,e is then 

projected onto a plane in order to represent the pole on paper. Various spherical projections 

are in use, the most common in texture analysis is the stereographic projection (see Fig. 

18.11). Fig. 18.12 shows examples of some crystal plane distributions and their associated 

pole figure representation. 
N 

€?9 
... :. 

P,;' "'10" E 

-- ~
~ - " , 

P' 

Q 

5 

(a) (b) 

Flg. 18.11: Representation 0/ a plane (hkl) by 
ils normal alltl ils pole 011 fhe surrOImding 
sphere P defined by polar coordiantes G, ß 
(Ieft). Stereographie projeetion oj P inlo p. 
inside the (hatehed) eql/atorial plane (right) 

~rm 
G·, P. " . ' . ~ . 

,-", 

(c) (d) 

Fig. 18.12: Exalllpies 0/ crystallographic planes (top) and their accessory pole figl/res (bot­
lom)jo,. a two-dimensional (a) alUl a fhree·dimellsional (b) single cryslal wilh ollefixed 
pole per plane alldjor a polycrystalline sampie (e and d) with a seaf/er ojpoles; 
(a) (001 )-plane ant! ifS eOllutelpart (OO·J) (llorth-solllh 1I0rmai dil'eetiolls) 
(b) cl/bic basis plal/es (100) , (010), (001) (Ieft) al/d body diagonal planes {lll} (right) 
(e) spread 0/ differel/tly oriellled (001) plal/es 
(d) spread 0/ differelllly oriel/ted cl/bic basis planes {100} 
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4.2 ExperImental Pole figures 

An experimental (hkl) pole figure is obtained by diffraction methods by measuring the 

intensity of a Bragg reflection (hkl) for a variety of different sampie orientations. Usnally, at 

least so rar, one lIses monochromatic neutrons (or X-rays). The simplest instrumental setup is 

that cf a four-circle diffractorneter equipped with a Eulerian cradle (<P, X rotation axes) 8S 

sampie goniometer (Fig. 18.13) and a simple counting tube, Le. an instnament as used for 

single crystal structure investigations. A stationary detector is positioned in the peak 

maximum of arefleetion, and sampie orientation dependent measuremenlS are performed, e.g. 

in a step scanning mode, realizing an equal area pole figure grid (Fig. 18.13). 

20- : 

FJg. 18.13: Ellleriall cradle willl rot­
ation axes 'P, X ((I) :;:: 2 e2 positioll) 
(left) alld typical (a,p)- polefigl/re 

seallnin!! J!rid (riR"t) 

Fig.18.14: Variation of .rejleclioll intellsities 
witll ({J rotation (X fixetl) 0/ a quartzit sampie 

measured witll a large linear detector in Jiilich 

Rather than using a single eOllnting tube it is more efficient to employ a large position­

sensitive detector wh ich covers a wide scattering range 20 and wh ich allows the simliltaneous 

measurement of many (hkl) reflections (see Fig. 18.14) and, tlms, the collection of 

experimental data for many pole figures in only one sampie sean. The pole figures are 

constructed (I) by conversion of the individual sampie orientations (<p, X) into pole figure 

coordinates (n, ß), (2) by interpolation for points of an almost equispaced (n, ß)-grid in the 

pole figure projection (see Fig. 18.13) and (3) by graphically representing the pole figures 

\Vith the corresponding reflection intensities (compare Fig. 18.15). 

~" 0.07 

. I 
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Fig. 18.15: COlllparisoll of c-axis 
pole figl/res (0001) of a texturized 

quartzite abtained/rom single grain 
analysis by V-stage microscopy 

(left) and nelltrOIl diffractioll (right) 
based Oll illvestigations o[ abollt olle 

hundred ami olle million grains, 
respeclively. 



4.3 Pole Figur.s from Neutrons and X-Rays 

Thc advantages and drawbacks of both neutron and X-ray diffraction for texture analysis are 

obvious. Texture is a statistical description of crystallite orientations and therefore requires a 

large number of crystallites or grains in order 10 get a meaningful sampling. Reproducible 

pole figures require numbers of 10' to 10' grains are good figures. The knwon properties of 

X-rays (large absorption in the sampie .nd • small beam diameter) limit its use to (1) flat, thin 

sampies, and (2) fine grained material with grain sizes in the order of 10 to about 100 !Im. 

These limitations allow 10 study only a surface of a sampIe because the X-rays penelrate the 

sampIe just a few microns. X-rays therefore probe the loeal texture at the sampIe surfaee. Due 

10 the high and orientation dependent absorption and limitations due 10 defocusing if a flat 

sampie is rotated (see Fig. 18.16), only incomplete pole figures can be obtained. 

Fig. 18.16: X-my diffraclioll patterns of 0 
flat allorthosit sampie ill (wo differelll 

orienlations (a a1/(/ b) and meallneulroll 
d(ffraclioll diaRram (c) of all orielllaliollS 

Fig. 18.17: COlllparisoll ofX·ray (Iefl) alld 
neutron pole figures (de"l) 0/ a coarse 
Rrailled deformed marble specimell/5j 

Neutron beams, on the other hand, are large up to 100 x 50 mm2 cross section, and in general 

weakly absorbed by most materials. Compared to X-ray photons, neutrons are absorbed by 

less than three orders of magnitude and are therefore in need of large sampies. While this may 

be a drawback in many investigations, it is of great advantage in texture analysis where the 

global texture of the total volume has to be explored. Due to their ability to penetrate matter, 

neutrons are weil suited for the analysis of the bulk of a thick sampie with several cm in 

diameter. Thus it is possible to study also coarse grained material with reasonable grain 

statistics even if grain sizes range up to millimeters in diameter (Fig. 18.17). Neutron 

measurements can be performed in transmission geometry on spherical, cylindrical or even 
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itTegular shaped specimens and complete pole figures are obtained \Vitho"t applying any 

intensity correctiolls. Neutron diffraction measurements can be carried out al a much lligher 

degree of accuracy than other techniques to calculate the orient at ion distribution function. 

5.0 Pole Figm'es Bnd ODF 

An experimental pole figure Phkl yields the orientation distribution of the crystallites with 

respect to one particular crystallographic direction [hkl] wh ich represeots the actual scattering 

vector § of the diffraction experiment. 111ere is 00 information, however, on the orientation of 

Fig. 19.18: Scatterillg experiment with scatterillg vector ~ = [hkl] perpelldicu/ar to scatterillg 
plane (hkl) (hatched) yields no information Oll the orientatioll 0/ an)' [UVIV] inside the plane 

the erystallites perpendieular to the scauering veetor, i.e. inside the plane (hkl) (compare Fig. 

18.18). As the pole figure represents a two-dimensional orientation distribution, it is thus an 

integral of Ihe three-dimensional orientation distribution function f(g) taken over a rotation 

abollt scattering vector f :2 [hkl]: 

Phkl(y) = _I J f(g)d\jf with y - {C<, ß} 
2" y.l(hlll 

(5). 

Equation (5) may be called the fundamental relation of texture analysis. It is evident that the 

ODF f(g) is generally not completely detennined by one pole figure. One needs the additional 

infonnation of other crystallographic directions, i.e . other pole figures. The factor ll21t in 

equation (5) results from a nonnalization with respect to the definition of a statistical 

orientation distribution: 

f(g)""",,,, = I, J j(g)dy - I, Phkl(C<, ß)''' t;''k~ -

Pole densities are expressed in multiples of the random density (m.r.d.). 

5.1 Pole Figm'e Inversion 

(6). 

The detemlination of the ODF f(g) from equatioll (5) is called pole figure inversion. Different 

mathematical procedures have been developed to calculate the OOP from experjmental pole 

figures. Depending on the method, the calculated OOP is a continuous or a step function . A 

widely applied method in texture analyses of high symmetry materials (metals) is (he series-
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expansion or harmonie method developed by H. J. Bunge [6] (compare ehapter 3.0). Analo­

gous to the classical procedure in single cryslal stnlcture detennination, the ODP is expanded 

into its corresponding Fourier orthogonal series lIsing sUlface spherical haml0nic functions 

with coefficients C (see equation (2». A similar expansion is perfonned with the experimental 

pole densities P yielding the eoefficients F(hkl). A system of linear equations and appropriate 

transfonnations cf coefficients are used to detennine Ihe unknown coefficients C from the 

experimentally known coefficients F. Routine computer programs are available 10 perfann 

these calculations. The calculated coefficients C afe those texture coefficients C which have 

been used in equation (3) to describe the anisotropy of macroscopic physical properties of a 

texturized polycrystal. 

After the ODF has been detemlined it is possible to caleulate pole figures of all planes 

(hk!), also of those wh ich have not been Of cannot beeil measured, for instance, because of 

extinction. It is also useful to recalculate experimental pole figures from the ODP in order to 

estimate or control the reliability of the texture analysis performed. 

A different mathematical approach to the ODP calculation is the discretization method 

based on the maximum entropy concept [7] using a finit series expansion into indicator 

funclions. This method was introduced into the program MENTEX by H. Schaeben [8]. The 

so-called WIMV-method [9] which is rather common in geological texture analysis is based 

on certain probability assumptions of f(g) wh ich may then be further improved by iterative 

refnements. 

f' Fig. 18.19: Represelltatioll 0/ a 
texfUre compOl/ellt g' by a Galls­
siall distribution fimctioll I(g) o} 
halfwidth b'. a/ del/otes the devi­
atioll 0/ crysfalltie orielltatiolls 
{rom gC (at 0/ ;::; 0°). ,,' represellts 
a sall/ple jixed axis (see [Ja]) 

Apart from the global description of the texture in the total orientation space, texture 

can also be described by a certain number of texture model components, although this 

description includes only restricted areas of the orientation space. Each component to be 

described, for instance, by a Gaussian distribution curve is given by (I) a preferred orientation 

gC locally restricted in orientation space, (2) a halfwidth bC characterizing the spread around gC 

(see Fig. 18.19) and (3) an intensily I' indicating the volume share of all erystallites belonging 

to that component. The ODF approximation by means of texture components is expressed by 
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f(g) - R + ~ I< I"(g) (7). 

The quantity R gives the volume fraction of the randomly oriented crystallites, Le. which are 

nol reslricled in Ihe orienlalion space. The componenl melhod [10] can be applied 10 

composite experimental pole figures, also cf multi-phase geological material of any 

cryslallographic symmelry. 

5.2 Inverse Pole Figures 

The mathematical procedure cf pole figure inversion includes also thc calculation cf coeffi~ 

eients H cf so-called inverse pole figures. While the pole figures discussed so far are defined 

for olle paI1iclilar crystallographic direction [hkl] and variable sampie orientations (compare 

equation (5», the inverse pole figures represent shares cf main crystallographic directions, 

e.g. basis axis, face and body diagonal of Ihe cubic cryslal syslem, in a fixed sampie 

orienlalion (Fig. 18.20). Vsually, Ihe inverse pole figure is represenled as slereographic 

projection \Vith respect 10 Ihe crystal coordinate system KK. while the ,standard' pole figure is 

defined as stereographie projection with respect to the sampie coordinate system Kp (compare 

Fig. 18.5). 
/111/ 

6.0 Examples ofTexlure Analyses 

Fig. 18.20: IlIl'erse pole figl/re of a cold <lrawlI AI 
wire (see (2J) by represelltatioll of the preferred 
oriellfatiolls 0/ tlle most relevant crystallograpllic 
directiolls (cl/bic axis {I OOJ, face-diagollal (IIOJ 
ami bo<ly-diagollal (11I]) illside the sampie. Pole 
dellsities are show" by equilevel colllo11r fines ill 
11I.,..d. 

Texture appears in a great variety. A multitude of different types is kown according to 

different mechanisms of texture fonnation during crystallization (grain growth) and recrystal­

lization (generation of dislocations), by defomlation during materials processing (plastic 

deformation, slip and twinning) and as complex superpositions in the course of natural 

seismic processes in geological texture developmellt. 

6.1 Types of Preferl'ed Orientalion 

One frequently occuring special type of texture are the so-ca lied fibre textures. A fibre texture 

is typically found in a sampie fonn wh ich is characterized by a main axis Ce.g. a cylinder or a 

wire) with strang preferred orientation of the crystallites along this fibre axis and a 3600 

rotation symmetry around this axis, Le. no preferred orientatioll perpendicular to the fibre 

axis. For instance. the texture of cold drawn metal wires with fce strueture is a <111> fibre 
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textlIre where cubic <111> directions (zone axis) are oriented parallel to tlte wire axis. 

Another texture type are prefelTed orientations of special planes, e.g. the hexagonal basis 

plane of graphite (see Fig. 18.4), stacked parallel to each other on a surface plane, e.g. a motor 

piston. but without any preferred orientation within this plane (graphite as lubricant for better 

gliding). 

More general types comprise both the arientntion of a plane (hkl) and a zone axis 

[uvwJ. Such a system of glide deformation texture is represented by (hkl)[uvwJ or more 

general (hkl )<uvw>. There is a preferred orientation of a special crystallographic direction 

<uvw> within the (hkl) planes which are oriented parallel to each other. The defonnation of a 

fcc metal resuIts in a {ll I }< 11 0> texture, where cubic {lll} planes glide along < 110> 

directions. Geological defonnation textures are described by mineral specific glide systems. 

6.2 General Ojectives . 

The major objectives of texture analysis are different in materials and earth sciences. While in 

material seiences the major emphasis is on the development and control of required preferred 

orientations under well defined experimental conditions cf materials processing in order 10 

evaluate speeific (anisotropie) maeroscopic physical properties for special teehnological 

applications , the problem in geosciences is just the opposite and much more camplex. TIle 

geologist begins with the end produet, the rock as it occurs in nature. and attempts to 

reconstmet the processes by wh ich the textlIre has been fonned. The texture is a fingerprint cf 

the efll1h's history and, simultaneously, infomls on anisotropies of elastic, magnetie and 

themlal properties of rocks constituting the erust and the upper mantle. Anisotropy needs to 

be taken into account in the interpretation of seismic data, development of geological models, 

and geophysical prospecting. 

In the following, two experimental examples of texture analysis are given based on 

results from the Jülich neutron texture diffractometer. 

6.3 RoJllng and Recystallization Texturc of Cop per 

One project in the fjeld of applications of neutrons in materials seicnce was concemed \Vith 

investigations on the longtime stability of copper textures [lIJ . The rolling texture of copper 

(Fig. 18.21) is characterized by three main components [12J: the ,copper'· {1I2}<lll>, the 

,brass'- {1I0}<1I2> and the ,S'·component {123}<634>. The main component of 

recrystallized copper is the ,cube'·component (001 )<100> and a minor component 

{122}<212> (Fig. 18.22). 
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Fig. 18.21: MeaslIred pole figlles of a CII 
rol/illg texIlIre; ituJicated are ideal oriellt­
atiolls o/flle copper (trimzgJe), ,he brass 

(square) al/d fhe S-compollellf (eirele) 

Fig. 18.22: Modelling of a CII recl)'slalliza­
lioll lexture by superposition 0/ fhe maill Glld 
Ihe minor componenls {OOl}<lOO> (Ieft) and 

{122}<212> (cenler), respeclil'ely 

A high purity copper sheet was cold rolled to a final thickness reduclion of 95%, This 

sheet cf 1 mm thickness was cut inta plates of IOxIO mm2
, Apart of these plates was 

annealed at 300°C for 20 min to achieve recrystallization. Two cubes, each of 10 mm edge 

lenglh, of purely rolled copper and purely recyslallized copper where Ihen prepared by 

glueing ten plates of the respective materials on top cf each other. Identical orientations of the 

individual plales was laken care oL Neulron diffraclion pole figures (Fig, 18,23) have been 

repeatedly perfonned on balh specimens Qver aperiod of about six years in wh ich no further 

treatment of the specimens was undertaken. 

1990 

1994 

1996 

Fig. 18.23: E.\perill/el/tall/elltrol/ pole figllres of a rolled (Ieft) al/d a recryslallized 
(right) copper specimen i1l1990, 1994, ami 1996 without allY treatment in between 

The textures, quantitatively analysed by model calculations are found unstable over 

the time of investigation . All quantitative results are summarized in Table 1. The initially 

almost complete rolling texture recedes by about 30% in sampie volume in favour of 

recrystallization. In the recrystallized specimen, the initial amount of recrystallization texture 

is reduced from 89% to 66% in favour of a randomly oriented portion. The somewhat 

surprising findings of ,living textures' are remarkable with respect to the kinematics of the 

physical processes involved, and also with respect to the desired longtime stability of material 

properties in technological applications. 
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Tnble 1: LOllglime variations ofthe tex/ure ofrolled (top) and recrystallized copper (b0I10m) 
llS measllred by "eWron di!frllction and llllalysed by the compollellf method Ilsillg the program 
MULTEX { ] . Texture parameters are givell ;11 Vol% ofthe maill cOl1lpollellls. The orielllatioll 
deviatiolls 0/ fhe crysfallites from the var;ous fibre axes are g;ven the filII width a/ half 
maximllm (FWHM) of Gallssicl!l distribw;ol1$. 

Rolled ClI-specimen 
Component 

" 
S" "co per" "brass" "cube" 

Year Vol% FWHM Vol % FWHM Vol% FWHM Vol% FWHM 
1990 36 13 24 11 22 13 3 10 
1994 27 13 19 11 20 13 21 11 
1996 24 13 15 11 17 13 28 11 

Recrystallized ClI-specimen 
Component "cube" {l12)<212> random 

Yenr Vol% FWHM Vo1% FWHM Vo1% 
1990 61 9 28 13 11 
1994 54 10 32 11 14 
1996 50 9 16 11 34 

The neutron diffraction pole figures of the starting material have been used for a 

ca1culation of a three-dimensional ODF according to the series expansion method (Fig. 

18.24). 

rr=~·L,~·~,~·,~o·~'~'r·--__ cr--~OO~F 
~ ~ 

lUX- 15 . 0 

LEH~S: 
~ • 1 U 

Fig. 18.24: ODFs ofrolled alld reclystallized copper accort/illg to lIelllroll polefigllre data. 
The ODFs are represented by secliOlIS 0/ COIlSt. f/Jl;1I fhe three-dimellsoinal ElIleriall space 

6.4 Natural Deformation Texture of Quartz 

Quartz (Si02) is the most naturally occuring mineral. Among all minerals naturally defonned 

quartzites display the largest variety of texture types [13]. The variation has been associated 

with conditions of metamorphie grade and with the defonnatian history. Quartzites bear 

information on the tectonic deformation mechanisms by the formation af intracrystalline glide 

systems which are temperature dependent and strongly influenced by water. Due to its aptical 

t8-14 



properties. quartz can be investigated by single grain analysis using oplical microscopy 

(compare chapter 4.0). V-stage results can be compared with neutron diffraction pole figures 

on the global texture (see Fig. 18.15). 

The Jülich neutron texture diffractometer has been used for texture studies on 

quartzites originating from different geologieal zones [14]. The quartzite to be diseussed here 

was collected from the (late Proterozoic to early Papaeozoic) Pan-Afriean Nosib quartzite of 

the Tomakas area in the Kaoko belt, North·West Namibia, a 560 million years old geologie al 

fOlmation [15]. Pole figure measurements have been perfomled on a cube-shaped specimen of 

20 n1l11 edge size. Grain sizes varied between 0.03 and 0.83 mm . 

• r 
. Fig. 18.25: EJ.perimental neutron diffract­
iOIl paltem (pO;llts)o! a quarlzite specimeIl 
as meall diagram of abollt 500 differellt 
sampie orielllatiolls dllrillg pole figllre 
scmming ami Jull-paltern profile fit (solid 
lilie) for separation of overlapping peaks 
(dotled curves). The illdexillg is acoordillg 
to fhe hexagollal qllartz s/ructure. 

The pole figure data proeessing, wh ich is adaptcd to the special potential of the 

position-sensitive detector and the automatie recording of complete diffraction patterns for 

each sam pie orientation, is perfonned stepwise in a semi-alltomatic way by (1) adding up all 

diagrams and preparing a mean diagram of all sampIe orient at ions, (2) profile fitting the Sllm 

diagram (Fig. 18.25) in order to separate overlapping reflections and to determine orientation­

independent reflection parameters, Le. peak positions and halfwidths, (3) profile fitting the 

individual diagrams for the determination of the integrated peak intensities. Le. the 

orientation-dependent pole densities, and (4) graphical representation of the pole densities in 

stereographic projection using a normalized grid in multiples of random distribution. The 

experimental pole figures are shown in Fig. 18.26. 
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Fig. 18.26: ExperimellIal pole 
figl/res oj a nall/rally dejom/e" 
ql/arlzile. A 10lal oj 14 pole 
figures is oblained simultan­
eOl/sly jrom a single pole figl/re 
scan al fhe texture diffraeto­
meIer SV7·b al lile FRJ-2 
relletor in Jiilieh. The illslru­
melll is equipped lVi/li a large 
linear delector. 



Pole figure inversion and ODF calculations has been performed using the program MENTEX 

[8J. Experimental and calculated pole figures of some hkl are presented in Fig. 18.27. 111e 

(001) pole figure is of special importance for the qnartz structure, because (001) informs on 

the orientation distribution of the optically relevant hexagonal [OOIJ axes and thus permits a 

comparison to an individual grain analysis at an U-stage (see Fig. 18.15). While the optical 

data are confined to this [001] direction, the neutron data pennit an overall description of the 

quartz texture by additional infolnlation on preferred orientation of other quartz-relevant 

planes and fomls like prisms and rhombs. The interpretation of the quat1z texture is given in 

the typical nomenclature of a geologist (compare Fig. 18.27): 

Fig. 18.27: Observed all" ca/cu/ale" 
neU/roll polejigllres (X, Y: see text). 
Top row: experimental pole figllres 
{m}, {r+zJ all" {al (see leXI). 
Secolld roH': correspolldillg mode/ pole 
figures reca/cu/ated trom Ihe ODF. 
Boftom row: ca/cII/alioll sol the 
,u/lobs"1'ed' pole figures {cl, {r} a/l" 
{z} (see leXI). 

(I) The{c) pole figure (0001) shows a concentration of c-axes around Y (direction perpend­

icular to the diection X of maximum elongation and perpendicular to the direction Z of 

maximum shortening) and a girdle cJose to the YZ-plane (plane of foliation) indicating 

that the investigated rock was predorninantly defonned by a prism slip mechanism with a 

contribution of the slip along rhomb and basal planes. 

(2) The pole figure of the crystallographic {al prisms (11 -20) exhibits two nearly separated 

concentrations around linear fabric and the shear direction. The a-axis maximum is at the 

margin of the pole figure with an angle of about 25° to the foliation plane. 

(3) PrefelTed orientations of the first order prisms {m) (10-10) show a pronouneed coneent­

ration parallel to the lineation direction. 

(4) Poles of the positive and negative rhombs {r) (10-11) and {z} (01-11) show a tendency of 

symmetry in their alignment with respect to the shear plane. 

Struetural geologists compare those loeal quartzite textures (I) with the texture of other rocks 

of the same region in order to recognize the regional tectonic transport direction (which in aUf 

example was east - east south east), and (2) with the texture of quartzites of different geo­

logical origin in order to recognize quartz~specific deformation mechanisms. 
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List of most important symbols 
< ... > Thermal average 

ß* = 21f" k x f. b* _ * _ 
a'(Qxc)'- - ···,f - ... 

Basis vectars of the reciprocallattice 

a, b, C, (x, ß. Y Basis vectors ofthe unit cell allel augles 
A Veetor potential 

A'll Dipole operator 
b, bcoh. binc, b .. , b. Neutron scattering length, coherent, incoherent, J=l+~; J=I-..!..; unit: 

2 2 
fm=10-15m 

2fJ Scattering angle L ( k, k') 
0 Ineident angle" angle between k and the surfaee 
0' Scattered anale = angle bctween k' allel lhe surface 
fJ, Angle of total refleetion 
0, Angle oftransmittcd beam Ei angle between kt alld thc surface 
e ~ 2.9979246 . 10' m/s Velocity oflight 
d, dhkl Illter-lattice plane distallee 
ö (E-E') Delta functioll 

d" d
2
" 

Single- alld doubI"e-differential cross section 

drl' drldE' 
E, E' Energy ofineident/seattered partie!e, unit: eV (meV, ~eV) 
E Electrie field 
f(Q) - C + iC', f,,(Q) Farnl factor, m~netic form faetar 
y"~-1.913 Magnetic dipole moment of the neutron expressed in Iluclear 

magnetons 

y ~ -1.833 .10' rad 
Gyromagnetic ratio of the neutron 

s·T 
Q - h~'+kl1'+if' Reciprocal latticc vector 

G ([,tl, G, ([,tl Pair-, self-correlation function 
H Magnetie field 
h - 6.626 . 10.34 Js; P!anek's quantmll of action (reduccd) 

h -t6 h ~ - ~ 6.582 ·10 eVs 
2" 

hw = E - E' Energy transfer of the scattering proeess 
k, \Vave veeter of thc transmitted wave (reflectometry) 
k' \Vave vector ofthe scattered wave 

2" • Wave vector (in general: oflhe incident wave) 
k~- · k 

A -
k" Wave vecter in matter with index ofrefraction n 
kß - 1.381 . 10.23 JIK Boltzmann's constant 
)" Wave length, unit: ml1 - 10" m 

I"~ - hirn, - 2.426 pm Compton wave length 
L,L I Quantmll numbcr of orbitalmomentum and its operator 
Illn, me Neutron mass, electron mass 





M Vector ofmag~letisation 
~Iß - 9.274 . 10'" J I T Bohr's magneton 
lln Vector of the magnetic dipole moment of the neutron 
JlN ~ 5.051 . 10'27 J I T Nuclear magneton 
n Index of refraction 
Cl,dCl Solid angle and its element 
P, P' Polarisation berare/after scattering 
't' Quantum mechanical probability amplitude 

<\II;I I\IIr> \"ave functions ofthe initial and final state 

Q~!i - Is.' Scattering vcctor 

R Rcllectivity 
ßld Position vector of atom d in celll 

e2 Classic radius of the electron 
ro ~ --2 ~ 2.8179 fm 

11leC 

\l; Pauli 's spin matrix 
aA Absorption cross section 
acoh. O"inc Coherent and incoherent cross section 
Ulol Total cross sectiOJl (absorption and scattering) 
S,oh (Q, (0), Coherent and incoherent scattering function 
S;" Q,oo], 
S(C , SM(O), SN(O), SerO) Stmcture faetor (statie), magnetic, nllelear charge stmcture faetor 
S (e ,I) Intermediate scattering function 
S (Q, (0) Scattering function. dynamic structure factor 
S,S Spin qllanltlln Illlmber and its operator 
T Transmissivity 
Ver) Interaction potential 

General conventions' 
s Scalar 
v Vector 
v Unit vector 

IM Matrix 
0 Operator 
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