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1 Neutron Sources 

Harald Conrad 

1.1 Intl'oductory relllarl(s 

StOB' neutrons are a virtually unique probe for the investigation of structure alld dynamics of 

condensed maHer and biomolecules. Neutrons afe ca lied slo\l', iftheir kinetic cllcrgy is helaw 

1 keV. As the first neutrons ll sed as microseopie probes werc generated in nuclem renctors, 

historie terms like thermo/nelltrons are also frequenti)' used in Ihe classification of neutrons. 

In renctor physics the not ion thermal is lIsed 10 distinguish these neutrons, which sustain the 

nuclear chain reaction, from Ihe jclS( fission neutrons with cnergies of scvcral Me V. Thermal 

neutrons, i.c. with an average kinetic energy of E=. 25 meV, are of pm1icular inteTest in the 

contcxt of this course. They are in thermal equilibrium with an adequate s lowing down me­

dium (moderator) like graphite, light or heavy water at ambient temperature (k()T :: 25 meV). 

With the availability of cryogenic moderators, cold neutrons (E == 3 meV) became important 

in reeent dccades, to~ . Strictly speaking, eold or SO called hOl neutrons (E =200 meV) have 

to be considered as thennal, tao, because these are neutron gases in thermal equilibriulll with 

a moderator at a pal1icular temperature. Cold neutrons are in equilibriulll with a cryogenic 

moderator, e.g. liquid hydrogen at 20 K 01' solid methane at liquid nitrogen tcmperaturc, 77 K. 

Hot neutrons are those in equilibrium with e.g. a graphite block heatcd to 2000 K, say. 

These hot neutrons and the evcn more energetic, so ca lied epithermal neutrons (E > I eV) 

may in the future gain importanee for scattering experiments, in particular with respect to 

pulsed accelerator driven neutron sources (see below). But it is important to realize that there 

are 110 primary somces knowll, which direetly deli ver neutrons in the relevant cllergy range of 

typically 10.3 eV <E < 1 eV. All existing sources emit primary neutrons with energies of 

about 106 eV or above and we are left with the difficult task to rechlce the neutron energy 

betwcen 6 and 9 orders ofmagnitude (moderation). 

1.2 Free Neutrons 

Frce neutrons are unstable (half life about 12 minutes). As a nuclear eonstituent they are sta­

ble, though. and as bound particles virtually ubiquitol1s, except in light hydrogen. So, the only 

mcans of generating free neutrons are nuclear reactiolls. There is a variety of possible rcac­

lions, mosti)' forced ones, although spontaneous neutron emission is known to exist as weIl. A 
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number of neutron somces is described in the Appendix. in particular with respect to lhe 

achievable intcnsities. There are, of course, other criteria (e,g. cost or technical limitations), 

but for the neutron scattering experiment the highest possible signal (intensity) at the detee­

tor is c1ccisivc. The quality of an experiment strongty dcpends on thc counting statistics, 

which in turn govcrns the resolution capability of a neutron c1iffractometer or spectrometer. 

This criterion excludes most of the sources describecl in lhe Appendix for modern neutron 

scattering instruments, although eleetron aecelerators for (y,n)-rcactions were sueeessfully 

utilized for a certain time. For other applications Iike medieal or in nuclear and plasma 

physics those samces were and still are of imp0l1ance. 

In the following wc will explain in greater detail the two most important samces for neu­

tron seattering experiments: the nuclear reactor and the spallation souree. 

1.3 The nuclcar rcactor as n neutron SOUl'CC 

Fission of a single 23SU nucleus with one thermal neutron releases on average 2.5 fast neu­

trons with energies around I Me V. So, this is mare thall needed to sustain a chain reaction. 

Therefore we ean withdraw typically I neutron per fission for purposes like neutron scattering 

experiments without disturbing the chaill reaclion, The somee st rengths Q(n/s), Le. neutrons 

emitted per second, aehievable with these surplus neutrons are limited in part ieular by prob­

lems of removing the energy released, which is abollt 200 MeV per fission. Using the relation 

I eV ~ 1.6xlO"19 Ws we get Q" 3xlo16 His per MW rcactor power to be removed. As llleH­

tioned in the introduction the fast neutrons have 10 be slowed down to therm.al energies 10 be 

useful for neutron scattering. 

The stochastic nature ofthe slowing down ofneutrons by collisions with light Ollclei of the 

moderator medium (e.g. protons in water) leads to the notion of a neutron nux Cl> as a quality 

criterion far thermal neutron somces, This flux is defined as the number of (thermal) neutrons 

per second isotropieally penetrating n unit aren, In order to calenlate the flux <1>(r) far a given 

somce distribution Q(r) (the fuel elements of a reactor eore suhmersed in a moderator me­

dium) we had to solvc the gcneral transport (Boltzl1181m) equatioll. But there are 110 analytical 

sohltions possible for realistic geometries of reaetor cores [I]. An estimate, however, will be 

given for simple model: a point source located in lhe center of a spherical moderator vessel. If 

the radius of the vessel is equal to the so cnlled slowing down length Ls [2], then 37% of the 

somce neutrons become thermal. Using the definition <!>Ih = V lh . n (average neutron velocity 

v Ih). where the stationary neutron density n is given by a balance equation, viz. n = q . '( (bal­

ance = production rate' life time) with q as the so called slowing down density. we have 
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(1.1 ) 

where the slowing down density q is the Ilumber of neutrons slowed down to thermal energies 

(Le. to abaut 25 meV) per unit vallllne and per second. For a point samee of strength Q in the 

center of a spherical moderator valllIne of radius r = Ls wc obtain \Vhat wc have inscl1ed for q 

in (2.1). The life time (also called relaxation time) is given by [2], = (l:'b,v'h + D'B') -', 

wltcre Labs and 0 are lhe cocfficients of absorption and diffusion of neutrons, respectively, 

and B2
:= (nlLs)2 a geometrical factar, the "bucklillg", which is a measure for thc spntial flux 

distribution. Inserting numerical valucs, Ls = 29 CI11, Labs:= 3x 10·S cnf1 and D = 2x I 05 emzls 

for heav)' watcr (Jiilich 's research reac tar FRJ-2 is heav)' water moderated), we obtain with 

the sOUl'ce strength Q" 3x 10" nI(s M\V) a thermal neutron nu, <I>'h = 1.1 x I O"n/(cm's M\V). 

Extrapolating this to 23 MW, the power o[tlle FRJ-2, we obtain (1)'/0 = 2.5x I 014 n/(cm' s). This 

is onl)' 25% too big. a surprisingly good result taking into account the non realistic assumption 

reaeter core 
(25 ruel elements) 

graphite reflector 

010 - moderator 
vessel 

411511 565 mm) 
4H', U Smm) 

'" 19~5 n,rn) 

6HOR10 

2TAII 

6HGR8/611Gfl9 
(1565 mm)/(9ssmm) 

lOH channel 
wilh cokl 

source 
(1260mm) 

6HOR &.'6HOR1 
(1 565 mm)l(9SS mm) 

Fig. /.1 Horizontal cut ,"rough Ihe reoe/or block ollhe Jiiliclt research relle/ar FRJ-2. 
(The 1IIIIIIbers beloll' fh e aCI'Qnyms are fil e bemll c!ulI/IIel heigllls above thejloor o/ fh e experimental 
hal/.) 
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ofthe renctor being a point samce. In fact the eore ofthe FRJ~2 eonsists of25 tubular, 60 cm 

high fuel elements arranged within a lateral grie! of abotlt olle meter in diameter. The eore is 

submersee! in and eooled by heavy water streaming through the tubes. Figme 1.1 shows a plan 

cross scetional view of the rcactor block. 

The FRJ-2 is operated with highly enriched uraniulll 235U. \Vith the existing relaxed fuel 

element arrangemcnt an essential neutron flux enhancemcnt , e.g. by an order of magnitude. 

were only possible with a eorresponding but ullwanted power increase. A different possibility 

exists in eompacting the eore, a solution chosen for the high flu x reactor at the Institut Laue~ 

Langevin in Grenoble, Franee. In fact. its eore eonsists of a single atu1l11ar fuel element of 

40 em mlter and 20 ein inner diameter, respeetively. Operated at 57 MW. n distmbed flux at 

the beam tube noses of cI>lh = 1.2x I 015 n I (em2 s) is obtained. 

TechnlcaJ /imitations 

\Ve have just established a relation between neutron yield and reactor powcr releascd as heat. 

Disregarding for the moment investment and operation costs, the limiting faetor for achiev~ 

able neutron yie lds is the power or, to be more precise, the power density in the reaetor eore. 

This technically decis ive factor, thc powcr dCIIsity (M\V/litcr), was not included in the 

number given in the previous section, beeause it depends on the details of the reaetor, in 

partieular the eore size, the uranium enric!unent and thc fuel density in the fuel elements. The 

size of the primary neutron somee (reaetor eore. target volumc, ete. ) is important for a high 

llux of thennal ncutrons within the moderator. In Table 1.A.1 of the Appendix a se leetion of 

reaetions is given alld related to its neutron yields and power densities. 

It is HOW weil established tImt power densities in rcaetor cores Ca!1I10t substalltially be in~ 

e reased withollt unwanted and impractieable eonsequenees, such as liquid sodium eooling. In 

p articular, the service time of reactor vessel cOl11pOnellts like bcam tube noses 01' cold somces 

would bceomc intolcrably Sh0l1 due to radiation damagc. Expcrience with the Grenoble High 

Flux Renctor shows that these service times are of the order of seven years. Ten times lligher 

fluxes would result in impraeticable service times lInder one yenr. 

1.4 Pulscd contra contilluotls sourc~s 

Regarding these arguments. we may ask omselves, whether high flux reactors have al ready 

reaehed a fundamental limit. This were eertainly the case, if we expeeted a flux inerease by 

8nother order of magnitude like the one observed in rcaetor devclopment s illce the fifties (see 

Table 1.1 ). 
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Pel'iod Examplc Flux <D 110 13 cm-2
,' J 

1950 - 60 FRM-I München -I 

1960-70 FRJ-2 Jülieh - 10 

1970 - 80 HFR Grenoble - 100 

1980 - 90 ? - IOOO??? 

Table I. J Developmelll 0/ thermal fluxes 0/ research I'eaclol's 

A flux increase by a factor of abaut 6 over timt of the Grenoble reactar had been envisaged 

for a new research reaetor in Oak Ridge, USA. This cnhanccmcnt would havc been only 1'05-

sible by apower increase 10 350 M\V with a simultaneous incrcase of Ihe average power den­

sit)' by a factor of 4 compared 10 Grenoblc. After tcn ycars of plmUlillg, the US Department of 

Energy deeided not to build this so ealled ANS (Advaneed Neutron Source). 

At this point \Ve have earnestl)' 10 ask, whether Ihe decision was adequate 10 build ever 

more powerful hut continuollsly operating reactors. From a technical point of view is was 

perhaps Ihe easiest path, from lhe point of view of neutron scattcring, on (he other hand, it 

was by 110 meaus necessary or economie. In order to accept this we only have to realize that 

the two standard methods of neutron scattering, Le. crystal and time of !light teehniques, in 

any ease only lIse aminute fraction (10-2 ... 10-4
) of the somee flux. Monoehromalization 

and/or chopping the primary beam as weil as eollimation and somee to detector distanee 

(shiclding!) may even reduee the source flux by faelors of 10-8 to lO- Il , depending on resolu­

tion requirements. 

Time of flight spectroseopy inefficiently utilizes the continuous reactor flux for two rea­

sons, beeause it requires bolh a monochromatic and a pulsed beam. Crystal speetrometers and 

diffraetometers use an extremely narrow energy band, too. The rest of the speelrum is literally 

wasted as heat. Obviously, time of flight teehlliques with pulsed operation at the same average 

samee power yield gain factars equal to the ratio of peak to average flux. \Vith crystal tech­

niques higher order Bragg reflectiolls can be utilized, because they become distinguishable by 

their time of flight. In ot her words, the peak flux will be usable between pulses as weil. 

So, without incrcasing the average power density, pulsed somces can delivcr much llighcr 

peak fluxes, e.g. 50 timcs thc HFR flux. Now, whieh type of pulsed somce is to be preferred: 

a pulsed renetor or an aecclerator driven source? This quest ion is not easy to answer. Possibly 

it depends on the weights one is wi lling to assign to the particular arguments. Important ar­

guments are cast, safety, pulse structure 01' the potential for other lI ses than neutron scattering. 
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If we set asidc the costs und ask about safet)" we can aS5er! timt accelerator driven sources 

(e.g. spallation sources) are inhercntly safe, because no critieal eonfiguration is necdcd for the 

neutron production. A pulsed reaetor, on the other hand, has 10 run periodically t1uollgh a 

prompt super eritical eonfiguration. Thcrefore the extemal control meehanisms (absorbers) of 

the continuously operating reaetar will not work. The power exeursion must be limited by in­

herent mechanisms, e .g. by the temperature ri se of the fuel. Although it may be unlikcly in re­

atity, malfunetions of Ihe necessarily mechanical insertion of exeess reactivity (rotating parts 

of fuel or refleetor) may lead to sllbstantial damage of the reactor core. No problems exist in 

that respect willt a spallation neutron somee. Furthermore, the proton beam ean be shut down 

within a few milliseconds. Neutron generation by protons enables the shaping of pulse struc­

tures (pulse duration below 1 microseeond, arbitrary pulse repetition rates) basically unfeasi­

ble wilh mechanieal devices. 

1.5 The Spallatiol1 Neutroll Soul'ce 

1 ,5. 1 The spallation reaction 

For kinetic energies above about 120 MeV, protons (or neut rons) cause areaction in atomic 

Iluclei, which leads to a rclease of a large number of neut rons, protons, mesons (if the proton 

energy is above 400 MeV), nllclear fragments and y-radiation, This kind of nllclear disinte­

gration has becilnamed spallation, because it resembles spalling of a stone with a hammer. 

Thc spallation reaction is a two stage proecss, which can be distinguished by the spatial 

and spectral distribution of the emitted neutrons, This is depicted schematically in Figure 1.2. 

Spallation 

, ~. 

Fig. J .2 The spoliation jJrocess 

intra-nuclear 
cascade ' 

' highlyexcited 
,'nucleus 
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In stage 1 the primary proton knacks Oll a nucleoll. whieh in turn knacks on another nu­

cleen of thc same nueleus (intra-nuclear easeade) or of a different nucleus (inter-nuclear eas­

eade). \Vith inereas ing encrgy of the primary particle the nueleons kieked out of the nuclci 

will for kinematic reasans (transformation from eentcr of mass to laboratory system) be 

emitted into decreasing solid augles around forward direction. The energy distribution of the 

caseade particlcs extends up to the primary proton energy. After cmission of the easende par­

ticles thc l1uclei are in a highly excited state, whose encrgy is rcleased in stage 2 mainly by 

evaporation of neutrons, protons, deuterons, a -particles and heavier fragments as weil as y-ra­

diation. Depending on the particular evaporation reaction course. different radiaaetive nuclei 

remain. These evaporation neutrons are isat ropically emitted. They are the primary saurce 

neutrons, in whieh we are intcrcsted in the present context. The spectrum of the evaporation 

neutrons is very similar to timt ofnuclear fission and has a maximum at abollt 2 MeV. This is 

the very reason, why we can utilize the spallation neutrons as with a fiss ion reactor. 

The yield of evaporation neutrons increases with proton energy and depends on the target 

material. The following expression. for the yield has been fOllnd empirically 

Y = f· (A + 20) . (E - b) neuIrons I proIon, (1.2) 

where A is the mass number of the target material (9 :S A :s 210), E is the proton energy 

(0.2 S E S 1.5 OeV) and b = 0.12 OeV. The faclor f depends on Ihe largel geometry. 

energy deposition H 
illiead aud depleled Ul'aJ1iUI11 

as afilllclioll ojPI'O(OH enel'gy 

jast neutroll yield }' 
/rom lead (md depleted urallium 
as afimclion ojprololl energy 

80 

z 
0 60 g: 
:J 
W z 

40 ~ 
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l: 
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1? 
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~ 
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> 
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For uranium, whieh releases neutrons by fission as weil, b == 0.02 GeV. In Figure 1.3 the yield 

for lead and uranium is plotted and related to the energy released per neutron. rhe latter has 

important eonsequences as already diseussed in section 1.3. 

1.5.2 Technical details 

A spallation neutron somce consists of three impo11ant compollcnts, the accelerator, the target 

and the moderators. For reasons diseussed in sectiolls 1.3 and 1.4 the planned European 

Spallation Source (ESS) will be pulsed. 

1.5.2. / The acce/eralor 

The concept of the ESS envisages a pulsed linear aeeclerator (!inac), which will supply the 

full beam power, and two subseqllent storage rings for compressing the pulses from the Iinac. 

The ESS design parameters are: 

linac proton energy 
average CUffellt 

average beam power 
linac peak CUfrent 
ring peak current 
repetition rate 
Hnae pulse duration 
pulse duration after eompression 

1.33 GeV, 300 m long (sllpercondncting cavities) 
3.75 mA 
5 MW 
0.1 A 
100 A 

50 S- I 

I ms 
flS ring diameter: 52 m 

It is worthwhile to point out that we need a rather complex machine to accelerate particles 

from rest to kinctie energies of I GeV or above and cxtract them in pulses of only I ~IS dura­

tion. For the ease of the ESS we need five stages of aceelcratioll and compression such as 

- electrostatic acceleration to 50 keV 
- radio frequeney quadrupole (RFQ) aeeeleration from 50 ke V to 5 Me V 
- drift tube !inae (Alvarez-type) from 5 MeV to 70 MeV 
- sllpcrconducting multiple cavity Iinac from 70 MeV to 1330 MeV 
- two (!) compressor rings (space charge !). 

J. 5. 2. 2 The target - solid GI' liquid? 

Aecording to relation (1.2), heavy elements (large mass numbcr 1\) are favored as target ean­

didate materials, in parlicular the refractory mctals tantalulll , tungsten or rhenium, but also 

lead, bismuth 01' evcn uraniul11. Whatever material is se lee ted, it will be subject to heavy Ilml­

liple loads. Firstly, about 60% of the 5 MW average beam power is dissipalcd within the tar-
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get as heat , the rest is transported as released radiation to the target vicinity Iike moderators, 

reflector and shielding 01' is converted into nuc1ear binding energy. Secondly. all materials hit 

by protons (and fast neutrons) will suffer from radiation damage. Finally, the extremely short 

proton pulses generate shock-like pressure waves in target and structural materials, whiclt 

l11ay substantially reduee the target service life. In order to both keep average target tempera­

tures Jow and reduec specific radiation damage and loads due to dynamic effccis from shock 

waves, asolid rotating target is conceivable and has been proposed for the ESS. As any solid 

target has to be cooled, it will inevitabJy be "diluted" by the coolant, whereby the primary 

source's luminosity will be diminished. One should therefore operate the target in its liquid 

state avoiding an additional eooling medium. Radiation damage would be 110 longer a prob­

lem with the target , but of course with its container. Obviously, the refractory met als are ex­

c1uded due to their high melting points. So we are left with elements like lead, bismuth, the 

Pb-Bi euteetic or - ofcourse - mercury. ln fact, mercury has been chosen for the ESS, beeause 

it was also shown to exhibit favorable neutron yield conditions as presented in Figure 1.4. 

, 
N 

Target Materials 

0 Hg 

" W 
x Ta 

0 
0 

'I< 0 
l< 0 

0 
Ä )\ 0 

0 ~ 

* ~ 1 ~ Q , 
40 60 

Target Depth[cm] 

Fig. J.4 Calculated axialleakage distributions allastlleutrans ./i·am a lead-I'eflected 
mercwy targel compared to water cooled lantallllll (md tungsten targets, respeclively. 

The dimensions of a target along the beam path will reasonably be chosen according to the 

range of the protons of given kinetic energy. For mercury and the ESS energy of 1.33 GeV 

this is about 70 cm. Lateral target dimensions are optimized so timt the moderators are not too 

far from the proton beam axis (solid angle!). A typieal target-moderator-reflector eonfigura­

tion is depicted schematically in Figure 1.5. 
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Fig. 1.5 Schema/ie vertica! (md horizontal culs Ihrough fhe inncrpar' ofthe target block. 

1.5.2.3 Tile moderators 

Let HS cventually turn to the "heart" of the facility, the moderators, whieh were just shown in 

the last figure above in thejr relative positions next to the target. As the uppcr and lower faces 

of the target are cquivalent for syml11ctry reasans with I'cspect to the emission of fast neutrons, 

it is obvioliS to exploit both s ides with moderators. The question now iso whether we shall use 

020 as the slowing down medium like in all modern medium ancl high flux reactors 01' possi­

bly HzO? As we have discllssed in section t.4, not the highest possible average neutron flux is 

the only reasonable dcmand, but rat her the highest passible peak flux far a given (or re­

quested) average flux. In Ihat respect , H20 is the preferrcd material duc to its bigger slowing 
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down power and stronger absorption for thermal neutrons (see below). The rcason for this 

seemingly paradoxieal dcmand for strenger absorption is that the achievable ncutron peak 

flux is not only proportional to the proton peak cUffent, but also depcnds on the storage time t 

(see below) of thermalncutrons in the moderator. We should point out hefe that the slowing 

down time for H20 and 0 20 is small compared to lhe storage time T. The neutron peak flux is 

given by the following expression, whieh is the result of a convolutioll of a proton pulse of 

duration tp with an exponcntial decay of the neutron field within the moderator with storage 

(decay) time T. 

" _ Irep -tp/r 
<PI" = <1>/,,·-·(1 - e ) (1.3) 

' p 

where <1>,", Ci)/II are peak and average flux, respectively, and trcp is the time between pulses. 

In the limit tr ~ 0 expression (1.3) reduces to <h /11 = $/" . t rep I l' , i.e. even a 5-shaped CUf­

rent pulse results in a finite neutron peak flux. \Ve see as weil timt in this case the peak flux is 

inversely proportional to the moderator storage time. Also with finite CUffent pulses a short 

storage time is important for obtaining large peak fluxes. The storage time T of a thermal neu­

tron is a measure of the escape probability from the moderator and is obviously detennined by 

both the geometry of the moderator vessel and the absorption cross section of the moderator 

medium (see sec!ion 1.3) and can be written [2]: 

(1.4) 

where Vth is the average neutron velocity. Labs the macroscopic absorption cross sectioll, 0 

the diffusion constant for therolal neutrons and L is a typical moderator dimension. Thc ab­

sorption cross section of H20 is abotl! 700 times bigger than that of D20. If it were only for 

this reason, an H20-moderator had to be sIllall (small L in (lA), because we want ofcourse 

utilize the neutrons that leak frolll the moderator. So, a short storage time must not entircly be 

duc to self-absorption. As, on the otlter hand, H20 possesses lhe largesl known slowing down 

dcnsity (the !lumber of neutrons, whieh become thermal per cm3 and s), an H20-moderator 

anyhow does not need to be big. In sectiotl 1.3 we hnvc already quoted that within a spherical 

moderator vessel with its radius cqual to the slowing down length Ls (= 18 CI11 for I-hO), 37% 

of the fast neutrons emitted [rom a point source located in the center becomc thermal. In fact , 

an H20-modcrator must not be essentially larger, because within a sphere with r = 23 Clll al ­

ready 80% of the neutrons are lost due to absorption. 
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For these reasons a pulsed spallation sottree will have sl11a ll (V == 1.5 liter) H20-llloderalors 

for thermal neutrons. The eorresponding storage time of such H20-moderators has been 

measured and is t = 150 ~t S [3] , wh ich is in good agreement with the estimate according 10 

( l A). Small size and absorption diminish in an)' case the time average neutron )'ield. In order 

to improve this without deteriorating thc peak fluxes, two tricks are lIsed. Firstl)', a moderator 

is cnclosed b)' a so-called reflector (see Fig. 1.5), a strongly scattering C'reflecting") but non 

moderating material, Le. a heavy element with a large scattering cross seetion Iikc lead. Sec­

ondl)" the leakage probability from the moderator interior, Le. a region of higher flux duc to 

geometrieal bllckling (Chapter 1.3), is enhanced by holes or grooves pointing toward the neu­

tron beam holes. Both measures give gain faetors of2 each, whereby thc reflector gain is so to 

speak "for frec", becausc Ihe anywa)' neeessary lead or iron shielding has the same effeeL A 

refleetor can be imagined to effeet such thai it scatters fast neutrons back, which penetrated 

the moderator without being or insufficiently slowed down. Similar considerations hold as 

weil for eold moderators employed with spallation sourees (Fig. 1.5). 

As a final remark let HS point out timt the overall appearance of a target station can hardly 

be lold from a reactor hall with the respective experimental cquipment in place. In both cases 

neutrons are extraeted from the moderators by beam chalUlels or guide tubes and transported 

to the various scattering instruments. 

In the following Table 1.2 the expeeted and experimentally supported flux data of ESS are 

shown alld compared to those of existing sourees. 

High nux reactor Pulsed reactor Spallation source ESS 
(U FR) IßR-Il ISIS Hg-Target 

Grelloblc (FR) Dubnß (RU) ChilIoll (UK) H 0 Moderator 

$[ell/-2s-'] 10" 2· 10" 4.5 · 10" 104 ·10" 

$[ell/-2 s-'] 10" 2· 10" 7 . 1012 0.6· 10" 

Pulse repetition rate ,,[s'] - 5 50 50 

Pulse duratioll [10" s] - 250 30 165 

<i>. '110 17 e111 - 2 S- I ] I' I 2.2 70 

, \\lIh neutron chopper 100 s 

Tab. 1.2 Compfll'ison o/rhe pe/formal/ce 0/ variOIlS moderl1l1elllroll SOl/tees 
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AplJClulix 

Neu.ron Sources - an ovel'vicw 14] 

1.A 1 Spontaneous nuclear reactions 

Allhough every heav)' IHIC!CllS is ullstable against spontaneOlls fission , this reaclion is gener­

aHy suppressed by a-decays beforehand. With thc advent of Iluclenr reactors, on the olher 

hand, an exolic isotope, 2S2Cf. became available in sufficient 3mount from reprocessing spen! 

nuclear fucl, where 3% of the decays afe by spontaneous fi ss ion. The rest is a-decay. The 

data of a 252Cf_sOUl"cC are: 

- yield: 3.75 neutrons / fission 
resp. 2.34 x 10" neutrons I (gram s) 

- half life: 2.65 y (including a-deeay) 
- average neutron energy: 2.14 MeV (fission speetnun) 

1.A.2 Forced nuclear reactions 

In Ihis case we can dislinguish bctween reactiolls initiated by balh charged and neutral parti­

eIes. In this context y-quanta are regarded as neutral "partieIes". 

1.A. 2.1 Reae/ions wi/h eharged partie/es 

Although we will restriet the discussion to light ions such as protons, dcuterons and a-parti­

eies, a wide field is covercd from the historically important radium-beryllium-source 10 the 

latest sources like plasma focu s or spallation sources. 

( a, n)-ReacNons 

React ion partners with these sources are either natural (Radium, Polonium) 0 1' artificial 

(Americium, Curium) radioactive isotopes and a light element such as Beryllium as target 

material. Using a radium-bcl'yllium-soul'cc BOlhe and Beeker diseovered in 1930 a new 

partiele, wh ich they failed to identify it as the neutron. Two years later Chadwick aeeom­

plished this earning him the Nobel prize for this feat. Modern sources cmploy art ificial iso­

topes alloyed with Beryllium. Yields are betwcen 10-4 and 10-3 neutrons per particlc. The 

technical parameters of a modern 241 Am/Be-source are: 

- yield: 0.9 x I O' neutrons / s pcr gram 2,11 Am 
- halflife: 433 )' 
- neutron cnergy: a few MeV (complex line speetrum) 
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(p,II)- alld (d,II)-Reac/iolls 

Bombarding targe ts (Be, .. , , U) with protons cr deuterons of mediulll cncrgy (Ekin ::; 50 MeV), 

either neutrons are releascd foml lhe target nuclei in the case of protons or lhe neutrons are 

stripped from the deuterons during the impact and thereby released. Yields are of the order of 

10-2 n/p resp. 10" n/s per milli-Ampere. 

An interesting special case is the reaction between the two heavy hydrogen isotopes, be­

cause it can be exploited in two different ways. Olle variant is the so-called neutl'Oll genel'a· 

tor utilizing lhe large [eaction cross section of the D-T-reaction, which peaks already at ver)' 

low deuteron cncrgies (5 barn at 0.1 MeV). With this lew particle energy the emitted neutrons 

are virtually ll1ono-energetic (EIl ::= 14 MeV) and the emission is isotropie. The target lllay be 

gaseous or Tritium dissoh'ed in adequate met als (Ti, Zr). The yield for a D-T-neutl'on gen­

erator with Eldn(d+) = 0.1 MeV is of the order of 10 11 neutronsJs per milli-Ampere. 

The second variant ofexploiting the D-T-reaetion is the p11lS1ll1l SOUI'CC. In this somee both 

gases are completely ionized by applying high pressure and temperature forming a homogc­

neous plasma, whieh releases neutrons via the fusion reaetion. In principle, this is the same 

reaetion as with the neutron generator. Such sources operatc in a pulsed mode, beeause the 

plasma has to be ignited by repeated compression. Duc to the nccd for this compression this 

special kind of a plasma somee is also eallcd the plasma foells . Vp to now yields of abotlt 

3 x 1012 neutrons I S have been obtained expcrill1entally. Planned faci lities are expected to de­

Iiver 10 16 neutrons I s. 

Chapter 1.5 has already been dedieated in greater detail to (p,n)- or (d,n)-reactions at high 

particle energies (> 100 MeV), whieh lead to spalling of the targe t nuelei ("spallation"). At 

this point we only want to give a typical number for the neutron yicld for comparison with the 

other reaetions quoted in this Appendix: 

- yield (for I GeV protons on lead): 25 neutrons / proton 
resp. 1.5 x IOI7 neutrons I s per milli-Ampere 

- average neutron energ)': 3 MeV (evaporation spectrum) 
+ easeade neutrons (up to proton energy). 

1.A.2.2 Reaetions with neutra/ "partie/es" 

(y. ll)~Reacljo1lS (Pllo /Dlllle/eal' reacliOlls) 

Gamma radiation of radioaetive isotopes eau release so eaBed photonclltrous, n proeess, 

which is indced exploi ted in devices analogous to (a,n)-sources. A typieally spherical y­

samee of a few centimeters in diameter is enelosed b)' a shell of target material. Duc to the 

extremely high y-activities needed, even wenkest neutron. somces (106 n/s) ean only be hand-
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led rcmolely. It is Illllch more convcnicnt to turn on the source \Viten Ilcedcd by replacing y­

radiation by bremsstrahlung generated by electron bombardmcnt of a hcavy metal tmget. 

Using e.g. 3S MeV eleetrons, we obt. in a yield of about 10-2 nie resp. 0. 8 x 10" nls per lilA. 

Ne wton indllced 1111c!cal'fissiol1 (t lze Il/ldeor reaC!OI) 

Of all neutron somces rea lized up 10 now, IlUCleal' rcactol'S are still the most intensc olles. 

W e had therefore dedieated a detailed chapter for this kind of source (chapter 1.3). 

For comparison wc have compiled thc yields, heat deposition, samee strengths and power 

densi ties oflhe va rious reactions in the following Table l.A. 1. 

Rcaction Yicld Hea t deposition Source stl'englll SOUl'CC power 
IMeV / 111 III/s l Dcnsity 

IIMW I Literl 

Spontaneous fission mCf 3.75 nlfission 100 2 x 101l g'1 0.8 
(39 W/g) 

' Be (d,n) (1 5 meV) 1.2 x 10-' IIld 1200 8x IO lJ mA' 1 -

3H (d,lI) (0.2 MeV) 8 x IO-s n/d 2500 5 x 1011 mA·1 -

Spall atio ll 28 nlp 20 1018 0.5 (ESS) 
1.33 GeV protons on Hg 

Photoproduction 
lV(e, ,;) (35 MeV) 

I. 7 x 10-2 nIe 2000 4 x 101-1 5 (Harwe))) 

1HU fi ssion J n/ fi ssioll 200 2 x )018 1.2* 
nuclear chain rcact iOil (HFRGrclloble) 

>< At the hot spot ).3 MW/L. For 2 x 1011 source neutrons per second th is gives a thermal flux o r lOH n cm·l S· l . 

Table 1.11./ Yield, lIeat deposit ion, SOllrce streng/li (md p ower density Jor se/ee/ed neu/rOll 
sources 
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2 Properties of the neutron, elementary 
scattering processes 

D. Richter 

2.1 A few I'cmnl'ks Oll his'ory 

ln 1932 the neutron was discovered by Chadwick. The name results from the observation that 

the neutron apparcntly docs not posscss an eleclric charge: it is neutral. Today, ane knmvs 

timt the neutron is an ensemble of anc up quark and two down quarks. According (0 the 

s landard Ihcory, Ihe lolal charge Ihercfore amounls 102/3 0' + 2 ( -1 /3 0') = O. AI presenllhis 

thcoretical statement is proven \Vith aprecision of - 10,21 c" 

Only four years latcr in 1936 Hahn and Mcitncr observed the first man-made nuclear fission. 

In the same year also (he first neutron scattcring experiment was perfomlcd. Hs set-up is 

shown in Fig.2.1. Neutrons were taken from a radium beryllium sauree whieh was covered by 

a paraffin moderator. From that moderator neutron beams wcrc extracted such timt they hit 

magnesium oxide single crystals which were mounted on a cylindrical circulllfcrence lInder 

(he appropriatc Bragg angle. After reflection they were guided to a detecto r which was 

mmmted opposite to the radium-beryllium source. In order to avoid any directly penetrating 

neutrons CI big piece of absorber was mounted in between the dctcclor and Ihe somce. 

Magnesium oxide single 
Radium crystals moun(ed around 
bc:ryllium:r ____ ~cy~I;~n~d~ri.:ca~I~~=:::;:,-~= 

moderator 

Figure 2.1: Mitchell and Powcrs ' s apparatlls for demonstrating the diffraction of neutrons 
(after Milchcll and Powers 1936). 
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In December 1942 Fermi build his first nuclear reactar in Chicago - the so called Chicago 

pile - which led to the first controlled nuclear chain reaction. Only olle yeal' later the Oak 

Ridge Graphite Reactor went critical. It had apower of 3.5MW ami was originally \lsed for 

the produclion of fissionable material. Fig.2.2 shows this reaetor wh ich by IlOW is anational 

historie landmark. At this reaetor, Sindl build the first neutron diffraetolllctcr which bccame 

operationally at thc end of 1945. At that instmment the first antifcrromagnetic stmcturc 

(MnO,) was solved (Sh\lll, Noble Price 1994). At the end ofthe 40's and the beginning ofthe 

50's Huclear reactors for neutron research came into operation in several countries. 1954 thc 

Calladian NRU ReaClor in Chalk River was Ihe most powcrful neutron source with a flux of 

3·IOI4n/cnf2s-1
. There Brockhouse developed the tri pie axis spectromcter which was 

designed, in order to observe inelastic ncutron scattering and in particular to investigate 

elementary excitations in solids. For this achievement Brockhouse rcceivcd the Nobel Pricc in 

1994. Another milestone in neutron scattering was the installation of the first cold souree in 

Hal'Well (Greal Britain). This cold souree allowed to moderate neutrons to liquid hydrogen 

temperaturcs with the effect that for the first time long wavelength neutrons became available 

in large quantities. 

Figure 2.2: View ofthe Oak Ridge Graphite Reaetor. 
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In the 60's the first high flux reaclor specially designed for beam hole experimcnts beeame 

critical in Brooklmven (USA). It provided a flux of 101.5 rtlcnf2s· l. For research reactors this 

level of flux was not signifieanlly surpasscd since then. Finally, 1972 the high flux rcactor at 

the Institute Laue Langcvin in Orenoble (France) went into operation. This reaetor since then 

constitutcs the most powerful ncutron source worldwide. 

In parallel lIsing proton aceelerators already beginning in the 60's, another path for neutron 

prodlletioll was developed. Pioneering work was performed at the ArgolUle Nat ional 

Laboratory (USA). At present the most powerful Neutron Spallation Source is situated at the 

Rutherford Laboratory in Oreat Britain wh ich bases on a proton beam of about 200KW beam 

power. The future of neutron seaUering will most probably go along the lines of spallation 

sources. At prescnt in the United States the eonstmclion of a 2.5MW spallation sauree has 

commeneed with the aim to get operational in 2005. European plans to build a Megawatt 

Spallation Sauree are still under development and hopefully a European deeision for the 

European Spoliation Souree (ESS) will be reachcd in the year 2003. 

After the war, Gennany was late in the development of neutron tools far research. Only in 

1955 intemational agreements allowed a peaeefuluse of nuelear research. In the same year 

the first Gennan Research Reaetor became eritical in Garchi ng. In the early 60's powerful 

research reaetors were build Iike for example the FRJ-2 reactor in Jü lich which provides a 

flux of 2.1014 n/cnf2s·'. Instrumental developments beeame a domain of Gennan neutron 

research. A number of important Gemlan contributions in this field are the baekscattering 

spcetrometer, the neutron small angle scattering, the instruments for diffuse neutron scattering 

and high resolut ion time of flight machines. 

2.2 Properties of tlle neutron 

The neutron is a radioactive partic1e with a mass of 111" = 1.675 . 1O-27kg. It decays after 0 

mean Iifctime of r = 889.1 ± 1.8s into a proton, an electron and an antineutrino (ßdccay). 

11 --+ pi + e + V (+ 0.77 MeV) (2.1) 
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For any praclical applicalion the finite lifetime of the neutron has no consequence. At neutron 

velocities in the order of 1000111/s alld distances in experiments up 10 100m lifctime cffects 

are negligible. 

The neutron carries a spin of Y:t whieh is aeeompanicd by a magnetie dipole moment 

(2.2) 

where }IN is the nuelear magneton. The kinetic energy of the neutron E" = t 111,, · v~ may be 

given in different units as follows 

1 meV 

since 

since 

E 

E 

1.602 . 10-" J ~ 

hv 

kBT 

1 meV~ 

1 meV~ 

8.066 en'-' 

0.2418· 10" Hz 

11.60 K 

The neutron wavclengths is obtaincd from the de Broglie relation 

Ä - ){,' -X' , - 1/1 V - (2 E )"2 
"" 111"" 

(2.3) 

According 10 the conditions for moderation, neutrons in different wavelength regimes are 

separated into different eategories as displayed in Fig.2.3. They are produeed by moderation 

in particular moderators wh ich are kept at different tCl1lpcratures. 

hot thermal cold very cold ultra cold 

10-2 
E[cVJ 

Figure 2.3: Relation betwcen neutron wavelength and theil" corresponding kinetie energies. 
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Hot neutrons in reactors are oblained from hot samces at temperatures around 2000K. 

Thcmlal neutrons evolve from amhient moderators while cold neutrons are ohtaincd from 

mainly liquid hydrogen Of deuterium moderators. Thc velocity distribution of the neutrons 

cvolving from slich a moderator are givcll by a Maxwell velocity distribution 

(2.4) 

Therehy, f/{u) du is the number of neutrons which are emitted through an unit area per 

secand with velocities betwecn vand V+-du. Fig.2.4 displays MaxwelJian flux distributions 

for (he three types of moderators discusscd abovc. 

Figurc 2.4: 

6 

, 

2000 K 

10 " 

Vclocity distributions of neutrons from cold (25K), thermal (300K) and hot 
(2000K) moderators. 

Finally, Neutrons 3S weil as X-mys are lI sed for scattering experiments on materials. Table 

2. 1 comparcs the most importun! propcrties of both radiations. 
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Tablc 2.1: 
ComJlarison of X-mys all(l neutrons 

X-rays ure transversal neutrons are PUl'ticJc wavcs 
elcctl'omagncHc waves 

Mass m phol = 0 111" = 1.6749286(10) . 10·"kg 

Charge 0 0 

Spin I Y, 

Magnetie Moment 0 1', = - 1.91304275(45) I'N 

Typical Encrgy 10keY 25meY 

Wave length ..Ix = c%, = 1.24A 
= 7(2E 111,,) 

112 = 1.8A ..1" 

Yclocity speed of light v" ()'" = ~I~ = 2200'% 
'" 

2.3 Neutron PI'OductiOil 

Neutrons are genera ted by nuctear reactions. Fer the investigation of matter a largc luminosity 

timt mcans a high flux of neutrons (lS of the requested cnergy range is essential. Such flu xes at 

prescnt ean only be obtained through nuclcar fission or spallation. Both are schematically 

displayed in Fig.2.5. 

In nuclenr fission a thenna l neutron is absorbed by an 23SU nucleus. The thcreby highly 

excited nuc1eus fi ssiol1s into a number of smaller 1ll1clei of middle henvy elements and in 

addition into 2-5 (an average 2.5) highly energetic fa st fissi on neutrons. Typical energics are 

in the rage of several MeV. In order to undertain a nuclear chain reactioH, on the average 1.5 

moderated neutrons are necessary. At a balance a research reaclor delivers aboul 1 neutron per 

fission event. 

The mast powerful research reaetor worldwide. the HFR at the Institute Laue Langevin in 

Grenoblc, pro duces a neutron flux of (/J,herm:::: 1.5 . I015l'vcm2s (thermal power 60MW). Thc 
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related va lues for the FRJ-2 reaetor in JUlieh fcr compariscn are rAhn.", = 2· 10 14 n/cm2s at 23 

MW. 

Fission 

Spallation 

fast + 
protons p 

~. 

9.g. , GeV 

Pb 
J 

h,lra·rlUclear 
cascade 

hlghlyexcUed 
nudeus 

lIier·nuclear 
cascade 

-
evaporation 

Figure 2.5: Sehcmatic prcsentation oflhe fission and spallat ion proccss. 

]11 the spallation proeess highly energetie protons which are typically at energics of about 

IGeV hit a target of heavy nuelei like hlllgsten or tantal um. The proton exeites the heavy 

Ilucleus strongly and in the event in the order of 20-25 neutrons are evaporated from slleh a 

nllcleus. Thc energies oflhe spallation neut rons arc typieally in a range from several MeV up 

10 hundreds of MeV. Othcr than a research rcacter. a spallalion neutron somee can easily bc 

opera ted in a pulsed mode. where a pulsed proton bearn hits a target. At Ihe spallation souree 

ISIS at the Rutherford Laboratary far example, the repetition frequency amounts 1050Hz. In 
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this way even at a eomparatively low average neutron flux very high pulsed fluxes may bc 

obtained. In the thermal range for examplc, the Rutherford somce is able to surpass the ILL 

with respect to the peak flux significantly. Such pulsed somces cau be used in pal1ieularly 

weil for time of flight experiments which will be discussed later in thc school. 

2.4 Neutron dctcctioll 

Generally the detcction of neutrons is performed indirect1y through particular nue!ear 

reaetions which produee eharged particles. A number of possible reactions are listed in 

Table 2.2. 

Proportionality counters operate with agas volume of 3He or BF3 (enriched \Vilh lOS). Such 

counters deliver sensitivities to nearly 100%. Seintillation counters absorb neutrons within a 

polymer or glass layer whieh is enriched by 6Li and ZnS. Neutron absorption then leads to 

fluorescencc radiation which is registered via a photo multiplayer or direct1y with a 

photographic film. Fillally, fission chambers use the 11 + 23S U reaclion and have generally ollly 

a low cOllnling probabilily. They are mainly used in order to control the beam stability and are 

applied as monitors. 

Table 2.2: 
NucleRr renetiolls used for neutron detecfioll. 

Thc cross scctions are givcll in barns (lb = 10.28 m1
), 

Reactloll Cross Scction fol' Pnrticlcs Encrgy Total Enel'gy 
25mcV neutrons generated [MeV} [MeV} 

11 + 3He 
p 0.57 0.77 

5333 b 
'T 0.2 

J/ + 6Li 
'T 2.74 4.79 

941 b 
'He 2.05 

11 + lOB 
'He 1.47 2.30 

3838 b 
'Li 0.83 

Y 0.48 (93%) 

11 + 23SU 681 b fission I - 2 
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2.5 Scattering amplitude and cross scction, thc Born approximation 

Wc 110W considcr the scattering event by a fixcd nucleus. Thc gcometry for slich a scattering 

process is sketched in Fig.2.6. The incoming neutrons are described by plane waves i kr 

travelling in z-direct ion. At the target Ihis plane wave interacts with a nuclells and is scattered 

into a solid angle flcl12 

ikr e -
In(;<.!enl -ntUIIOni 

r: = (0,0, Z) 

Oi,c( l;on 

dS X 1.1 

Figure 2.6: Scattering geometry for an incidcnt plane wave scattered at a target. 

Thc partial cross scction is defincd by 

cl a current 0/ scattered neutrollS i,,(o (f.!, df.!) 
(2.5) 

d0. CI/rrent 0/ ineiden! neutrOllS 

Quantum mechanically the current is given by 

(2.6) 

Far an ineident plane wave (1/= eikr Eq.[2.6] leads immcdiately to j = tzkj . I/v' whefe V is 
/ m/l Ir 

the normalizat ioll volume, The seattcred spherical wave has the form 
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dcscribcs the solid angle depcndent scaltering amplitude. Inserting this fOfm fOf the scattered 

wave inlo Eq,[2,6] for large I' 

(2,7) 

is obtained. Finally, inserting the incoming and scattered currents into Eq.[2 .5] wc obtain for 

Ihe cross scctiOil 

dCJ' = It,k'llIIl I! (nll' dn 
<in Ihk 11111 dn 

(2,8) 

~~ is also callcd differential cross seetion. We realize, that a scattcring experimcnt deli vers 

information on thc absolute value of thc scattering amplihlde, but not on j{fl) itself. 

Infonllations on the phases are lost. The total cross secliOll is obtaincd by an integration over 

Ihe solid angle 

J <iCJ' 
CJ'= <in­

o <in 
(2,9) 

Our next task is the derivation off(fl) in Ihe so ca lied Bom approximation. We start with the 

Schrödinger equatioll ofthe scattering problem 

-- ß + V(r) If' = Elf' [ 
h' ] 
2m 

(2,10) 

wltere V(d is the scattering potential. We note, that for scattering on a frce nucleus Ihe mass 

tenn in the kinetic encrgy has to be replaced by Ihe reduced mass M'l1I 
1'=---" , For large 

nlll+M 

dislances (I' --> co), V = 0 and we have E = h'k'/2l11n, Inscrting inlo Eq,[2, I 0] leads 10 Ihe wave 

equation 
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(2.11) 

2m 
1I(r)~ h'" V(r) 

Thc wave equation is solved by the appropriate Greenfunction 

(2.12a) 

e'b-j!:-I:l 
G(/'-/") ~ - -

- - k-c'1 
(2.12b) 

II(/'h'(/')~ f d/"ö (1'-1") lI(r')y/(r') (2.12c) 

where G(r) is the Grccnfullction solving the wave equation with the 6-fullction as 

inhomogeneity. Using Eq.[2.12c] the wave Eq.[2.11] may be fomlally solved by 

f d/" G([-c') 1I(c') W(c') (2.13) 

In Eq.[2.13] the first part is the solution of the homogenous equation and the second part the 

particular solution of the inhomogeneous Olle, Thc integral Eq.[2.13] may now be solved by 

iteration. Starting with the incoming wavc ,,= eikr as the zero order solution, the v+ 1 order 

is obtained from the order vby 

1", .• , ([) ~ c'" - f G([-c') 11([') W,([,) d'r' 
4JT 

(2.14) 

In the Born approximation we consider the first order solution which dcscribes single 

scattering processes. All lligher order processes are then qualified as multiple scattering 

cvents. The Bom approximation is valid for weak potentials. ( a,m) « I where a is the size 
a 2

·ff 

of the scattcring objcct. For a single Iluclcus this estimation gives about 10-1 and thc Born 

approximation is weil fulfilled. 
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We note one important exception, the dynamical scatlering theory, which considcrs the 

scattering problem e10se to a Bragg renection in a crystal. Thcn multiple bcam interferences 

are importaJlt and the Bom approximation ceases to apply. For most practical purposcs, 

however, the Born approximation is valid. Und er the Born assumption the scattered wave 

fUllction becomcs 

I i~! It' = e -
4:r 

(2.15) 
2m~ 

fT 

In order to arrive at a final expression, we have to cxpand all express ions contailling [. and [' 

around [. Thereby, wc consider that [' is a sampie coordinalc and small compared 10 [. We 

have 

(2.16) 

jr - d - r-r' · grad (r) = r - [' 

Inserting Eq.[2.16] inlo Eq.[2.15] gives 

VI' = e'~ 
e'" 

(2.17) 
4:r r 

21/1 R A.-r) .. V(r.') e'- d}" Y 

dircction of the scattcred wave k' 

Eq.[2.17] may be written as 

(k' lVi k) 
r 

(2.18) 

J(n) 

which leads 10 Ihe final expression ror Ihe cross seclion Eq.[2.8] 
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(2.19) 

We !lQW also allow for inelastic processes, wllere the sampie undergoes a change of its state 

from I A) ---t 12'). Für the cross sectioll wc !lOW also have 10 consider the changes of state as 

weil as different length of Ihe wave veetors of the incoming and outgoing waves, which lead 

10 f(lelors k' and k in thc currcnl calculation. 

k' (_111__ ) I(k';!.' lVi k;!.)I' 
k 21/" h' 

(2.20) 

Thc sca ttering event mus! fulfill energy and l110mcnhml cOl1servation. With that we arrive 

finally at thc double differential cross seetion 

a'a 
an a{O 

k' (~)')' ~ )' (k', ;!.' lvi k,;!.)' o(h{o + E, -E,.) (2.21) 
k2trh';r' T 

Thc summation ovcr Ä is carried out ovcr all possiblc initial statcs A of Ihe system with their 

appropriate probability P;" The sum ovcr A' is the SlIl11 over all final statcs, the t?-function 

takes eare of the cncrgy conservation. thereby tj(t) is the energy transfer of the neutron to the 

system. This double differential cross scction will be discussed in deta il in the lecture Oll 

correlatioll functions, 

2.6 Elemental')' scattcl'ing proccsscs 

2.6.1 Thc Fcrmi pscudo potential 

Thc interaction of the neutron with a nucleon accurs under the strong interaction on a lenglh 

seale of 1.5 . 10.15
111. For that proeess, the Born eriteriul11 is not fulfilled and for the scattering 

proeess on a single nuelells lhe Born series would have to be summed IIp. F0l1unately, this is 

a problem of nuclear physics and rar the purposes of neutron seattering a phenomenological 

approach suffices. COllsidering that the wavelenglhs af thermal neutrons are in the order of 

10,10111 we realize, that they are much Jarger than the dimension of a l1uclc ll S of about 1O"sm. 
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Thcrcforc, for any scatlcring event we may perform aseparation into partial wavcs and 

consider only the isotropie S-wave seattering. These scattering proeesscs may bc dcseribed by 

olle parameter the scattering length b = b l + i . b2. Thcreby b l describes scattering, while b2 is 

the absOll)t ion parI. For thermal neutrons the scattering potential of a single Ilucleus becomes 

(Fenni pseudo potential) 

(2.22) 

The scattering lengths b have been measured as a functioll of neutron cnergy. For thermal and 

lower energies Ihe real parts of these scattcring lcngths are eOllstant and depend in an non­

syslcmatie way on the number ofnuclcolls (see Fig.2 .7). 

We realizc, that there are positive as weil as negative scattering lengths. Following a 

eonvcntion most of the scattering lengths are positive. In this ease, we have potential 

scattering with a phase shitl of 1800 betwcen thc incoming and senttered wave. Negative 

values resul! from resonance scattering where the neutrons penetrate the nuclei and ereate a 

compound nueleus. The emitted neutrons do not undergo a phase shifi . We also realize strang 

differences in the scattering lengths for some isotopes. In particular important is the difference 

in seaUering length between hydrogen and deuterium (b" ~ -0.374, bd ~ +0.667). This 

significant difference in scattering length is the basis of all contrast variation experiments in 

soft condensed matter research as weH as in biology (see later lectures). We also note, that the 

scattering lengths Illay depend on the relative oricntation of the neutron spin with respect 10 

the spin of the scattering l1ucleus. Again a very prominent example is (hc hydrogen. There the 

scattering length far the triplet state, neutron and hydrogen spins are parallel , amounts to 

blriplel = 1.04 . 1O· 12cm while the scattering length far the singlet situation, neutron and 

hydrogen spins are antipara llel, is b singlel = -0.474 . 1O-12cm, 
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Figure 2.7: Scattering ICllgth ofnuclci fer thermal neutrons as a fUllCtiOll ofatomic weight. 

2.6.2 Cohercnt and incohcrcnt scattcl'ing 

The scattering of neut rons depends on the isotope as weil as on the relative spin oricntations. 

We now will look into lhe consequences in regarding the elastic scattcring [rom an ensemble 

of isotopes with the coordinates und scattering lengths {R, ,bi}' Thc pseudo potential of this 

ensemble has the form 

V(d = 2Jf h' 

111" 
I b,o(r - E,) 
I 

(2.23) 

with Eq.[2.18) we may cnlculnte the matrix element of Vbetween k nud k' as 

(2.24) 

The matrix element is just a Fourier slIm over thc atomic positions decorated with the 

appropriate scattering length bl. The scattering cross section is obtained following Eq.[2.19]. 
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Thereby we now also cOllsider the spin states ofthe nuclei before and after scattering sand s'. 

The initial state probabilities are given by Ps, 

da 
dQ 

(2.25) 

We conunence with spin independent interactions and assllIne timt spatial coordinates :md 

scattering lengths are not correlated - that meaus different isotopes are distributed randomly. 

Then Eq.[2.25] may be evaillated to 

da = L: (b;. b, ) exp VQ. (B, - EI')) 
dQ /I ' 

(2.26) 

In order to evaltmte Eq.[2.26] fmther, we introduce two scattering lengths averages - the 

mean square average and the mean scattering length. They are given by 

b' = ~ " b' 
N~ ' 

- 1 
b= - L: b, 

N, 

With these definitions, the average product of b, and bt' becomes 

( 
') ( ) -2 "2 b, b, = 1 - Oll' b + Oll' b 

(2.27) 

(2.28) 

Finally, introdllcing Eq.[2.28] into the expression for the cross section Eq.[2.26] we obtain 

da = L: [(1 _011,)&2 + 01l,&2J cxp iQ(E,-E,.) 
dQ 11 ' -

= N(&2 _&2)+ &2 L: expiQ.(B, - E,.) 
11' 

(2.29) 

Obviously, the eross sectiOll contains two conlributiolls. A coherent olle where we have 

constmctive interference of thc ncutron waves cminating from the different nuclci. This 
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scattering is observed wilh the average scatlcrillg lenglh b~ In additiolllhcre cxists incoherent 

scattcring as a result of thc isotope disorder. It is not able of interfercncc and isotropie. 

We !lOW consider spin dependent scattering from olle isotope with thc l1uclear spin). Botllihe 

l1uclear spin as weil as Ihe neutron spin are statistically distributcd . There ex ist (wo cornpound 

spin slntcs: 

(i) neutron and nuelear spin are parallel : then / = j + y,. This spin state has the l11ultiplieity 

of 2j + 2. Hs seallering l.ngth is b +. 

(ii) neutron and nuelcar spin are anti parallel / = j - y, thc multiplic ity is 2j and thc 

corresponding scattering length equals b- . Thc a priory probabilitics for Ihe cOInpound 

spin statcs are givcn by Ihe nu mb er of possibilitics rar their realization divided by Ihe 

total numbcr. 

p 

2j + 2 =~ 
2j + 2 + 2j 2j + 1 

- j -
2j + 1 

(2.30) 

The corrcsponding average scattering lengths becollle 

(2.31) 

We now conside.. the proton as an example. Here j = 1;2, b+ = l.04 . 1O·12CIll, 

b- = -4.74· 1O- I 'cl11, p+= '1.., p- = 'lI. Inscrting into Eq.[2.3I) we find b = -0.375 . 1O- I 'cl11 

and b' = 6.49 . 1O-"cl11'. These values lead to a coherent cross sectiOll 

-2 H 2 
CT(o}, = 4,,·b = 1.77 · 10- cm. For the incohcrent cross section, we obtain 

CT1n( = 4;r· (// - b2
) = 79.8. 10-24 cm2 

. This value is the largest incoherent cross sections of all 

isotopes and makes the hydrogen atom the prime incoherent seatterer whieh can be exploited 

for hydrogen containing materials. 
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2.7 Compal'ison lJetwecn X-rny ami neutron scattcl'illg 

Dther than neutrons, X-rays are scattered by the clcctrons, whieh are distributed in space 

around the respcctive nucJeus. This spatial distribution leads to an atOillic form factor wh ich is 

the Fourier transfom,ed of the electron density distribution ,q([). lt depends in prineiple on the 

degree of ionisation of a nucleus but not on the isotope. 

(2.32) 

Sineo the atOlnic radii (about 104 limes larger than the radius of a Ilucleus) are comparable 

with the wavelength, the scattcring amplinlde J;<Q) depends strongly on Q. Thus, lVith 

incrcasing scattering angle the seattering intensity drops significantly. Furthermore, the atom 

fonnfactor depends on the number of eleetrons Z and is given by 

(2.33) 

Thereby, Z is the number of c)eetrons of an atom or of an ion. Fig.2.8 displays schematically 

I . r r I' d r ' f s in 8 t 1C atollllC lom11actor Honna Ize to one as a unetlon 0 --. 
A 

f 

sin 8 
A 

Figure 2.8: Schematic representation of nonnalized X-ray and magnetie neutron seattcring 
fomt faetars as a funeti0l1 of sin fJ A. 
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For a spherieal eleet ron distribution A(I'), fk) depend only on the absolute value of Q. For 

neutral atoms 3nd possible ionic states they has beeil calculated by Hartree-Fock calculations 

and may be found tabulated. 

Since the atOinic fomt fae lors depend on the atOlnic number, the scattcring contributions of 

light atoms for X-rays are only weak. Thereforc, in structure detcrminations the precision of 

the localizat ion of slich important atoms likc hydrogen, carbon or oxygen is limited in the 

presence of heavy atoms. Neutrons da not surfer frolll Ihis problem since the scattcring lCllgth 

far all atoms are abolli equal. 

In particular imporlant is the ease of hydrogen. In (he bound statc the density distribution of 

Ihe only elcctron is typically shiftcd with respect 10 the proton position anel an X-ray strueture 

analysis in prineiple cannot give the preeise hydrogen positions. On the ether hand, bonding 

effeets whieh are important for the understanding ofthe ehcmistry, may be precisely studied 

by X-ray electron density distributions. 

Atoms or ions with slightly different atom number like neighbouring elements in the periodie 

table are diffieult to distingllish in X-ray experiments. Again, neutron scattering experiments 

also by the use of the proper isotope allow a by far better contrast ereatiOJ1. Such effeets are in 

part icular important for e.g. the 3d-elements. 

The paramagnetie mOlllent of an atom or ion 11' results fonn the unpaired eleetmns. The 

dcnsity distribution of these eleetrons ,llm(!.:) is also nallled magnctizat ion density or spin 

dCllsity and is a partial electron density comparcd to the total eleetmn dellsity A(r). Becausc 

ef the magnetie dipole interaction, the amplitude of the magnctie neutron seattering is given 

in analogy to Eq.[2.32] as the Fourier transformed of the magnetization density A,ti.r) . The 

nonnalized seattering amplitude 

(2.34) 
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is also namcd magnetie form faetor. If the spin density distribution is delocaliscd as e.g. fer 

3d-elements, the magnetie form faetor decays even more strongly than the X-my analoguc. 

2.8 COllclusion: \Vhy arc ncutrons intcl'csting? 

Modem materials research logether with the tradition al scientific interest in the understanding 

of condensed matter at the atOinie seale requires a eomplete knowledge of (he an'angement 

and the dynamics of the atoms 01' moleeules and of their magnetie propcrties as weil. This 

infollnation can be obtained by investigating (he interaction of the material in qucstion with 

varies kinds of radiation such as visible light, X-rays 01' synchrotron radiation, electrons, ions 

and neutrons. Among them, neutrons play a unique role duc 10 the illhel'ent properties 

discussed above 

• theil' dynamie dipole moment allows thc invcstigations of the magnetie propcI1ics of 

materials. 

• thcil' largc mass leads to a simultaneous scnsitivity to the spatial and temporal seales that 

are eharaeteristic of atomie distanees and Illotions. 

• neutrons interaet diffel'ently with differcnt isotopes of the same atomic spccies. This 

allows the experimentator to paint selected atoms or moleeules by isotopes replacement. 

• neutrons ean easily penetrate a thick material - an important advantage for material 

testing. 

• the intemetion of the neutron with a nueleus has a simple form (Born approximation) 

whieh faeilitates the direet unambiguous theoretieal interpretation of experimental data. 
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A more thorough introtluction to neutron scatterillg lIlal' ue found in thc followillg 

books: 

[I] Bacon G.E., Neu/roll Diffrae/ioll, Clarendon Press, Oxford (1975) 

[2] Bacon G.E. (Ed.), Fifty Years of Neu/roll DijFaelioll: The adl'e/// of Neu/roll 
Seallerillg, Adam Hilger, Bristol (1986) 

[3] See M., Quasielaslic Neutron ScatleriJ/g: Principles anti Applicaliol/s ill Solid Siale 
Chemisll)', Biology alld Ma/erials Seiellee, Adam Bilger, Bristol (1988) 

[4] Lovesey S.W. and Springer T. (Eds.), DYllamies of Solids (II/(I Liquids by Neu/roll 
Seallerillg, Topics in Current Physics, Vol. 3, Springer Verlag, Berlin (1977) 

[5] Lovesey S. W" TheolJI 0/ Neutroll Scatferil/g frolll Condel1sed Atoller, Vol. I: Nuc/eal' 
Scattering, Vol. 2: Polarizatioll Effecls and Magnelic Scallerillg, Clarelldon Press, 
Oxford (1984) 

[6] Sköld K. and Pricc D.L. (Eds.), Me/hods of E'perimell/al Physies, Vol. 23, Part A, B, 
C: Neu/roll Seallerillg, Academic Press, New York (1986) 

[71 Springer T" QU(Jsielaslic Neutron Scatteringfol' the Jllvestigatiol/ o[ Di/fllsive A1otiolls 
in Salids and Liquids, Springer Tracts in Modern Physics, Vol. 64, Springer Verlag, 
Berlin (1972) 

[8] Squires G.L., lll/rodue/ioll /0 /he 11/eo/)' of Thermal Neu/roll Seallerillg, Cambridge 
University Press, Cambridge (1978) 

[9] Williams W.G., Polarized Neu/rolls, Clarendon Press, Oxford (1988) 

[10] Willis B.T. (Ed .), Chemieal Appliea/iol/ of 1/rerlllal Neu/rOll Seallerillg, Oxford 
University Press, Oxford (1973) 

[11] Windsor C.G., Pulsed Neu/rOll Seallerillg, Taylor & Francis, London (1981) 
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3 E1astic Scattering from Many-Body Systems 

Thomas Brücke) , IFF, FZ-Jülich 

3.1 Introductioll 

So rar \vc have learnt abaut the production of neutrons and their interac(jon with a single 

atom. In this chapter, we will discuss the scattcring of thermal neutrons from a sampie 

containing many atoms. In the first part, we will assllIne that the atoms are non-magnetic anel 

only the scattering from the nucleus will be considered. In the sccond part, \Ve will discuss the 

scattering from the spin- and orbital- angular momentum of the electrons in a magnetic solid. 

For simplification, \VC will aSSUlllC in this chapter that the atoms are rigidly fixed on 

equilibriull1 positions, i. e. lhey are not able (0 absorb recoil cncrgy. Tltis assumption is 

certain ly 110 langer valid, if the neutrons are seattered from agas, especially in the ease of 

hydrogen. where neutron and the atom have near!y the same mass. In this ease, the neutron 

will change its velocity. respeetively its encrgy. during the scatlering event. This is just the 

process of moderation and without this so-ealled inelastie scattering (i. e. scattering cOimected 

with a change of kinetic energy of the neutron) we would not have thermal neutrons at all. 

Also when scattered from asolid (glass. polycrystalline or single crystalli ne material) 

neutrons can change their velocity [er example by creating sound waves (phonons). However, 

in the ease of scattering [rom asolid, there arc always processes in which the reeoi! energy is 

being transferred to the sam pie as a whole, so timt the neutron energy change is negligible and 

the scattering process appears to be elastie. In this chapter we will restrict ourselves to on1y 

these scattering processes, during which the energy of the neutron is not changed. In 

subscquem chapters. we willicarn how large the fraction of these elastic scattering processes 

is, as compared to all scattcring processes. 

Quantum mechanics teils HS tltat the representation of a neutron by a particle wave fi eld 

enables us to describe intcrference cffects during scattering. A sketch of Ihe scattering process 

in the so-called Fra/mIlD/er approximation is given in figure 3.1. 
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souree k - k' 

28 
"plane wave" 

sampie 

Fig. 3.1.' A sketch 0/ fhe scatterillg process in Ille FrtlllllJIO/er approximation, in \I'hich il is 

asslI11led thaI plmle waves are illcidellt 011 sampie (md derec/ar due {o the fact I/Wl 

Ihe distallce sOllrce-sample (lud sample-delector, respeclil'ely, is signijicoll/ly 

larger thall/he size al/he sampIe. 

In the Fraunhofer approximation it is assumed that the size ofthe s8mple is much smaller than 

the distance between sam pIe and souree and the distanee betwecll sampie ami detector, 

respectively. This assumption IlOlds in most eases for neutron scattering experiments. Then 

the wave fie ld incident on the sampIe ean be dcscribcd as plane waves. Wc will ftll1her 

assumc that the sOllTee emits neutrons of OIlC givcn energy. In a real experiment, n so-called 

monuchromator will seleet a ecrtain cnergy from the white reactor spectrum. Altogether, this 

menns that the incident wave can be complctcly describcd by a wave vcctor k- The same holds 

for the wave incident on the detector, which ean be deseribed by a vector ~. In the ease of 

elastic scattering (diffraetion), we have: 

(3.1) 

Let us define a so-called scallering veclar by: 

(3.2) 

The magnitude of the seattering vector can be ca1culated from wave length A and scattering 

angle 29 as folIows: 
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Q = I~I = ~ k 2 + k'2 - 2kk' cos21i 

Q 4". Ii 
=> = T SIIl (3.3) 

During a scatterillg experiment, the intensity distribution is being detennined as a function of 

the scattering vector: 

(3.4) 

The prop0l1ionaiity factors arise from the detailed geomctry of the experiment. Our task is 10 

determinc Ihe arrangement of Ihe atoms in the sampie from the knowledge of the scattering 

cross section dcr/dQ(Q). The relationship betwecn scattcred intensity and the structure of the 

sampie is especially simple in the approximation oflhe so-called killematic scatlering. In Ihis 

case, multiple scattering events and Ihe extinction of the primary beam duc 10 scattering in (he 

sampie are being negiected. Following figure 3.2, the phase difference betwecn a wave 

scattered at the origin of the co-ordinate systcm und at the position r is given by: 

(3.5) 

k 

Fig. 3.2: A skelch iIIuslrating Ihe phase difference belwecll (l heam heing scallered Gt the 

origin o[ the co-ordinale system a1l(1 a beGm scattered a( Ihe position [. 

The scattered amplitude at the position r is proportional to the scattering power densily PsvJ. 
The meaning of Ps in the case of neutron scattering will be given Iater. The total scattercd 

ampl itude is givell by a eoherent superposition ofthe scattering from all positions I within lhe 

sampIe, i. c. by the integral: 
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(3.6) 

l.C. the scattered amplitude is connccted with the scattcring power density pAd by a simple 

Fourier transform: 

A F( Ps ( d ) (3.7) 

A knowledge of lhe scattcl'ing amplitude for all scattering vectors Q sllows HS 10 detennine 

via a Fourier transform the scattering power density uniquely. This is the complete 

information on the s8mple. which can be obtained by Ihe scattering experiment. 

Unfortunatcly, life is not so simple. There is the more teclmical problem timt OIlC is unable to 

determine the scattering cross sectiOil for all values of Q. The more fundamental problem, 

howevcr, is given thc fact lhat nonllally the amplitude of the seattered wave is not 

measurable. Instend only lhe seattered intcnsity 1 - 11112 can be detennined. Therefore, the 

phase information is lost and the simple recollstmction of the scattering power density via a 

Fourier trausform is 110 langer possible. This is the so-called phase problem ofseattering. 

Thc quest ion wItal wc can leam about thc structurc of the sampie from a scattering experiment 

despitc this problem will be thc sllbject of the following chapters. For the moment, wc will 

ask ourselves the quest ion, which wavelcngth we have to choose to achicve atOlllic resolution. 

The distanee between Ilcighbouring atoms is in thc order of a few times 0.1 nm. 1n the 

following we will use the "natural atomic length unit" I A = 0.1 11111 . To ohtain information 011 

this lcngth seaIe, a phase difference of about Q . a ~ 2 7t has to bc achieved, compare (3.5). 

According to (3.3) Q ~ 211' for typical scatlering angles (2 e ~ 60°). Combining these tlVO 
A 

estimatiolls, we end IIp with thc requirement that the wavelength A. has to be in the order of 

the inter-atomic distances, i. e. in the order of 1 A to achieve atOlnic resolution in a scattering 

experiment. This condition is idcally fulfilled for thermal neutrons. 
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3.2 Fundamental Scattcring ThcOl1' 

In this chapter. we will givc a simple formulation of scattering theery. Our purpose is to 

derive (3.7) from fundamental principles. The conditions under which (3.7) IlOlds and the 

limitations of kinematical scattering theery will thus become c1earcr. During a first rcading 

this sectiOll can be skipped. More details can be found in (ll 

In quantum mechanics, neutrons are described as particle wave fields through the Schrödinger 

equation: 

(
r,2 ) a 

H'P ~ - --8+V 'I'~ih- 'I' 
2m" 8, 

(3.8) 

'v is the probability density amplitude, V lhe interaction potential. In the case of purely elastic 

scattering E = E', the time dependence can bc described by the faetor exp( - i ~ I) . AsslIIlling 

this time dependencc, a wave equation for the spatial part of the probability densit)' amplitude 

~f can be derived from (3.8): 

(3.9) 

In (3.9) we have introdueed a spatially varying wave veetor with the magnitude square: 

(3.10) 

Solutions of (3.8) in empty space ean be guessed inunediately. They are given by plane waves 

k2 
:= 211~1I E. Thc relations betwcen magnitude of the wave 

r, 

vector, wave length and energy orthe neutron E can be written in practical units: 
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k r I ~ 0.695~ E[me V 1 
A[ A 1 ~ 9.045/ ~ E[mev 1 
E[meV 1 ~ 81.8/ i[ A 1 

(3 .11 ) 

To give an cX8mple, neutrons of wClvelcngth , .. = 2.4 A have an energy of 14.2 meV with a 

magnitude ofthe neutron wave veetor ofk = 2.6 A- '. 

To oblain solutions of the wavc equation (3.9) in matter, we reformulate Ihe differential 

equation by explicitly separating the interaction tenn: 

(3.12) 

Here k denotes the wave vector für propagation JI1 empty space. The advantage of Ihis 

formulation is that Ihe solution of the left hand side are already knOWI1. They are the plane 

waves in empty space. Equation (3.12) is a linear partial differential equatiol1, i. e. the 

superposition principle holds: the general solution can be obtained as a linear combination of 

a camplete set of solution functions. The coefficicnts in the series are determined by the 

boundary conditions. To solve (3.12) olle can apply a method dcvcloped for inhomogeneous 

linear differential equations. For the moment, wc aSSllllle tllat the fight hand side is fixed 

(given as X). \Ve define a "Greens-jlmclioll" by: 

(3.13) 

We can easily verify that a solution of (3.13) is given by: 

(3. 14) 

1111 ~ 
--. 
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The meani ng of (3,14) is immediately clear: the scattering from a point-Iike scatterer (3-

potential) gives a el1littcd spherical wave. 

Using the "Grecns-function" G(r,r'), a formal solution of the wave equation (3 .1 2) can bc 

givcn: 

(3.15) 

Here, wc have taken the initial conditions of a incident plane wave 'V0 into account. Tltat 

(3. 15) is indeed a solution of(3.12) can be easil)' verified b)' sllbstitllting (3.15) into (3.12). If 

we finally substitute the definition of:<" one obtains: 

(3.16) 

(3.16) has a simple interpretation: the incident plane wave \vo(r) is superimposed by spherieal 

waves emitted from scattering at positions r'. The intensity of these spherical waves is 

proportional to the interaction potential V(r') and the amplitude of the wave ficld at the 

position r'. To obtain the total scattering amplitude, we have to integrate over the entire 

s3mple vollll1le. 

However, we sti ll have not solvcd (3. 12): our solut ion \11 appears again in the integral in 

(3 .16). In other words, we have transformed differential cquation (3.12) into an integral 

equation. The advantage is that rar sllch an integral eqllation, a solution can be found by 

iteration. In the zeroth approximation, we neglect the interaction V eompletely. This givcs \jl 

= \1,°. The next lligher approximation for a weak interaction potential is obtained by 

substituting this solution in the right hand side of (3 .16). Thc first non-trivial approximation 

can thus be obtained: 
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(3 .17) 

(3. J 7) is nothing else but a mathematical fonllulation of the well-known Huygel1s principle 

for wave propagation. 

The approximation (3.17) assumes lhat the incidcnt plane wave is only scattered allee [rom 

the potential Ver'). For a stronger potential and larger sam pie, multiple scattcring processes 

can oceur. Again, this can be deduced from the integral equation (3.16) by furt her iteration. 

For simplification wc introduce a new version of equation (3.16) by writing the integral over 

the "Greens function" as operator G: 

(3.18) 

Thc so-called first BOl'l1 approximation, whielt givcs the kinematical scallel'ing IheolY is 

obtained by substituting the wave function \Jf on the fight hand side by Wo: 

(3.19) 

This first approximation can be represcnted by a s imple diagram as a Sllm of an incident plane 

wave and a wave scattered once [rom thc potential V. 

--
The second approximation is obtained by substituting the solution of the first approximation 

(3.19) on the right hand side of equation (3 .18): 

'1/2 ='1/0 + GV'l/t 

= '1/0 + GV'l/° + GVGV'l/° (3.20) 

Or in a diagrammatic form: 
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v 

I. e. in the sccolld approximation, processes are being taken into account, in which the neutron 

is scattered twiee by the interaction potential V. In a similar manner, 811 higher order 

approximations can be calcuJated. This gives the so-callcd Borl1 series. For a weak potential 

and smaH sam pies, this series converges mlher fast. Often, the first approximation, the 

kinematic scattering theery, holds very weil. This is especially the case ror neutron scattering, 

where the scattering potential is father weak. as compared to x-ray- cr electron- scattering. 

Duc to the strang Coulomb interaction potential, the probability for multiple scattering 

processes of clectrons in solids is extremely high, Ilmking the interpretation of eleetron 

diffraction experiments very difficult , But even for neutrons, the kinematic scattering theor)' 

can break down, for example in the ease of Bragg scattering from large ideally perfect single 

crystals, where the Born scries does not eOllverge, The wave equation has to be solved exactly 

under the bOllndary eonditions given by the crystal geomctry. For simple geometries, 

analytical soilltions can be obtained. This is then called the dYllamical scattel'ing (hem)l , Since 

for neutrons, the kinematical theory holds in 1110st eases, or multiple scattering events can be 

corrected for easily, we will no longer di sCllSS dynamical theory in what folio ws and refer to 

[1 ,2]. 

Let HS return to the first Born approximation (3.17). According to Frallnhofer. we assume in a 

further approximation that the sizc of the sampie is signific8ntly smaller than the distanee 

sample-deteetor. Thc geometr)' to ealeulate the far field limit of(3.17) is givcn in figure 3.3. 

::>~ 
~...,. detector 

k scattering volume 

Fig. 3.3: Scalferillg geome(IY Jor fhe calclilatioJ/ of fhe fit,. field limil al Ihe defeC(OI'. 111 Ihe 

FrmmllOfer approximation, we asstllue thaI IRI» k:'j· 
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Under the assumption lEI » k'l, we can deduee from figure 3.3 the following approximation 

for the emitted spherieal wave: 

expVkl[ - ['I) ~ exp(ik(R - r' ·R » ~ expikR . e-i~"[' 
k-['I R R 

(3.21) 

The probability density amplitude for the seattered wave field in the limit of large distanccs 

from the sampie is thus given by: 

=> Vfl(ß)= (3.22) 

This is just the SUI1l of an incident plane wave and a spherical wave emitted from the sampie 

as a whole. The amplitude ofthe seattered wave is given aeeording 10 (3.22): 

- F[v(dl (3.23) 

I. e. the amplitude of the seattered wave is proportional to the Fourier trans form of the 

interaction potential in thc sampie. In thc case of pure !luclear scattering of neutrons, this 

interaction potential is the Fermi-pseudo-potel1tial (see proeeeding chapter). Finally, the 

measured intensity is proportional to the magnitude square of the seattering amplitude: 

(3.24) 

3.3 Thc PaUcrson- 01" Pair-ColTclation-Ful1ctioll 

As alread)' mentioncd in the introduetion, the phase information is lost during thc 

measurement ofthe intensity aeeording 10 (3.24). For this reason, lhe Fourier transform ofthe 

seattcring potential is not direetly aeeessiblc in most scattering experiments (note, however 

that phase infonnation can be obtained in eertain eases). In this scetion, we will discuss, 

whieh information ean be obtained from the intensity distribution of a scattering experiment. 
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Thc same problem will be dealt with in a more general eontext in the chapter on correlation 

functions. Substituting (3.23) into (3.24), \vc ohlain for the magnitude square ofthe scattering 

amplitude, a quantity directly accessiblc in a scattering experiment: 

~ ff AA·'v0Jv'u:yil(~-!') 
~ J d3RJ d3rV(ß + [)V· (r)oig·r 

t 
r.-r..' =:!i 

This shows (hat the scattered intensity is proportional (0 the Fourier transfOfm of a fllllction 

P(ß): 

(3.25) 

However. this fimction is not the interaction potential , but the so-called PalleI'SOI1-!UIlClioll: 

(3.26) 

This function corrclates the value of the interactioll potential at position !, with the valuc at 

the position! + .ß. integrated over the entire sampie. If, averaged over the sampie, 110 

correlation exists between the values ofthe interaetioll potential at position ß and! + ß.. then 

thc Patterson function P(R) vanishes. If, however, a periodic arrangement of a pair of atoms 

exists in the sampie with a difference veetor for (he positions R. then the Patterson functioll 

will have an extremUll1 for this vecter B.. Thus, the Patterson function reproduces all the 

vectors eOlUlceting olle atom with an other atom in a pcriodie arrangement. In fact, the 

Patterson funetion is just a special case of the pair eorrelation fUllctions accessible by 

scattering. 

Thc meaning of the Patterson function can be illustrated by a simple example. Figure 3.4 

shows an arrangement ofthree atoms in the form of a tri angle. \Ve can constmet the Patterson 

function by copying this original pattern and shifting the copy with respect to the original by a 

difference vector ß. In this case ofa discrete distribution ofthe interaction potential Ver) (we 

also aSS\lll1e that V(r) is real), we can just count how many points of the original and the 
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translated pattern coincidc for this givcn diOcrcnce vector R. Only if two or more atoms 

coincidc, will wc have a non-vanishing valuc for Peß) according to (3.26) fer this discrete 

distribution of potentials. In this manner we cau construct the Patterson function given in 

figure 3.4. 

Patterson function , ,. 

~ -41~-~:· 
~ ~ I original pattern 

~ .. . 
Fig. 3.4: COl/SlrllCliol1 oJlhe Patfersol1 jlmctiol/ Jor a pattern, which cOl1sisls oJ Ihtee aloms al 

Ihe corners 0/ alriallgle. 

lt is this function which wc would obtain by Fourier transfonning the diffraction pattern of a 

periodic arrangement of our original tri angular pattern. One can easily see that in the 

Patterson funcHon all vcctors conllccting olle atom with any other ane in the original pattern 

can bc obtaincd. In aur simple easc, the original pattern can be guessed. However, the glless is 

not unique: we could also choose the mirror image. 

3.4 Scattcl'ing fl'om a PCl'iodic LaUicc in thl'cc Dimensions 

As an example for the application of formtlias (3.23) and (3.24), we will now discliss the 

scattcring ofthermal neutrons [rom a single erystal. More prceisely, we will restriet ourselves 

to the ease of a Bravais lattice with one atom at the origin of the unlt cell. \Ve further assume 

that there is only olle isotope with scattering length b. The single crystal is finite with N-, M­

a11(1 P-periods alang the basis vectors il. Q and f. The scattering potential, which we have to 

lIse in (3.23) is a slim over the Fcnni-psclIdo-potentials of all atoms: 

N- I M-I P- 12,",2 
v(d= L L L --·b·8V:-~1·f!.+1ll·Q+p·d) 

11= 0 11/=0 p=o 1111/ 

(3.27) 

The scattering amplitude is the Fourier trallsfonn ofthe scattering potential (eompare 3.23): 
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A(Q) ~ LbJ eiQ·~5(r - (11· f! + III·I! + p. f )}t3,. 
1I,III ,p 

N- I inQ.a}d- 1 imQ.b P- J ipQ.c 
~ b L e -- L e -- L e --

1/=0 ~ mtO .... p=O 

geometrical series 

Summing up lhe geometrical series, we obtain the scattered intensity: 

(3.28) 

As expected, the scattered intensity is proportional to the magnitude square of the scattering 

length b. The dependence Oll Ihe scattering vector Q is given by the so-called Laue:(ullelioll . 

The latter is plotted along one lattice directioll!! in figure 3.5. 

30 

N'-

20 

- > 
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o ~-

nLaue~ funcUon N=5 and N=10 

2a1Na 
~ 

~~ .• ~I 

IN ~ 10 

o 
Oa 

r;~5 

~~ • .rlll 
n 

11Il~ 
2. 

Fig. 3.5: Laue-fimelioll alollg tlle lattiee di/'eetion f1. Jo/' CI lat/iee witll 5 mul JO periods, 

respeclively. 

The main maxima are found at the positions Q == 11 • 21f . The maximum intensity scales with 
a 

the square of the llumber of periods, the half-width is given approximately by 
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more periods contribute to cohercnt scattcring, the sharper and ltigher are the main peaks, 

Betwecll the main peaks, there are N·2 sidc maxima. With increasing number of periods N, 

their intcllsi ty bccomes rapidl)' negligible compared to thc inteusit)' of thc main peaks. The 

main peaks are of course the weIl known Bragg-l'ej7ecliol1s, which we obtain when scattering 

from a crystal lattice. From the position of these Bragg peaks in 1ll0mentlull space, the melrie 

af the unit cell call be deduced (lattice constants a, b, c and unH ccll angles 0., p, 1), The width 

of the Bragg peaks is determined by the size of the coherentl)' scattering volume (parameters 

N, M and P), among ather fae tors, Details will be given in subsequcnt ehapters. 

3.5 Coherent ami Illcohel'cnt Scattcl"iug 

1n the last seetion, we assumed that we have lhe same interaction potential for alllattice sites. 

In lhe ease of x·ra)' scattering, this ean be weil realised for a ehemieally clean sampie, for 

example a Ni single crystal. However, neutrons are scattered from. the nuelei and for a given 

atomie speeies, there ean ex ist several isotopes with different scattering Jengths (five different 

isotopcs for the ease of nickel), Moreover, the scattering length depends on the orientatioll of 

the nuelear spin relative to the neutron spin. In this sec tion we will diseuss the effeets of these 

special properties of the interaetion of neutrons and nuclei for the seattering from condensed 

matter. 

Let us aSSUll1e an arrangement of atoms with scattering lengths b j on fixed positions Ri' For 

this ease, the scattering potential writes: 

(3.30) 

The scattering amplitude is obtained from a Fourier transform: 

In) iQ-R. AIQ = 'I,bie - - , (3.31) 

When we calculate the scattering eross section, we have to take into aceount tl13t the different 

isotopes are distributed randoml)' over all s ites. Also the Huclear spin orientation is random, 

except for very low temperatures in external magnetie fields, Therefore, wc have to average 

aver the random distribution of the scattering length in the sampie: 
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der ~)= H~l2 =±2A /fHi;. Ib;' - i
q)1j) 

d0. i j 

av rage over the random dis,ribu,ll 

= II(bib;'fil1.lIld) 
I } 

(3.32) 

In calculating the expcctation vnlue orllte product ofthe two scattering lengths a( sites i andj, 

wc have (0 take into aecount lhat according (0 lhe above assumption, the distribution of the 

scattering length on the different sites is completely uncorrelated. This implies tllat for i ::J:. j , 

the expcctation value of the product equals (0 lhe product of the expectatioll values. Only for i 

= j, we have a correlation, whieh givcs an additional term describing the menn quudratic 

deviation from the average: 

(3.33) 

Therefore, we can write the cross section in the following form: 

der ~) = (b)2IIe'I1. ·B;12 "COlle,.elll" 
d0. i (3.34) 

+ N( (b - (b) f) ";IIColle,.elll" 

The scattering cross section is as a sum of (wo terms. Only the first tenn contains the phase 

factors eiQ
·ß, wh ich resllit from the coherent superposition of (he scattering from pairs of 

scatterers. This term takes into account interference effects and is therefore named colzel'elll 

scallel'il1g. Only the scattering length averaged over the isotope- and nuclear spill- distribution 

enters this term. The second term in (3.34) does not contain any phase information and is 

proportional to the !lumber N of atoms (and not to N2!). This tenn is not duc to the 

interference of scattering from different atoms. As we can see from (3.33) (line i = j), this 
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term corresponds to the scattering from single atoms, which slibseqllelltly supel'impose in an 

incoherent malmer (adding intensities, not 3mplitudcs!). This is the reason for the intensity 

being proportional to the llulllber N of atoms. Therefol'e the second term is called incoherellt 

scatterillg. Coherent allel incoherent scattering are illustrateel in figure 3.6. 

k' 

; ; 
V; t=;~ Seatlenng from the 

~~--4t- - regular mean laltlee 
- -< __ - . - -,- --e>---,,-- :::) Interference 

+ 

Nx 

+ 
ScaUering from randomly 

distributed defects 

:::) isotropie scattering 

Fig.3.6: Two-dimcnsioJ1(l/ illustration oJthe scattel'ingprocessfrom a /attice oJN atoms 0/ 

a givell chemical species, JOI' lI'hich Iwo isotopes (5mall dofled circles (md large 

hatched circlej) exisl. The al'ea o/Ihe cil'cle l'epresel1ls Ihe scattel'illg cross sectiOIl 

o/Ihe single isotope. 1'l,e incident wave (IOp parI oJ /he figure Jo/' a special 

arl'angemelll oJthe isotopes) is scaflered coherently onlyJi'olll the average laffice. 

This gives rise 10 Bragg peaks il1 cer/ai" direcliolls. in fhe coherel11 seal/el'illg ollly 

Ihe average scallering lellgth is visible. Besieles these intel/etenee phcnomella, 011 

isotropie background is obscrvell, lI'hicll is proportional 10 the IlIlIlIber N oJ aloms 

alld 10 thc mean quadratic deviation /1'0111 the average scaflering leng/li. This 

illeoherellt part 0/ fhe seallering is represenled by ,he lower part oJ the jigllre. 

The most prominent example far isotope incoherellce is elcmentary nickel. The scattering 

lengths ofthe nickel isotopes are listed together \Vith their natural abundanee in table 3.1 [3]. 

'fhe differences in the scattering lengths for the various nickel isotopes are enonnous. Some 

isotopes even have negative scattering lengths. This is due to resonant bound states, as 

compared to the usual potential scatteri ng. 
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Isotope Natural Abundance Nuclear Spin Scattering Length [fm] 

"Ni 68.27 % 0 14.4(1) 

"'Ni 26.10% 0 2.8(1) 

"Ni 1.13% ' I, 7.60(6) 

"Ni 3.59 % 0 -8 .7(2) 

"'Ni 0.91 % 0 -0.37(7) 

Ni 10.3(1) 

Tab. 3.1: Tlle scallering lenglhs a/the nickel isotopes aud fhe resltltillg scalterillg lengtll 0/ 

lIalllral,8Ni [3}. 

Neglecting the less abundant isotopes 61 Ni and MNi, the average scattering length is calculated 

as: 

(b) ~ [0.68 ·14.4 + 0.26 · 2.8 +0.04· (- 8.7)JfiIl ~ 10.2jill (3 .35) 

which givcs the total eoherent cross section of: 

=> (J coh",n' = 41l(b)2 ~ 13 .1 bam (exael : 13.3(3)bam) (3.36) 

The incoherent scattering cross section per nickel atoms is calculated from the mcan quadratic 

deviation: 

a:'~;;f;'~e", = 4 .. [0.68 ·(14.4 -1O.2j2 +0.26· (2.8- 10.2j2 

+ 0.04· (- 8.7 - 10.2j2 ]ji1l2 
~ 5. Ibam (exael : 5.2( 4)barn) 

(3.37) 

Values in parentheses are the exact values taking into account the isotopes 61Ni alld 64Ni and 

thc Iluclear spin incoherent scattering (see below). FlOm (3.36) .nd (3 .37), we !earn that the 

iucoherent scattering cross sectiOll in nickel al110UI1t5 to more than olle third of the coherent 

scattering cross section. 
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The most prominent example for fluclcar spin il1cohcre11l scattcring is clementar·y hydrogen. 

The l1ucleus of the hydrogen atom, the proton, has the nuclear spin I = Y2. The total nuclear 

spin of the system H + n can therefore adopt two valucs: J = 0 and 1 = I . Each state has its 

own scattering length: b_ far the singlett state (J = 0) and b+ for the triplett state (J = 1) -

compare table 3.2. 

Total Spin Scattcrillg LClIgtl. Abundance 

}- o b_ - - 47.5 fm 1 -
4 

} -1 b+ - 10.85 fm 3 -
4 

<b> - - 3.739(1) fm 

Tab. 3.2: Scallerillg lellglhslor hydrogell [3]. 

As in the ease ofisotope incoherenee, the average scattering length ean be ealculated: 

(b) = [±(-47.5)+ %. (IO.85)]fill = - 3.74fill (3.38) 

This eorresponds to a coherent scattering cross section of about::::: 1.76 bam [3]: 

2 => C7coherelll = 41f(b) = 1.7568(10) bom (3.39) 

The nuclear spin incoherent part is again given by the mean quadratic deviation from the 

average: 

III1c1ear spill = 41f[ -4
1 

(_ 47.5 + 3.74)2 + -4
3 (I 0.85 + 3.74)2 ]fi1l2 = 80.2 bam CT;llcoherellf 

(exaCI: 80.26(6) bam) (3.40) 

Comparing (3.39) and (3.40), it is inunediate ly clear that hydrogen scatters mainly 

incoherently. As a rcsult, we observe a large background for all sam pies containing hydrogen. 
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We note immediately that we should avoid all organic glue for fixing our sampies to a sampie 

stick. Finally, we note that deuterium with Iluclear spin I = 1 has a ll1uch more favourahle 

ratio betwecn coherent alld incoherent scattering: 

ufo", = 5.592(7)bam; u/?,c. = 2.05(3)bam (3.41) 

The eoherent seanering lcngths of hydrogen (-3.74 fm) and deuterium (6.67 fm) are 

significantly different. This can be used for contrast variation by isotope substitution in all 

sampIes containing hydrogen, i. e. in biologie al sampies Of soft condensed matter sampies, 

see corresponding chapters. 

A further important element, which shows strong nuclear incoherent scatterillg, is vanadium. 

Natural vanadium consists to 99,75 % ofthe isotope 51 V with Iluclear spin 7/2. By chance, thc 

ratio betwecn the scattering Icngths b+ and b. of this isotope arc approximatcly equal to the 

reciprocal ratio of thc abundances. Therefore, the coherent scattering cross section is 

negligible ,md the incoherent cross section dominatcs [3]: 

v V 
u co" = 0.0 1838(12) bal'll; u;"co" = 5.08(6) bol'll (3.42) 

For this reaSOll, Bragg scattcring of vanadium is difficult to observe above the large 

incohercllt background. However, since incoherent scattering is isotropic, the scattering from 

vanadium cau be used to calibratc multi·dctcctor arrangements. 

Herc, wc will not discuss scattering lCllgths for furt her elements and refer to the values 

tabulated in [3]. 

3.6 Magnetic Neutron Scattcring 

So rar, we have only discussed the scattering of neutrons by the atomic nuclei. Apart from 

nuclear scaHering, the Hext important proccss is the scattering of neutrons by the magnetic 

moments of unpaired electrons. This so-called magnetic neutron scattering comes about by 

the magnetic dipole-dipole interaction betwccn the magnetie dipole moment of the neutron 

and the magnetie field of the unpaired eleetrons, which has spin aod orbital angular 

l11omentulll. eOlltributions (see figure 3.7). 
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Fig. 3. 7: Schematic iIIustratioH 0/ the illteraclioll process 0/ a neutron wilh the atomic 

magnetic moments via the dipole ;11Ieractioll. 

This magnetic neutron scattering allows lIS to study the magnetic propcrties of a sampie on an 

atOlnic level, i. e. with atomic spatial- and atOll1ic energy- resolution. A typical problem 

stlldied is the detennination of a magnetic structure, i. e. the magnitudes alld arrangements of 

the magnetic moments within the sampie. Besides thc wcll-knowl1 and simple fcrcomagnets, 

for whielt a11 moments are parallel, there exists a whole zoo of eomplieated ferri- and 

antifcrromagnetic structures, such as helical structurcs, spin density waves, ctc. (comparc 

figure 3.8). 

1~ cl:> CU G 
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Fig. 3.8: Schematic illustration olthe magnetic structures o[ the hexagonal rare earlh 

metals. Wilhin the hexagonal basal plane, all moments are parallel. The figure 

shows the sequellce 0/ moments in sllccess;ve planes along fhe hexagonal c-oxis. 

Besides simple /erro1JJognelic phases (j), helical (e), cOllical (d) (md c-axis­

modlilaied slrllcillres (b) erc. are obsel'ved. 
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These magnetic structures can bc understood on the basis cf magnctic interaetions, which 

again can be detennined by neutron scattering from measurcmcnts of lhe magnetie excitation 

spectra. Magnetic siructurcs are only stahle in a cC11aill range of theromdynamic parameters, 

such as temperature, pressure cr magnetic field . As wc approach the limits of astability 

region, magnetic phase transi tions into a different magnetic phase aceur. An example is the 

transition from a long-range magnctic order at low temperatures to a paramagnetic high 

temperature phase. By mcans of neutron scattering, lhe spectra of magnetisatioll fluctuations 

elose to a magnetic phase transition can be detennined. Such measuremcnts providc the 

experimental foundation of the fanlOus renormalisation group theory of phase transitions. 

In what follows, we will give an introduetion into the formalism of magnetic neutron 

scattering. Again, we will restrict ourselves to the case of elastic magnetic scattering. 

Examples for magnetic scattering will we givell in a latcr chapter. 

To derive the magnetic scattering cross sectiOil of thermal neutrons, we consider the situation 

shown in figure 3.9: a neutron with the nuclear moment )..tN is at position R with respect to an 

electron with spin~, moving with a velocity Yc. 

"-
ß. l!n 

n 
\ 

/ 
ß / 

/ 
/ 

Fig. 3.9: Geomeuy [01' fhe derivation o[ fhe illferactioll befween llellfrOIl nlld electroll. 

Due to its magnetic dipole moment, the neutron interacts with the magnetic field of the 

electron according to: 

V", = -j.I ·B 
-11 -
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I-Icre, the magnetie moment oftlte neutron is given by: 

(3.44) 

Q denotcs the spin operator, ~IN the nuclcar magneton and 'fN = -1.913 the gyromagnetic factor 

of thc neutron. The magnetic field Il of an electron is duc 10 a spin- and orbital- part ß. = fu + 

fu. The dipole field ofllte spin momcnt is givcll by: 

(3.45) 

The field due to the movement ofthe clectron is given according to Biot-Savart: 

-e " x R 
B - - e-L----
- C R3 

(3.46) 

The magnetie scnttering cross seetion for a proeess, where the neutron ehanges its wave 

vector from k to k' and the projectiol1 ofits spin moment to a quantisatiOlt axis z from O'z 100/ 

ean be expressed within Ihe first Born approximation: 

(3.47) 

As mentioned, we only consider the single differential cross scctiOlt for elastic scatterillg. 

Introducing the interaction potential from (3.43) to (3.46) in (3.47), we obtain after a lot of 

algebra [4, 5]: 

(3.48) 

The pre-factor 1, ro has the value 1,ro = 0.539 . 10.12 cm = 5.39 fm. Here, M.t(Q) denotes the 

component of the Fourier transform of the sampIe magnetisation. whieh is perpendicular to 

the scattering vecter Q: 
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Ml(Q)= QxM(Qh~ 

M(Q)= j MVJe'ß·'d 3,. 

(3.49) 

(3.50) 

The total magnetisation is givcll as a sum of the spin- and orbital-angular- 11l0mcntUIl1 part 

according to: 

M(d=M s([)+M &) 
M S(d =-2PB ·~(d= -2PBLO(C-d~:i (3.51) 

(3.48) teils HS tllat with magnetit neutron scattering, \vc are able to determine lhe 

magnetisatiOll M(r) in microseopie atOlnic spatial co-ordinfltes !. This gives a lot more 

information as a simple macroscopic measurcmcnt. where wc obtain the ensemble average of 

the magnetisat iOll over the entire sampie. \Ve also see from (3.48) that the orientation of the 

l1uclear spin momcnhul1 of the neutron (represented by 0'1.) plays an important role in 

magnetic scattering. This is not surprising, since magnetism is a vectar propert)' of the sam pie 

and obviolls)y there should be an interaction with the vector propcrty of the neutron, its 

Buclear magnetic moment. Therefore, the analysis of the change of lhe direction of thc 

neutron nuc1ear moment in the scattering process should give us valuable additional 

information as compared to adetermination of the change of energy and momentum direction 

of the neutron alone. These so-called polarisation analysis experiments are discussed in the 

following chapter. For our prcsent purposes, we will completely neglect these dependencies. 

Finally, to obtain an idea of the size of magnctic scattering relative to nuclear scattering. we 

can replace the matrix element in (3.48) for a spin ~ particle by the value 1 ~tß . This gives us 

an "cquivalent" scattering length for magnetic scattering of 2.696 fm far a spin ~ par ti eie. 

This value corresponds quitc weil to the scattering length of cobalt, which means that 

magnetic scattering is comparable in magnitude to nuclear scattering. 

In contrast to nuclear scattering, we obtain for magnetic scattering a directional term: neutrons 

only "see" the componcnt of the magnetisatioll perpendicular to the scattering vector (see 

figure 3.10). 
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M Q 

Fig. 3. /0: Far magnetic neulroll scallel'ing. ol1/Y ,he cOJllpOl1el1l M...L 0/ ,he magllelisaliolJ 

peJpelldicular /0 fhe scallel'ing vee/ar Q is ojrelevtlllce. 

ThaI only M..i givcs rise 10 magnetic neutron scattering, eao be understood from the nation 

that neutrons are scattered [rom the dipolnr field of the electrons. This is depicted for two 

different geometries in figure 3.11. For thc case timt the magnctisatiOll is parallel 10 Ihe 

scattering vcelor, the planes for equal phase factor cut though the dipolar field in such a way 

that duc 10 symmetry reasans, the field averagcd over these planes vanishes. This is no longer 

Ihe case, if thc magnetisation is perpendicular 10 the scattering vector. This special directional 

dcpendence allows it 10 detennine the orientation ofmagnetie moments relative to the lattice. 

M 11 Q 
M-LQ 

M 
Planes M 
with equal 
phase 
factor 

Q 

Fig. 3. 11: IlIlIslral;o11 of Ihe direcl;onal dependellce lor Ihe scaltel';ngji'om a dipolar jield: ;n 

Ihe case lI'here M 11 Q the dipolar fielel averaged over plaues wilh eqllal phase 

factars ;s zero, so that 110 lJlagnetic scaUering appears. 

A second speciality of magnetie scattering as eompared to nuclear seattering is the existence 

of the so-ca lied form faclor . The form factor deseribes the fact that the scattering amplitude 

drops with increasing momentUill transfer. This acems because the object, from which we 

seatter. namely the electron eloud of an atom. has a size comparable to the wave lengtll of 

thermal neutrons. Since the distribution of the magnetic field for spin and orbital angular 

momentul11 is eompletely different (compare figure 3.12 for the ease of a c1assical Bohr orbit), 

different Q-dependcncies ofthe corresponding form factors result (compare figure 3.13). 

3-24 



~. 

Orbital 
angular 
1ll0mcntUI1l 

'-.... magnetic 

field distribution 

spin 
/rnomentul11 

Fig. 3.12: Sclzematic illustration o/ Ihe magnetic jield distribution due {o spill - (8) (lud 

orbital- (L) angular momell/um jn Ihe case 01 a Bohr orbit, The magnetic jield due 

10 fhe spill moment is Illllch more spread oul thall lhe olle dlle 10 Ihe orbital angular 

momelllu111. 
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Fig. 3.12: FO/'ln-jaclor oJ CI' [7, 8]. Duc 10 Ihe differenl dislribution oJ Ihe magnelic fiel" Jor 

S (md L accordil1g /0 figure 3.11, {l more rapid decrease a/lhe scallering amplitude 

os a /lille/ioll 0/ momenllllll Irans/er I'esztlls jol' Ihe spill momel1luJ11. Fa,. Ihe x-I'oy 

form fac to}', Ihe imleJ' elee/folls play an imp0l'tanl role, tao. Thete/ore, Ihe x-ray 

form [actor drops slower as compared 10 the magnefic form factor. Fil1ally, 011 ,he 

A length seale of the thermal nelltroll wove lellgth, Ihe Iludeus ;s point-Iike. 

nierefore, Iluclear scalfering is independent ofthe momenllllll transfcr. 
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Since the scattering amplitude is proportional to a Fourier transform of the scattering power 

dcnsity in direet spaee, the scattering amplitude deereases faster with momentum transfer if 

the scattering ocems from a larger object in direct space. Since the unpaired magnetic 

electrons are loeated in the outcrmost eleetronie shells, the magnetic form factor drops faster 

than the x-ray form faetor. Compared to the naturallcngth seale of the neutron wave length, 

the nucleus is point-like. which reslilts in a scattering amplitude being independent of 

momentull1 transfer. Finally, we want to mention that the magnetie foml faetor can in general 

be anisotropie. ifthe magnetisation density distribution is anisotropie. 

How the form faetor comes about is most easily understood in the simple ease of pure spin 

seattering, i. e. for atoms with spherical symmetrie (L = 0) ground state, sueh as Mn2
+ or Fe3

+. 

Moreover, the derivation is simplified for ionie eryslals, where the eleetrons are loeated 

around an atom. In figure 3.13 we dcfine the relevant quanlities for a derivation. 

Atom i 

Fig. 3.13: Definition oJ fhe relevant qua11lities Jor a derivatiol1 oJthe spin-ol/ly Jorm lac/or. 

We dcnote the spin operators ofthe eleetrons of atom i with ,§,ik. The spatial eo-ordinates oflhe 

eleetron nllmber k in atom i are Iik = ßi + !ik, where Ri denotes the position veetor to the 

nueiclis of atom i. Now we proceed to separate the intra-atOlnic qllantities. We caB write the 

operator for the magnet isa ti on density as: 

(3.52) 

The Fourier trans form of this magnetisatiOll dellsity is caleulated to: 
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'" iQ'~i ,~ iQ'ßi'" iQ'!ik 
= t.- C - ~ik = L.ß - t.- e - '~ik (3.53) 

ik k 

Ta calculate the scattering cross sectiol1, wc now have to determine the expectation value of 

lhis operator for the quantum mechanical stnte of the sam pie averaged Qver the 

thermodynamic ensemble. This leads to 

(3.54) 

The single differential cross sect iOll for elastic scattcring is thus given by: 

(3.55) 

Here, fm(Q) denotes the form f3etor, which is COIUlcctcd with the spin density of the atom via 

a Fourier trallsform: 

/',,(f1)= J PsIJJ/ß~d3r (3.56) 
Atom 

\Vith the form (3.55), we have expressed the cross section in simple atomic quantities, such as 

the expectation values of lhe spin moment at the vacialls atoms. The distribution of lhe spin 

density within an atom is reflected in lhe magnet ie form fnetor (3.56). 

For ions with spin and orbital angular momentlll1l, the cross section takes a significantly more 

complicated form [4, 5]. Under the assumption timt spin- and orbital- angular Illomentum of 

each atom cOllple to the total angular momentlull !i (LlS-collpling) and for rather smalJ 

1110menhul1 transfers (the reciprocal magnitude of the scattering vector has to be sl11all 

compared to the size of the electron orbits), we can give a simple expression for this cross 

scct ion in the so-called dipole approximation: 

(3.57) 
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Here the magnetic form faetor writes: 

2 
gJ denotes the Lande g-factof, C2 = - -I and 

gJ 

00 

(it(Q)) = 4" fi, (Q,)R2(,),2"r 
o 

(3.58) 

(3.59) 

are the spherical transfonns of the radial density distributions R(r) with thc spherical Bessel 

fUllctiolls jl(Qr). Far isolated atoms, the radial part R(r) has been determined by Hartree-Fock­

calculations and the funclions (io(Q)) ami (i2(Q)) in (3 .58) have been tabulated [6). 

After having introduced the principles of magnetic scattering, we will discuss applications in 

chapter 16. 
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4.1 IntroductiOil 

Most typical neutron experiments are conccrned only with the intcl1sities related to a 

spccific change in moment um and energy of thc neutron in a scattcl'ing process yielding 

information abollt thc structure and dynamics of thc cOllsidcred system of interest. How­

ever, since thc neutron has a spin it interacts with thc magnetie moment of the electron 

shcHs, and the scattering amplitude depends also on the nuclear spins of a sampie. There 

are cases where Olle is able to distinguish magnetie from nuclcar scattering, either from 

the different form factor dependence 01' from a temperature variation across a magnetie 

phase transition. Hcre we shall discuss the technique of using polarized neutrons and the 

analysis of their final polarization after the scattering process. It is a powerful method 

for distinguishing the various possible scattering scattering contributions, - i.e. mag­

netie, nuc1ear cohercnt, and nuc1ear spin-incoherent scattering -, and to separate them 

from eaeh other by expel'imenlai means without /urther assumptions. Its applieation to 

neutron spin echo teehniques will be discussed in chaptcr 11. 

The thcoretical foundation for polarized neutron studies has essentially been set by the 

early works of Halpern and Johnson[IJ, Maleyev[2J, and Blume[3J. A good introduction 

is given in thc classical work of Moon el ai [7], see also [4, 5J. This lecture will not treat 

the full complexity of magnetic scattering (see [2, 3]). Emphasis will be given rat her to 

basic ideas following Refs. Schärpf [6J and Moon et al [7J. 

4.2 The lnotion of the neutron in Juagnetic fields and experinlental devices 

Thc essential characteristics of the motion of a neutron in a magnetic ficld is the pre­

cession mode, which for simplicity can be eonsidered in a classical treatment[6J. In fact, 

even the quantum meehanical treatment, which introduces Pauli spin matrices into thc 

Schrödinger equation, is effcetively a classical treatment eonsidering the origin of these 

matrices. They result from the problem of mapping three dimensions onto two by intro-
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ducing a complex component and were treated b)' Cayle)' and Klein (1897) 181 describing 

the classical problem of a spinning top. 

Classical mechallics shows that a torque exerted on a magnetic moment!!:. uy a mag­

netic field H inclincd at an angle 0 relative to thc magnetic moment causes thc magnetic 

moment of thc neutron to precess about the direction of thc field with the Lannor fre­

quene,}' WL. Thc precession frequency is independent of the augle O. Different to thc 

motion of a spinning top in a gravity field thc neutron's motion shows no nutation, its an­

gular momentum L. = lis.. and it.s energy is a canstaut. S (= }) denotes the spin quantum 

J1tlmber of the neutron and ;t is Plallck's constaut divided by 21r , Thc relation uetween 

angular momentum L. and magnetic moment!!:. defines the gyromagnetic 7utio ~ 

( 4.1) 

An applied magnetic field will tend to align this magnetic mom.ent and exerts a torque. No 

force is exerted by a homogeneous field, so that thc rcsulting equation of motion simply 

says that the change of L. in time is normal to L. and 1::1., i.c. a precession: 

t. = -"{ Lx 11 = Lx !!IL 

with - "{11 = !!1Land "{/2,, = -2916.4Hz/Oe. 

(4.2) 

A magnetic guide field defines a quantization axis and ean be used to mailltain thc 

direction the spin and tllUS thc polarization of the neutron beam, sce Fig. 4.1. The 

neutron moments wi1l align either parallel or anti-parallel. Guide fields are typically weak 

so that the sampie magnctization is not signifieantly inftuenccd, but sufficiently stranger 

than for instancc the magnetie field of the earth or any other stray magnetie fields from 

the surrounding. Such a guide field may vary is space and two important limits are of 

interest (see Fig. 4.2 and Fig. 4.3): 

• slow field change: this so-ealled adiabatic ease meaus that 11 slowly ehanges its 

directiou with a frequeney that is sruall eompared to the Larmor frequeney, w «WL, 

such that a neutron moving with a velocity 1lN keeps its preeession mode around thc 

spatially varying 11. This can be achieved by sufficiently long path for thc variation 

of the field or by a sufficiently strong the field H (<X WL) . 

• sudden field change: If the ficld direction changes suddcnly, the polarization of the 

neutron eannot follow. Two opposite guide fields ean be sepal'ated by a current 
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Figure 4.1: Neutrons in a guide ficld !i with spins parallel 01' anti-parallel[6]. 

shect, for example, and polarized neutrons parallel to the first guide field will bc 

kept in an anti-parallel orientation to thc second field wheu passing the sheet. This 

case W » WL is also used in coils operating as spin flippers. 

In neutron scattering experiments with polarized neutrons, thc prillciple of siow field 

changes is used, for instance, to align the polarization along a particular direction at the 

sampie position. As will be seen in thc examples below, thc polarizations perpendicular 

and parallel to the scattering vector and thc magnetization of thc sam pie are of particular 

interest. Usually, we assume that the field at the sam pie position is sufficiently weak so 

that the magnetization of the sampIes remains undisturbed. Using three (orthogonal) 

pairs of coils the polarization can be turned arbitrarily into any direction at the samplc 

position to probe the orientation the magnctization of a sam pie. While turning thc 

neutron polal'ization at the sam.ple position by an additional field Hand thus keeping the 

neutrons moments in guide fields Olle can only distinguish scattering processes in wh ich 

the spin direction is preserved (non-spin flip) 01' reversed (spin-flip) for a given direction . 

In general, thel'e may be an arbitrary angle of rotation of the neutron polarization, and 

it can be measured only if the sampie is in a ficld-free space. Super-conducting sheets 

are ideal for shielding the sampie environment from external magnetic fields (sudden 
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Figure 4.2: Polarisation of neutrons follows field dircction in thc adiabatic case: w « WL.[G) 

gulde fleld 

neutron spin antiparalle 
. to gulde fte 1 d 

gulde fleld 

neutron spin parallel 
gulde fleU 

fteld neer the 
current sheet 

Figure 4.3: Neutron spin keeps its orientation for sud den field changes: w» WL .(6) 

field changes). Such an sam pie environment with zero-field is realized in a dcvice called 

cryopad ([9J F. Tasset, ILL). It allows one to exploit all possible scattering ehannels with 

independent initial alld final polarizations along xyz in spin-flip or non-spin flip mode 

(wh ich takes 3 x 3 x 2 = 18 measurements). 

An important device for working with polarized neutrons is a spin flipper, see Fig. 4.4. 

One can use the Larmor precession in a coil to turn thc neutron spin . Thc so-called 

Mezei eoil is • lang reetangul.r eoi l. The field inside (H = N . I/I ) is perpendieular 

to thc polarization and thc travel direction of the neutron. Guide fields outside are 

necessary to avoid depolarization by the earth field or undefined stray fields, but need to 
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Figure 4.4: Neutron 7T-spin flipper (Mezei-flipper). Thc neutrons perform half of a Larmor­

prcccssion inside a lang rectangular eoil. Thc field H ir is perpcndicular to spin orientation 

and to the travel direetion of the neutron and has to be adjusted to thc speed of the 

neutrons. In order ta compensate the guide field ODe may either tilt thc flipper 01' use a 

eorreetion eoil[101. (Fig. from [61.) 

be compensated inside the coil. Monochromatic neutrons passing through the coil tltey 

experiencc a Budden field changes at thc \Vires and perform a precession inside. A rotation 

of 180 degrees ( .. -flip) is realized by field H. determincd by -yH.· d/v =", whieh gives 

H. = 67.825 Oe· (A em)/(A d) "" 20 Oe for A = 3.4 A and d = 1 em. There are other types 

of spin flippers using far instance radio-frequcncy resonators. 

By experimental means it is possible ta chaase thc initial polarization of thc neutron as 

either spin-up or spin-down, and the polarization analysis requires also thc experimental 

ability to determine the final polarization of the neutron after the scattering process. In 

practice, there are three types of polarizing devices: 

• a crystal monochromator and Bragg re8ection, where the interference of the mag­

netic and nudear part of thc scattering amplitudes is constructive for one spin state 

alld destructive for thc opposite spin state; 

• super-mirrors with a magnetic layered structure which shows total reflection for one 

spin state only; 

• filters tbat produce by absorption or extinctioll a polarized beam in transmission. 

3He is of particular importance. It exhibits high absorption for neutrons having 

their spins anti-parallel aligned to the spin of the 3He nucleus. 
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So me polarizers using Bragg reßections, for instance the (200) reßection from COo.92FeO.08 

aHoy crystals, exhibit a very high degree of polarization ('" 0.99 for the whole set-up: 

initial polarization - spin-flipper - final polarization). However, only a narrow band of 

wavelengths ean be used and also the aeccpted divcrgence is smalI, whieh could be de­

manding in terms of scattering intensities. An experimental set-up for polarization anal­

ysis using the total rcßection of long super-mirrors or sltorter benders (a stack of such 

super-mirrors) perform also reasonably weil in terms of polarization (typically ~ 0.95 

01' better), and in addition a comparatively wide band in wavelength or energy of cold 

neutrons is accepted (particularly useful for time-of-Hight spectrometers). For thermal 

neutrons 3He-filters seem to be a very appropriate choice. The deviee does not interfere 

with the divergence, whieh has been set otherwise in the experiment . The beam trans­

mission and degree of polarization can be optimized by varying the gas pressure and can 

be matched to the spectrum of neutron energies. The most efficiellt performance is, how­

ever1 a compromise between intcnsity and a modest degree of neutron polarization (say 

ab out 50%). Of course, this requires to perform corrections duc to the finite degree of 

polarization. However, such corrections can easily be performed and the final result for 

the scattering intensities depend just on thc accuracy with whieh ones knows the degree 

of polarizatioll. 

4.3 Polal'ization and scattering processes 

4.3.1 Coherent nucleat' scattering 

Within thc first Born approximation the scattering Cl'oss-seetion is detel'mined by 

(4.3) 

First, we calculate thc matrix element of the interaction potential V betwccn the 

initial and final states for pure nuclear scatterillg at a nucleus with spin I = 0, i.e. the 

scattering amplitude A(Q) (see chapter 3). With b(g) = L:; bie;g·,; thc matrix element is 

b(g) { + .... + 
} NSF 

A(g) = (S; Ib(g)1 S,) = b(g)(S; I S,) = 
- .... -

(4.4) 

{ + .... -
}SF 0 

- .... + 
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It follows that the nuclear scattering /07' nltclei with zero spin is PU1'ely Ilnon-spin-jlip" 

scattering, i.e. there are no scattering processes that turn the neutron spin around. In 

particular this is valid for all isotopic-incoherent scattering and coherent Hudear seatter­

ing, Since thc coherent scattering amplitude represents the average non-fluctuating part 

of the total actual scattering amplitude, it is the part that is also independent even of 

any possibly existing nuclear spin . 

4.3.2 Magnetic scattering 

Thc matrix element of the interactioll potential for pure magnetie scattering between thc 

states k and k' has already been introduced in the previous chapter 3. The scattering 

amplitude results ta 

A(Q) = (S:I-
2
'rn

1
'o Il.' M.l(Q)IS,) = - 2"fnTo 2:(S:IIl.

Q
IS,) M.lo(Q). (4.5) 

- /l'B - JLB 0 - -

Hefe "tri = -1.913 denotes the magnetic dipole moment of the neutron expresscd in 

nuclear magnetons JLN = 5.051 . 10-27 J /T, and 1'0 = ~ is thc c1assical electron radius. 
mec 

gQ denotes thc Pauli-spin matrices: 

u = =x ( 0 1) ,g = (0 -i) 
1 0 y i 0 

(4.6) 

Writingbrieftythespin-upanddowllstatesas l+) = (~) and 1-) = ( ~ ) respectively, 

we obtain the following relations: 

gxl+) = 1-) , gxl-) = 1+) 

11)+) = i 1-) 

Il. 1+) = 1+) -, 

11)- ) = -i 1+) 

11:,1 - ) = -I-) . 

(4 .7) 

Inserting these relations into Eq. (4.5) we obtain thc matrix elements (scattering ampli­

tudes) for spin-flip and non-spin flip scattering: 

- M.l, (!i) +--;+ (NSF) 

A(Q) = - 'rnro X 
+Mü(!i) - --;- (NSF) 

for 
- 21'8 -(M....,(!i) + i M.l.(!i)) +--;- (SF) 

(4.8) 

-(M.lz(!i) - i M.ly(!i)) - --;+ (SF) 
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Different to thc eoherent nuclear scatterillg now we can also observe Il spin-flip" pro­

ceS5CS that reverse thc neutron spin direction. Recall that M.d9) is thc perpendicular 

component of M with respect to the scattering vcctor 9" and the neutron polarization 

has been chosen parallel to an external field l:L. \Ve obtain two rules for thc magnetie 

scattering: 

The IJspin-jlip" processes are observed fo7' tlie comp01lent M .. d9) that 18 perpendiculaJ' to 

the neutron pola1'ization. The I(non_spin flip" processe8 an~ observed for the component 

0/ M.L (9) that is parallel to the neutmn pol.,'zation. 

4.3.3 Nuclear spin-dependent scattering 

If the neutron is scattered from a nucleus with nOIl-zero spin the compound may form 

a singulett or triplett state where the neutron spin g, is anti-parallel 01' parallel to thc 

nuclcar spin I with different scattering lengths b_ and b+ respectively. The case of nuclear 

spin-dependcnt scattering can be formally treated in analogy to the magnetic scattering 

by introducing the scattering length operator 

b = A+Bq·] (4.9) 

. I A (1+ 1) b+ + I b_ d B _ b+ - L 
Wlt 1 = an 

21 + 1 - 21 + 1 ' 

where land adenote the nuclear spin operator and the neutron spin operator respeetively. 

The scattering amplitude A(9) will have the same form as given in Eq. (4.8) only 

M ~ (9) has to be replaced by the nuclear spin operator I. 

A + BI, { 

B (I, + i I)') { 

+-t + 

--t-

+-t­

- -t+ 

(4.10) 

'Vhile in Eq. (4.5) Ml. is assumed to represent thc thermodynamic expectation valuc, thc 

thermal average has to be calculated naw for the different nuclear spin orientations alld 

for the first matrix element in Eq. (4.10). Except for same unusual eases, we may expect 

that the orientation of nuclear spins is given by a random distributioll, i. e. 

(I,) = (ly) = (I,) = 0 (4.11) 
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Thcrcfore the non-spin flip matrix elements equaJ to A, and (as derived beforc) the co­

herent nuclear scattering is proportional to thc square of b~h' identifying A = I; = bcoh . 

( ~::~ ,NSF) 
du = b' L::ei!Ht' -,I 
drl coherellt t.t' 

(4.12) 

Thc non-spin flip matrix elements vanish, hOWeVCl\ for the incoherent scattering, whieh 

is proportional to b2 - 1;2, and we have to consider the thermal average of the squares of 

the matrix elements. Since 

(I~) = (I;) = (I~) = ~I(II + 1) (4.13) 

[rom Eq. (4.10) one obtains the spin-incohercnt scattering (per atom): 

c~::~ ,NSF) 
da = (6"' _ /,')NSF = ~(B'I(I + 1)) dn jpin- illcoherent 3 

(4.14) 

(+ -t- SF) 
du -~+. = (6"' _ /,')SF = ~(B'I(I + 1)) 
df}, jpin - incoherent 3 

(4.15) 

1/3 0/ the .spin-incoherent part 01 the nuclear scattering is non-spin flip scattering and 

2/30/;t ;s spin-flip scatteJ'ing independent 0/ the (direction) 0/ an extemal field!:[. 

In analogy to thc coherent scattering amplitude bcoh , one may define the (spin-) inco­

herent scattering amplitude bin, = J B'I(I + 1). 

4.3.4 Ru!es for separation 

From the preceding discussion we cau summarize some useful rules for scparating diß"erent 

scattering contributiolls. If we may neglect magnetie scattering, the cohercnt and spin­

incoherent scattering is obtained from the spin-flip alld non-spin flip scattering: 

du dU
NSF 1 du SF 

(4.16) 
dOcoheren! 

= dO 2dO 
du 3 du SF 

(4.17) 
drl jpin-incoherent 

= 2dO 

If apart of the scattering is of magnetic origin, a ficld variation is required (perpendicular 

and parallel to g) to separate thc magnctic cross-section: 

fieldjpolarization spin-flip intensities non-spin flip intensities 

H 11 9 0'"09 + 10inc + 0BC 0coh + OUm09 + }Oillc + anc 

HJ.,Q !Um09 + luü,c + aBC Ucoh + ~Umo9 + kUinc + aBC 
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whcre UlJG dcnotes the background. 

Hence, the magnetic cross~section is separated by 

d" (da NSF da NSF) (du SF da SF
) 

dOm" = 2 dO~ - dOll = 2 dOll - dO~ (4.18) 

and all nuclear scattering contributions and thc background caneel in thc differences of 

Eq. (4.18), sincc they are independent of the magnetic field[ll]. 

For a multi-detectol' instrument it is possible to fulfill the condition ~ 1- 9 with ~ = P, 

perpendicular to the scattering plane, however, E.II 9 cannot be realized simultaneously 

for all different scattering angles. However, a similar expression has been obtained for 

paramagnetic scatte7'ing [12]. Thereforc, two measurements are requircd with the two 

polarizatiolls Px and Py lying in thc scattering plane perpcndicular to cach other. Using 

(M,M,) = (MyMy) = (M,M,) and cos' Cl! + sin' Cl! = 1, we may substitute (valid for both 

spin-flip and non-spin flip term) 

d" d" d" d" - +- =- +­
dOll dO~ dO, dO y 

(4.19) 

(trivial, if x lies in direction of 9). Hence, the paramagnetic scattering is given by [12]: 

= 
dOdw paromo911etic 

2 ( d2u SF rPu Sr' _ 2 rPu SF) 
dOdwx + dOdwy dndw~ 

_ (tPu NSF tPu NSF _ 2 tPu NSf') 
2 dOdwx + dOdwy dndw~ 

(4.20) 

F\lrthermore, the coherent scattering and thc spin-incoherent scattering can bc sepal'ated 

from each other and from paramagnetic scattering by the following useful combinations 

[12]: 

J'" 
dOdwcoherenl 

tflo NSF 

dOdw, 
1 J'" 
2 dOdw paromogne/ic 

1 d'" 
3 dOdw spin- incoherent 

J'" = ~ (3 J'" SF _ d'" SF _ J'" SF) 
dOdwilpill-incoherent 2 dOdwz dOdwx dfMwy 

( 4.21) 

(4.22) 

One may notc, howevcr, that - different from thc separation for (para-)magnetic scat­

tering - the above relations da not compensate for possible background contributions. 

Furthermare, thc above equations hold for ideal experimental conditions for polarization 

and flipping ratio. In general, depolarizing cffects may occur at all experimental devices, 

and appropriate corrections need to bc taken inta account. Fig. 4.5 illustrates that thc 
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corrections for thc ideal case can easHy be performed. The example is givell for the case 

of cohereut scatterillg and spin-incohcrent scattering. From the flipping ratio of non-spin 

flip scattering to spin-flip scattering from eithcr a purely cohereut scatterer or a purely 

incoherent scatterer the po!arization factor of the experimental set-up can be determined. 

One should note that multiple scattering may alter the expected ideal final polarization as 

so on as spin-flip processes are involved. Since from polarization analysis t hc information 

on both scattering channels is available, the possible corrections for multiple scattering 

are more reliable as compared to unpolarized experiments. 

.~ 
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coherent scatlering 
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Figure 4.5: Non-ideal experimental cOllditions for polarization analysis shown for coherent, 

spin-incoherent and paramaglletic scattering. The polarization factor of the instrument, 

P < Pideal = 1, can be determined from the flipping ratio SF:NSF for a coberent scatterer, 

and one can extrapolate to the ideal conditions. 

Furthermore, Olle should mcntion the possible interfcrellce of nudea!" and magnetie 

scattering amplitudesj an example will be given below. The intcrference properties are 

especially of importance for polarizers. Since eoherent nuclear scattering is only observed 

in non-spin flip scattering, the interferenee term cancels as weIl for the spin-flip scattering. 

For specific cases such as spiral ordering, non-collinear ordering, etc., wc refer to thc 

literature [2, 3]. 

4.4 Applications 

We now consider examples of experimental studies with polarized neutrons and polariza­

tion analysis[7). A scheme of the experiment is shown in Fig. 4.6. 
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Figure 4.6: The original experimental arrangement of MaoH, Riste and 1<oehler at thc Oak 

Ridgc reactar (HFIR): a tripie axis instrument with additional equipmcnts for polarization 

analysis. Co·Fe crystals mounted in the gap of a permanent magnet are used Oll thc 

first and third axis for thc production of the polarized, monochromized beam and for 

analysis of scattered neutrons in energy and spin. At thc second axis with thc sam pie an 

electromagnet is located with a horizontal rotation axis so Llmt tbc field is casily changed 

from vertieal to horizontal. Radio·frequency coils with a vertieal field are used as flipping 

devices·171 



Thc first example (Fig. 4.3.4 shows the isotopic-incohercnt scattering from Ni. Since 

thc Ni-isotopes da not produce nuclear spin-clepcndcnt scattering it serves as an examplc 

for pure non-spin Hip scattering. Apparcntly there are no relevant spin-flip scattering 

processes. 
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2 4 

Figure 4.7: Isotopic incoherent scattering from nickel obtained by rocking thc analyzer 

crystal through thc elastic position. Essentially all scattering is non-spin flip scattering 

(++) measured with "flipper off". In flipper on mode the spin-flip data (+ - ) are taken, 

In cantrast to magnetic scattering the result is independent of the neutron polarization 

with respeet to the seattering veetor 9,.[7) 

ActuallYt this example is not trivial, and it is not so straightforward to reproducc this 

rcsult. Since at room temperature Ni is a ferromagnet, additional magnetic scattering 

is to be expected if the magnetization has any component perpendicular to g, and a 

saturating magnetic field has to be applied to avoid any magnetic domain structure. Such 

inhomogcneities typically cause depolarization effects. A much simpler example for pure 

non-spin flip scattering would be Bragg scattering which is due to the coherent lluclear 
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scattering amplitude from a nOIl-magnetic material, for illstance the Debye-Sehener rings 

of aluminum or other materials. In practice, the ratio of NSF- to SF-intensities (flipping 

mtio) for such a measurement is useful to determine the dcgree of polarization for the 

experimental set-up. 

Fig. 4.3.4 probably represents the first vcrification of the spin-fl ip and non-spin flip 

scattering from a spin-incoherent scatterer. The example is Vanadium a typical mate­

rial used for absolute calibrations of neutron measurements. The scat tering above the 

background level shows nearly the ideal intensity ratio 2:1 for spin-flip to non-spin-flip 

intellsities. In particular, hydrogenous materials have large spin incoherent cross sections. 

200 

450 'PII-
.!ö 
E 

5! 
:;; toO 
D. -I 50 

'" 
o . 

- 3 · -2 -I 0 4 2 - 2 - I O · 2 

tJ.·OA (deq) 

Figure 4.8: Nuclear-spin incoherent scattcring from vanadium obtained by rocking the 

analyzer crystal through the elastic position. The flipper off data are proportional to the 

(++) cross sectioH and the flipper on data are proportional to the (- ) cross section. In 

contrast to magnetic scattering the result is independent of the neutron polarization with 

respeet to the seattering veetor g.[7J 
We recall that for a magnetic system the spin-flip and non-spin flip scattering should 

depend on the polarization of the neutron with respect to g. This field depcndence is 

illustrated in Fig. 4.9 showing thc paramagnetic scattering from MnF2• In general, we 

expect that the final polarization to vary between 0 and - Einiti(ll ' It is obvious that 

t his scattering can be distinguished from spin-incoherent scattering. Indeed, one can 

easily verify t imt the differcnee betwecn the spin-flip scatterings with polarization E.II ~ 

and E. 1- ~ is proportional to the (para-)magnetie seattering only, free from any other 

scattering contributions likc coherent nuclear scattering, spin-incoherent scattering and 

4- 14 



1'11 i< OFLJJR OFF' 
° 
1\ eFUPPfR ON 

PJ.i< 
° 

1 I r\ 
• . ~ io" ~ ~ r"r r" 

o 
. -4 . ,-2 o o 2 · 4 

Figure 4,9; Paramagnetic scattering from MnF2 [7J. The full magnetic intensity is seen in 

the SF-ehannel with ~ parallel to the seattering veetor 9 (= k); data are measured by 

rotating the analyzer cryslal through the elastic position. 
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possible background. Thc same is true for thc difrerencc of non-spin flip scatterings with 

p 11 Q and E. 1- Q, and Fig. 4.10 shows such aseparation of the paramagnetie seaUering 

from MnF2 powder difrraction data. Measurements with thc unpolarizcd beam show a 

background intensity decaying with Q. and various Bragg peaks on top. The Bragg peaks 

occur only in the non-spin flip channel, which verifies their non-magnetic origin. In thc 

spin-flip channel we see t hc paramagnetic scattering with a decay that is characteristic 

for the form factor of thc ion Mn2+. 

Thc next example in Fig. 4.11 shows thc separation between nuclear and magnetic 

Bragg peaks for (l'-Fe203. The magnetic Bl'agg peaks appeal' in the spin-flip channel only, 

while only nuclear Bragg peaks appear in thc non-spin-flip ehannel, if E.IIQ. 
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Figurc 4.11: Separation of magnetic and nuclear Bragg peaks for powder diffraction data 

from a-Fe,03.[7) 
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So far we havc discussed thc nuclear and magnetic seattcring separately. However, 

in general there are possible non-zero matrix elements for both eontributions. Therefore 

intcrfercnec phenomcna may oeeur but only in thc non-spin flip ehallnel. In order to 

maximize the magnetie signal one ehooses the magnetization perpendicular to the seat­

tering plane. In eases where the magnetie seattering amplitude is much weakcr than the 

fludear amplitude the interfercnce term may be largc compared with thc pure magnetie 

intensity. Since the polarization of the seattered beam is not changed, and thus alrcady 

determined we do not need to per form thc polarization analysis in thc experiment. A 

useful applieation of this effeet is tbe determination of the distribution of magnetization 

densities. For instancc, the form factor of chromium ean be measured in the paramagnetie 

phase, indueing a magnetization by an external magnetic fieId, as shown in Fig. 4.12. 
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Figure 4.12: Induced magnetic form factor of Cr at a field of 4.6 Tesla. Open and filled 

cirdes arc experimental data, !iues denote theoretical calculations for spin- orbital-, and 

total magnetic moments [131. 
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The results for the magnetization density distribution are obtaincd by Fourier-trans­

formation and in comparison by a so-ca lied maximum entropy method, whieh seems to 

give a result of improved rcliability. 
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-,-
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Figure 4.13: Magnetization density in the (110) plane obtaincd by Fourier transformation 

(top), and by "Maximum-entropy" reconstruction (bottom)[13J. 
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With tri pie axis instruments Olle can measure only step-by-step specific dynamic strue­

ture ractors 8([1, w) of interest. Howevcr, multi-detector instruments are more efficicnt fcr 

measuring powders, for time-of-ßight spectroscopy, cr if larger regions in rcciprocal space 

necel to be measured. The first instrument for such purposes is thc D7, sec Fig. 4.14 , at the 

high flux reactor at the ILL in Grenoble; 32 detectors are equipped for polarizatioIl anal­

ysis. Thc poJarizers are bcnders, curved stacks of polarizing supermirrors, which exhibit 

gooel polarization allel transmission properties for subthermal neutrons. In order to cover 

Figure 4.14: The D7 at thc ILL, a multi-detector instrument far polarization analysis. 

On the right hand side one bank is showl1 in the non-polarizillg version with analyzers 

removed by pneumatic elevators and the collimators inserted illstead of the guide ficlds. 

With the spin turner coils the polarization of the neutrons cau be rota ted into the xS, or 

z dircction.[14] 
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a largc solid angle with polarizers in front of the deteetors an cnarmous amount (6000) 

of magnetie multi-Iaycrs had to be produced. A 1T-flippcr (Mezei-type with a. Brookhaven 

correction coil ) is used in the incident beam. 

The follolVing example [141 of a measurement at D7 delllOnstrates the capabilities of 

such an instrument: the dynamic strueture faetor of liquid sodium, is separated into 

the eohercnt and (spin-)incohcrcnt parts. The quasi-elastic incoherent scattering gives 

information about the single particle motion in space and time, while coherent quasi­

elasLic scattering is related to collective relaxations of the ensemble. The measurcments 

shown in Fig. 4.15 have been measured on the D7 instrument in time-of-flight speetroscopy, 

while thc prescntation is given in thc coordinates of encrgy and momcntUlTI transfer. 
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Figure 4.15: Contour plots of (a) the (spin-)incoherent scattering and (b) eoherent scat­
tering from liquid sodium at T = 840 K over the plane of energy and momentum transfer 
as separatcd by polarization analysis on D7. The incohcrent scattering is related to the 
single particle motion; the coherent scattering is related to the collectivc motion. [14]. 
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The instrument DNS [15] (sec Fig. 4.16) at the research reactol' in Jülich is similar la 

t he D7. The DNS has a comparably compact design. Different dctcct.or banks are used 

for standard timc-of-Aight (TOF) mode anc! polari:l.atiol1 analysis (lypically combincd 

with TOF). The)' are placcd to the right and IerL, respectivcly, to the incoming beam. 

Thc polarizers and analyzcrs arc made of a stack of sputtered magnetie supermirrors, 

alternating layers of FeCoV /Ti:N with a Gd:Ti ausorbing antircftcx ion layer underneath 

[16J. The monochromatic beam is vertically alld hori7.ontally focused. Difrerent to t he 

prescnt version of the D7 (there are plans for an upgrade) the polarizers have a geomctrical 

design to use beam focusing on thc sam pIe with a substantial gain in intcllsity. A ivIer.ei~ 

type (?T)-spin-flipper is used in eombination with a Brookhaven correction coil, both made 

of ullcoated aluminum wires (for bettel' transmission as compared to coated Cu-wh'os, for 

instance). Thc dcgroc of polarization detcrmined from t he intensities of non-spill-flip 

'" u 

il l 
monoChl-omator" 
graphite 002 

Ii 
Im 

Figure 4.16: The DNS instrument at JUlieh equipped for 3-dim polarization analysis. The 
detector bank to the right of the incoming bcam is for unpolarizcd experiments thc 0110 

to tho lcft for polarization analysis. A focusing layout has been llsed for the initial and 
final polarizcrs. 
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scattering to spin-flip scattering für a cohercllt scaUerer is rather high, up to 1 - i _I I+ = 

0.98, while Oll average thc performance is about, 0.95%. 

A final cxamplc is relatcd to studies of structural properties of polymer glasses, in 

which polarization analysis ean be quite useful. Besidcs separating thc coherent structure 

factar, scparated illcohercnt scattcring intensities ean be used for an intrinsic absolute 

calibration. An cxamplc is showli in Fig. 4-17. In this experiment(17] olle has also uscd 

partial isotopic substitution of H by D to mark and Lo contrast the side-chains and thc 

backbone of different polymers (polyalcylmethacrylales). 
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Figure 4.17: Coherent strueturc factor of a partially deuterated polymer. Note that 
by separation of the coherent and incohcrent seattering aue ohtains a precise absolute 
intrinsic calibration. Two mcasurements are displayed in thc figure (bottom right) {with 
). = 3.3 Ä (diamonds) ami ). = 5.3 Ä (circles)] demonstraLing the excellenL l'epl'OducibiliLy 
of the data. The peak at lower Q is due to inter-c1tain eorrelations between different 
polymer "baekbones" ami thc peak around Q ~ 1.4Ä - J eall be rclatcd to intra-chain 
correlations along the polymer, thc Olles between the side-ehains of a polymer. 
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Appendix 

Units: 
magnetic field 1:I: 

Ampere/meter (SI) = 4" x 10- 3 Oersted (egs) 
magnelie ill(llletion !:! = /LoII!:!. /Lo = 1.2566 x 1O- 6m kg C- ' (=1 in egs-units): 

Tesla (SI) = kg / (sec' Ampere) = 10' Gauss (egs) 
For cgs-un its aJl(I vacuum (11 = lL .tl in Oe corrcsponds to ß in Gauss. 
Earth magnetie field : '" 15 A/m "" 0.19 Oe. 
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In this lecttl re static and dynamic correlation fUllctions will be intl'Oduced. Y~lc will start by 

introducing probabi lity densit ies, relate those to the scattering cross sectioll and define t hc 

pair correlation fU llction . 1'wo examples will be given, olle from thc physics of Jiquids all(l 

Olle [rom polymer physics. Thc concept of dynamic correlation functions wil l be explained 

firstly by thc example of correlation spectroscopy. Then thc Van Hove corrclaiioll functioll 

will be int roduced which is thc basis for t hc calculation of the double differential scattering 

cross secticH. Finally, thc concept will bc applied ta thc examplc of an ideal gas. 

5.1 Probability Densities 

\".'e start by considering a homogeneous lI1ollatomic liquid with N atoms in a vollllne V. 

\ Ve denote the probability to find a certain atom in a volmue element d3T at 1:.. by P(!.)d3 r. 

Bccause of the homogcneity P(r.) is constant and evidently 

1 
P(r) = -. - V 

Thon t he nu mb er dCllsity of atoms at L is 

N 
p(rJ = N P(rJ = V ;: Po . 

(5.1) 

(5.2) 

\-Ve call t he probability density ta find a ccrtain atom at [ I ami anot.her at [2 P(r.ll [2)' 

This fun etion fulfills the basie relations 

P(l:" L,) 

/" d3",P(r" r,) P(r.J . 

1f t here is 110 interaction between t hc atoms P(LI,1:2) factorizcs iu to 
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(5.3) 

(5.4) 

(5.5) 



111 realliqllids howevcr uSllally an interaction exist.s which depends (on I)') on thc distance 

of t.he atoms 1:.1 2 = 1:.2 - L I ' \~'e express the deviation from (5.5) by a pair correlaLion 

fUIICLiol1 defined by 

(5.6) 

\~'it.h t.hc pair distribution function 11.(1.:1' [2 ) = N(N - l)P(1.:t , [2) which expresses thc 

probability dcnsity for an)' pair of atoms to occuPY positions 1:1 amI 1.:2 we obiain 

( ) "(1:1' [2) 
9 1:12 = P02 (5.7) 

because in the limit of large N wc have N(N - 1) ;:::::: N 2 , 

The qualitative features of the pair correlalion function are shown in figure 5.1. For l' -t 0 

one find s 9(1') = 0 becallse two atoms cannot be at the same position. Usua ll)', this is 

also true for distances r < 1'0 bccause thc atoms cannot. pcnetratc each other and have a 

"hard core" radius 1'0' For l' ~ 00 thc limit is 9(1') = 1 because the interactions decay 

with distancc and the P(1.:1! [2) revcrts to its dcfault value 5,5. At intcrmediatc distances 

9(1') shows a peak bccause thc probability density which is lacking at l' < 7'0 must be 

compcnsated, Hs loeation is usually elose ta the minimum of the interatomic potential , 

Lc, elose to the average next neighbour distancc 1'nn. 

Using the pair eorrelation funetiOll one ean forlllulate the differential neutron cross sectiOll 

for a monatomic liquid 1 

(~~) = IW/f, exp(iQ. (1:;- [;))). 
(oh \1.;= 1 

(5.8) 

Hcre (da/dO)coh denotes the angle dependent cohercnt scattering cross sectiOll ami ij is 

thc average scattering length of the liquid atoms. Q. is thc scattering veetor, i,e, the 

difference bctwcen incoming ami scattered wave veetor of the radiation , Q. = k - k'. 'rhe 

average in thc expression can bc evaluated using thc pair eorrelation fUlletion (5,7): 

I Exaetly speaking, this expression is valid only for mon isotopic liquids. Otherwise, 

thel'e would be an additional incohcrent tcrm Iikc the one discussed for the dynamie 

correlatioll functiOll in sectioll 5.3. Ncvertheless, this term is just a cOllstant and therefore 

only visible as a Aat background in the experiment. The Q depcnclent (coherent) part of 

the cross section is still eorreetly represented by (5.8). 
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V(r) 

t--H--~===~ /' 

g(r) S(Q) 

1 - ----

/' Q 

Figure 5.1: Schcmatic representation of interaction potential 11(1'), pair correlatioll fUl1c­

tion g('-), and scattering function S(Q}. 

= IW (N + fv c13
,-, fv d''-,"(r" r,) exp (iQ . (t, - t,})) 

= lbi' (N + po'\! fv d',-"g(r,,) exp (iQ ' t12)) 

= Ibl'N (1 + Po f., d',-"g(r,,}exp (iQ. L")) . (5.9) 

This equation states timt thc scattel'ing cross seetion can be reprcsented as thc Fourier 

transform of thc pair correlation fUJ1ction. Assluning isotrop)' (as is faund in the hOl11o­

gencous liquid disclissed herc) onc can replace 9(1:12) hy thc radial correlation function 

g(r): 

(~~L = Ibl'N (I + 41rpo f "'c1''-9(,-}Si~~'') (5.10) 

Equation (5.10) follows from (5.9) by radial averaging of exp (iQ. L12) (i.c. an average 

OVCI' all possible oricntations of t.l2)' 
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Thc tenn in big parentheses of equations (5.9) and (5.10) 

(5. 11 ) 

is mmally callecl st ructure faetor or scattering law2 . 8(Q) is solei)' dctermincd by thc 

propcr ties of the sam pie a nd eloes not depene! on lhe radiation IIscd in examining thc 

sampie. 

Fol' Q -t 00, exp (iQ. L12) becomes a rapidl)' oscillating [und ian and the integral van­

ishes. T hcn olle has 

lim 5(Q) = l. 
Q~oo 

(5. 12) 

Far Q -t 0, S(Q) measurcs onl)' thc overall densi ty fluctuation, i.c. the fiuctuation of thc 

particle lIumber: 

lim 5(Q) = V'(Jp') = (N') - (N)' = PO kBT"r. 
Q~O 

(5.13) 

Here, kn denotcs the Boltzmann factor, T thc temperature and "'r the isothermal COlll­

pressibility. At intennediate Q, the structurc faetar of liquicls shows a diminishing series 

of braad peaks, remainders of the Bragg peaks of a crystalline structu re. The first peak 

aeeurs at a scattering vcctor roughly corresponding to thc next ncighbour distancc by 

2 Thc usual definition of thc structure factor fOllnd in the literature is 

subtracting the long distance limit 1 from g(,' ). Because thc Fourier transform of the 

constant 1 is thc delta fUllction the two dcfinitions diffcr only by a delta funct.ion, 

5(Q) = 5'(Q) + Poii(Q). This means that apart from the ullobservable scattering at 

zero angle (Q = 0) both are the same. 

T hc reason for this alternative definition is to avoid the singularity. Anothcl' way to 

accomplish this is to use the dellsity ftuctuation Jp(r) = p(r) - Po from thc start (equa­

tion (5.2)). From t his approach it becomes clear that the structme factor at Q '" 0 

depends only on the fluctuation of thc density but not on its absolute lcvel. 
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"White" neutrons 
from reactor 
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Crystal 

Sam pie 

Q 

28 

Detector 

Figure 5.2: Schematic set-up of a diffractioll experiment. Thc insel shows the relation 

between incident allel final wave vecters k, }..:' allel thc scattering veetar Q. 

5.2 Experimental Examples: Static Scattering 

5.2.1 Placzek corrcctions 

Figure 5.2 shows the schematics of a scattering experiment for the determination of 5(Q). 

By using a monochromator the incident Jleutron energy 01' thc wave veetar k is fixed . After 

scattering the intcnsity is recorded as a functioll of thc scattcring angle 2B without energy 

discrimination. This means that the diffraction setnp fixes onl)' thc directioll of b:.r but 

not its magnitude. Thereforc, for a given angle different scattering vectors Q are mixed 

as figure 5.3 shows. 

Strictly speaki ng, this invalidates thc relation (da/dO),oh = IliI'NS(Q) between (angle) 

differential cross scctioH and structurc factor. 

Nevertheless, far high incidcnt energics it is an excellent approximation as lang as the 

ellcrgy transfer duc to inclastic scattering is small compared to the incidcnt cnergy E. 

This condition is always fulfilled for x-ray scattcrillg because thc incident energy lies in 

thc keV range there and thc inelasticity ofscattcring is limitcd mainly to thermal encrgics 

knT wh ich are of the order of meV. 
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Figure 5.3: Scattering vectors Q acccssed by a diffraction experiment with thc dctectol' 

at scattering angles 20 = 10 .. . 115° vs. thc energy t ransfer nw (incideIlt wavelength 

,\; = 5. 1 A). 

For neutrons Oll the other hand , incident energics are just in the latter range. Fortunately, 

the elTors whieh occur duc 10 neglcct of inelasticity are still not tao large. Thereforc, it 

is possiblc to deri"c a correctioll formula by expandillg the t rue differential cross sectiOll 

nnder COllstant angle in ta aseries in thc ratio of thc mass of thc scattering nucleus anel 

thc neutron 1118SS n1n /msc . In this way one obtains to first order3: 

(da) -, 11I n (kBT (Q)') dn '0 = Ibl N (S(Q) + fp(Q)) with fp(Q) = 111", E - k (5.14) 

Here, E is the incident energy ami k = .j2mnE/n the respective wave vector. 

3 T his formula is actllally the spcci fication of Placzck's original result [6] to thc case of a 

detector which is equally sensitive for all neutron encrgies ( Ublack" detcctor). As pointed 

out in [7] the correction dcpends strangi)' on the energy dependc llce of the sensitivity. 

T herefore, except for low Q values, formu la (5.14) is not the olle which is used in practical 

applications. 
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Figure 5.4 : Structure [ac tor S(Q) o[ liquid " Ar at 85 K. T he points are [rom a neutron 

scattering experiment, the curve is gcucrated by a lllolccular dynamics calculation using 

a Lennard-Jones potential [71. 

5.2.2 Experhnents on Liquid Argon 

As an exam plc of the strncture factol' 5(Q) of a monatomic liquid wc consider thc ncutl'Oll 

scattering results of Yarnell ct al. [7] from liquid Argon. T he result of the experiment is 

shown in figure 5.4 . T hc wavelength of the incident neut rons was).. = 0,978 A. Under 

t his condi tion the P laczek corrcctions var)' bctween 0.0012 near Q = 0 ami - 0.0426 at 

Q = 9.08 A - I , 'fhe pair correlation fUTl ctiOll g(1") was obtained by llumcrical inverse 

Fourier tralls form of 8(Q) - 1 and is shown in figure 5.5. 'fhe oscillations at small T 

are a eOllsequenee of eut~ off effeets Oll the Fourier t.ransform . T hcy oeeur helaw the 

a tOluic diameter 1"0 ami therefore do not impede the interpretation. The determination 

of 9(1") is importaJlt for the ealculation of equilibrium propcrt ies of t hc liquid and allows 

seru t inization of t hearetieal models for the interatomic forecs. 

T wo methods o[ theor)' based calculation o[ g(l') have to be emphasized : (1) In Monte 

Carlo (MC) calculations a la rge number of possible atOluic configurations is creatcd . 

T heir probability is dc termincd by thc Doltzmann factor on the basis of interatomic 

potentials. FinalI)', the ensemble average is calcula ted. (2) In Molecular D)'namics (M D) 

calculations Oll e starts from an initial configuratioll and solves (numerically) the equations 

5-7 



, , 

2 

:;; 
~ 

~~ 
0 - . , , 

0 , 10 " 20 " , (Al 

Figure 5.5: The pair correlat ion function g(1') of liquid Argon calculatcd by inverse Fourier 

lransform from thc data in figurc 5.4 [7J. 

of motions using the intcratomic fOl'ces. These calculat ions yield the time average'I , The 

solid Cll rve in figure 5.5 shows the result of an MD calculation with a Lcnnard-Jones­

Potentia l (I'(T) oe (u/T)" - (U/T)6)- the agreemcnt is cxceJlent. 

Unfor tunatcly, t hc pair correlation fundion is comparatively inscllsitive ta details of t hc 

pair potential. To obtai ll exact information 011 \1(1') it is necessary ta da extremel)' 

accurate measurcmcnts with errars in the per mille range. 

5 .2.3 Scattering f1'0111 a Polymer Chain 

\Ve cOllsider a polymer, i.c. a lang chain Illolecule consisting of equal building blocks, t hc 

monomers. In the melt the spatial arrangement of thc monomers is simply given by a 

random walks. The mean squared distance bctween monomers i and j for s llch a coiled 

chain is proportional to the diffel'encc of indices 

(5.15) 

"' Thc ergodie hypothesis ensUl·es that the I'esults of büth methods are t he same. 
S This is a resu lt by 110 means t rivial. It was actually confirm ed for t he first time by 

the neutron scattering results shown here. 
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wherc rij lIenoles the monomer distance ami e is the charactel'istic monomer length. This 

is the same expression as for a random walk but. with the time t I'cplaccd by li - il. 
Because for not tao small distances l'ij is the Sl1m of many l'andom variables the central 

limit theorem is applicable and the final distribution of t.he distance is a Gaussian: 

( 
3 )'/2 (31', .2) 

ghj) = 27f(1'ij2) eXil - 2(1',;') . (5.16) 

Application of equatioll (5.8) (radially averaged as (5.10)) yields the so-ealled form factor" 

of the monomer 

I N J sin QI' '' N (Q2 ) P(Q) = - L 47f 1',/d'1'ij--,-'J g(1"j) = L exp --li - iIf' 
N2 i,j= l Ql ij iJ=l 6 

(5.17) 

whore N is now the numbcr of m.onomers. Analogaus to the prcccding derivation of (5,9) 

we take the diagonal part out of the sum and convert the double surn into a single sum 

over all differenees k '= li - jl: 

1 ( N ( k) (Q' )) P(Q) = N 1+ 2 (; 1 - N exp -r;Jd' (5.18) 

Here it is taken account that in contrast to (5,9) not al! pairs are equally probable but an 

index distance k occurs 2(# - k) times in the chain. Converting this sum into an integral 

one obtains 
2 ~NP 

P(Q) = z' (c- ' - 1 + z) '= D(z) with z = -6- . (5.19) 

The expression D(z) is usually called the Debye function. It describes the scattering of a 

single polymer coil in thc melt whieh is label cd e.g. by isotopic contrast. Figure 5.6 shows 

the scattering cross section of protonated polystyrenc in a deuterated polystyrene matrix. 

The solid curve represents a fit with equation (5.19). At large scattering "cetors the lead­

ing asymptotie term of D(z) is 2/z and P(Q) bceomes proportionall/Q' - charaeteristie 

for a Gaussian random walk. In a so-callcd Kratky plot (Q'. d"/ dD \'8. Q) one expects 

a plateau at high scattering vector Q. Figure 5.7 shows this plateau for polystyrenc. 

At very largc Q values deviations oceur again which sigllalize thc breakdown of Ganss 

statistics for small clistances. 

6 Here the monomers are simply considered as Hbig atoms" neglecting their inner 8tr1lC­

ture. Olle has to keep in mind that the thus obtained results only represcnt the actual 

scattering law for small scattcring vector whell 27r /Q is larger than thc size of a monomer. 
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Figure 5.6: Partial differential cross section for protonated polystyrenc in a dcuteratcd 

polystyrcne matrix [81. The conccntratioll of thc pl'otonated componcnt is 5% (0) and 

0.5% (Al respectivcly. Thc curvc is a fit with the Debye functiOll. 
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Figure 5.7 : Kratky plot of the data from figure 5.6. 

5.3 Dynamical Correlation Ftmction 

5.3.1 Correlation Spectroscopy 

''''e consider an observable A of a system which fluctuates ralldoml)' becatlse of thc thermal 

motion of thc system. A cDuld be e.g. the pressure Oll the wall excrted by a gas in a cylinder 

01' thc particle dcnsity in a liquid . Figure 5.8 shows exem.plarily thc timc-dcpencIent value 

of a quantity A ftuctuating around its average vaille (A). 
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A(t) 

(A) 

Figure 5.8: Fluctuating observable A{t) of an ensemble of moleeules as a function of time. 

The time axis is subdivided into discrcte intervals of lengtll Clt. 

If one takes a time average Qver a leng time in tcl'va l as compared with thc fiuctuation 

periods olle obtains a stationary result whieh is independent of thc start of the time 

inter val 
1 110+1' \im -T dtA(t) = const. "" (;l) 

1'-+00 10 
(5.20) 

but ill gelleral A(t + T) ,p A(t). If T is ver)' sm all comparc" to typica l times of the system 

A(t + T) approach.s the value of A(t) which mealls that the both are cOlTelatecl in time. 

As a measure of t his correlation the autocorrelation functioll is introducecl: 

1 110+7' (A(O);\(T)) = \im -T dtA( t)A(t + T). 
T-+oo 10 

(5.21) 

This fuuctioll correlates thc observable A with itself in a certain time displacemcnt 'T ami 

then averages aver all startillg times. 

In a real experiment (figure 5.8) this ean be done by sampling values Ai at equidistant 

timcs 1. ; = icH. Let j dcnote the index of thc sLarting time (t :::= jot), n the distallce countccl 

in time intervals (7 = 11Ot), anel N the !lumber of intervals to be avcraged (T :::= Not). 
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Then equation (5.21) can bc cO ll vertcd into a sum: 

(5.22) 

In optical correlation spectroscopy sums likc (5.22) are calculatcd from thc photodetector 

signal by special purpose computers. In th is case A is thc 1I11mbcr of photons dctected 

per time interval, i.c. the light intcllsily. 

It is easy t.o see that the all tocorrclation fUl1ction has thc following properties 

(A(O) A(r» ::; (A(O)A(O» '" (A') 

lim (A(O)A(r» = (A)'. 
T"->OO 

(5.23) 

(5.24) 

Figure 5.9 shows a simulat ion of data of a light scattering experiment. Such data could 

arise e.g. from scattcl'ing of polystyrene spheres in an aqueous dispersion. 

Thc correlation fu nct ion usually decays following a simple exponential law: 

(A(O)A(r)) = (Al' + ((A') - (A)') exp(-r/r,) (5.25) 

where Tr is thc correlation time of the system. In general, also more complicated decays, 

e.g. involving multiple characteristic times, are possible. But the deeay always takes places 

between the limits given by (5.23) and (5.24). 

Alternatively, one ean eonsider the fiu etuations aAlt) = A(t) - (A), i.e. the deviations of 

the observable from it.5 average. For its autocorrelat ion fUllction follow5: 

(OA (O)Ofi (t» = (A(O)A(r» - (A)' 

= (OA')exp(-r/r,). (5.26) 

T hc general result is t.hat thc fluctuation autocorrelation function decays starting from 

t he varianee of the observable, (aA') = (A') - (A)' to zero. 

Thc time-depcndent autocorrelation fun ction describes thc temporal fluctuation be­

haviour of the system. In the ease presentcd here of a polymer colloid the chal'acteristic 

t ime is directly connected to the di ffusion constant: Tr - I = DQ2 . 
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Figure 5.9; Simulated rcsult of a dynamic light scatterillg experiment. The circular 

dot.s show the output of the correlator clectronics. Thc continuous curve is the expected 

exponential dccay (5.25). Thc dashed line shows thc underlying Huctuating intensity. 

5.3.2 The Van Hove Correlation Functiol1 

In order to consider inclastic scattering the differential cross sectiOIl der / dfl is generalized 

with respect to its dependence on the cnergy transfer liw. This leads to thc double 

differential cross sectioll in quantum mcchanical notation: 

a'a k' 1 I' anaw = k 2:, p,p. 2:, 2:, (X, a'lb; exp(iQ.. !;)I.\, a) Ii (lIw + E, - E,,) . 
>',0' >",0' I 

(5.27) 

Here, ). anel a dcscribe the relevant space alld spin C}llantUll1 number respectivcly in thc 

initial state and N ami a' those in the final sta te. PA alld Pli are thc respectivc probabilities 

for the initial states . ..\ and a. Thc inner Sllm refers ta all particles with scattering lengths bi 

and s ingle-part iclc coordinate operators r i' k a nd k' are t hc wave vectors of the incident 

aud scatterecl neutrons. Thc delta fun ctian expresses energy cOllservatioll: the ellergy 

transfer of the neutron {lW is exactly compensated by the energy change of the quantum 

state of thc scat tering system E", ~ BA. In the followillg we will neglect the spin coordinates 

for the sake of simplicity. 
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Thc route from expression (5.27) ta the Van Hove correlation function starts with an 

integral representation of the delta funcLion: 

1 1'" (( EA - E A,) ) <5 (rIW + EA - E A,) = 2rrn - 00 dt cxp - i w + Ii I (5.28) 

which results from the fact that the delta function is the Fourier transform of a constant 

onc. \"fith this expression the matrix element in equation (5.27) can be written as a 

Fourier transform in time: 

12t(Xlb; cxp(iQ' I;)I,I)I' <5 (liw + EA - EA') 

= 2~r, I: dlexp( - iwt) ex p (_ i~AI) cxp (_i~A' t.) 
L b;(A'1 cxp(iQ. I ;) IA) L b; (,li exp( - iQ . Ij)IX) 

i j 

1 100 

= 21Th -00 dl cxp( -iwt) L b;b;(AI exp(-iQ. Ij)IA') 
'J 

(XI cxp(iEA,t/h) exp(iQ . I;) exp( -iEAt/n)IA) (5.29) 

If H is the Hamiltonian of the scattering system, the fact that IA) are energy cigenstates 

is cxpressed by 

(5.30) 

Iterating this cquatian n times yields: 

(5.31) 

By expanding the exponential into apower scries olle finally obtains from this relation 

exp(iHtjli)IA) = exp(iEAt/n)IA). (5.32) 

\Vi th this result and the analogons olle for N it is possiblc ta replace the eigenvalues E}.. 

in (5.29) by the Hamiltonian H : 

... (XI exp(iHt/h) exp(iQ. I;) exp( -iHt/n)I,I). (5.33) 

In the picture of time dependent Heiscnberg operators the application of the operator 

exp(iHt/h) and its conjugate jus! mean a propagation by time t: 

cxp (iQ. I;(t)) = exp(iHtjli) exp(iQ' I;(O)) exp( - iHt/li) (5.34) 
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where we can arbitrari ly set ri = 1:i(O) because of t ranslation of time inva riance. Using 

this rcs ulL the final expression for the double dW'ercntial cross scctioll is obtained: 

a'a 
arww = ~k' ~;oo dt cxp( - iwt) 

. 21ffl - 00 

L PA L bibj (,\ lexp( - iQ . t j(O)) exp(iQ· t i(t) )I,\) . 
..\ iJ 

(5.35) 

This cquation avcragcs over thc scattering tengtll distribution (which may depend Oll the 

spin orient.ation distribution with respect to the incidcnt neutron's spin). This produces 

cohorent anel incohercnt scattering as explaincd in lecture 1. In addition thc initial s tates 

of the scattering system are avcraged weighted with tha prohability of their occurrence 

P>.. T he latter is givcn by the Boltzmann distribu tion 

1 . 
PA = -ZcxP(-EA/kDT) wlth Z = Lexp(- EA/kBT). 

A 

(5.36) 

'Ve nQw denote t his thermal average by angular brackets ( ... ) while that over thc scat-

tering lengths be written as an overline Keeping in mind that fol' equal indices 

bibi = Ib,.[2 has to b e averaged whilc for unequal indices thc scattering lengths itself will 

be averaged we end up with the usual separation into incohercnt and coherent part: 

a'a 
örww = ~PA 

k' jbj' -IW;oo T 2rrh -00 dt cxp(-iwt) L (,\ lexp(- iQ. ti(O)) cxp(iQ · ti(t)) I,\) 
• 

k' 1iiJ' ; 00 
+ T27r h -00 dtexp(-iwt) L:(,\lexp( - iQ· t ,(O))cxP(iQ·tj(t))I,\)· 

',) 
(5.37) 

The first term is t he incoherent scattering. It iuvolves thc coordinatc veeLar operators of 

the same atom at different times. T he second , the coherent te rm correlates also different 

atoms at different times. The material dependcnt par t.s are HOW defined as the scatteri ng 

flllleLions 

_ : ,, ; 00 dtexp( - iwt) L (e,p( - iQ· ti(O)) exp(iQ· r;(t))) (5.38) 
21fl!h -00 i 

_ ~;oo dtcxp( - iwt) L (cxp(- iQ. ti(O))exp(iQ.· t j(t))). (5.39) 
2'iT U - 00 i ,j 

In terms of t hc scattering functions t he double differential cross section eRn be wri tten as 

a'a _ k' 1 ((-li' 1-') ( ) -I' )) aflaw - T l\ b - bl S;n, Q.w + Ib S"h(Q,W (5.40) 
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In addition it is often lIseful to definc the intermediate scattering fun ction which denotes 

the time dcpendent parts of definitions (5.38) ami (5.39) befOl'c Fourier transfonn: 

5;",(Q, t.) J~ 2]exp( -iQ . r;(O» exp(iQ . r;(t))) , 
(5.'11 ) 

5,oh(Q, t) - J~' 2]exp( -iQ . r;(O)) exp(iQ. rj(t»). 
'.) 

(5.42) 

If olle compares this rcsult with the definition of thc structure factor (5.8- 5.11) olle 

recognizes that Scoh(Q,W) is in an analogous way the Fourier transform in space and 

time of a dynamical pair correlation fun ction G(r, t): 

G(r, t) = C~)' J d3Q exp (- iQ . r) J~' L (exp (-iQ' r;(O») exp (iQ . rj(t»)). (5.43) 
'.) 

Thc derivation of thc relation between the cohercnt dynamical structure factor Scoh(Q,W) 

and thc gencralized pair correlation fuuction rcquires a strict quantUlll mcchanical calcu­

lation. This problem results from thc fact that the coordinate vcctor operators commute 

only at idcntical times. Thereforc, in all algebraic manipulations thc order of rieD) alld 

!:j(O) mllst not be interchangcd. 

Ta begin, olle writes thc operator exp ( -iQ . rAO)) as the Fourier transform of thc delta 

function: 

cxp (- iQ. r ;(O») = J d3
, .. 0 (r' - r;(O»cxp( - iQ' ['). 

Using this expression equation (5.43) can be rewritten as 

G(r, t) = (~) 3 2. L (J "Vo (1:' - r;(O» 
271'" N iJ 

! d3Q exp (- iQ. r ~ iQ. [' + iQ' rj(t) )) 

= (27f)30 ([+1:' -rj(t») 

= J~' L J d3
,' (0(1: - 1:' +1:;(0))0 (1:' - rj(t»)) 

' .) 

witllOut changing thc order of the operators at different times. 

(5.44) 

(5.45) 

Now thc particlc density operator is introduced as a sum ovcr delta functioll s at the 

particlc position operators: 

(5.46) 
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\Vith this definition thc pair correlatioH function can be written as time-dependent 

density-density correlation function: 

G(r, t) = I~ J cl ',.' (p([' - L , O)p(r' , t» . (5A7) 

\ ·Vith this form of thc dynamic pair correlation function thc dynamical structure fuctor 

can bc-analogously to equation (5.11)- written as thc double Fourier trallsform of thc 

corrclator of lhe particle density: 

Scoh(g,W) = I: cit exp( - iwt) J cl',. J cl',.' exp (ig. r) (p(1:' - [, O)p([' , t». (5A8) 

\'''e BOW deHne the density operator in reciprocal space as the Fourier transform of (5A6): 

(5.49) 

and obtaiIl for the dynamic structure facto r 

(5.50) 

Corrcspondingly, the intermediate scattering fllllctiOIl is 

(5.51) 

which after insertion of (5.49) turns out to be equivalcnt to (5.42). 

Allalogously, olle can define a self correlation functioll by setting i = j in the preccding 

equations leading to 

G,(l:. t) = I~ L: J ci ',.' (0 (I: - r' + K;(O» 0 (r' - K;(t») , 
(5.52) 

as the equivalent of (5.45). 

Thc pair correlat iall fun ctian has same general properties: 

1. For spatially homogeneous systems the integrand in (5 .47) is independent of r' whieh 

can be arbitrarily set to thc origin .0.: 

j! 1 
G(r, t) = ' I (p( - I, O) p(Q, t.») = - (p(!), O)p(!, t» . (5.53) 

I> Po 
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2. The pair eorrclaLion function has thc following asymptotic bchaviour: For fixed 

distance ami t 4 00 er fixed time allCl r -----) 00 the averages in cquation (5.47) ean 

be cxecuted separatei)' ami in consequenee 

G(r. t) -t J~ J d3
,.' (p(r' - r, 0)) (p(r', t)) = Po· (5.54) 

3. Far t = 0 the operators eommute and the eonvolllUon integral of equatiolJ (5.47) 

ean be carried out: 

1 
G(r, 0) = N 2:: (J (1: + r;(0) - 1:j(O))) . 

' J 

(5.55) 

For indistingllishable particles the relation to the staUc pair correlation funetiOTl as defined 

in (5.6) ean be drawn. Beeause of the identity of the particles we can set i = 1 in (5.55) 

and drop the average aver i: 

G(r, 0) = L (J (r: + 1:1 (0) - 1:j(O))) = J(r) + L (J (r + 1:1 (0) - 1:j(O))) . (5.56) 
j i#1 

' ,Ve no\\' consider the average numbcr of particles oN(r.) in a volume 6\' at a vector 

distanee r from a given particle at LI' It is obviously given by thc integral over the second 

term in the preccding expression whieh for small dV ean be written as 

JN(L) = J\f L (J (r: + 1:1 (0) - 1:j(O))) . (5.57) 
#_1 

Using the definition (5.6) and the expression for thc number density in hOlllogencotls 

fluids (5.2) one ean relate oN(r.) also to the staLic pair correlation funetion: 

oN(r) = pog(r)Jl! . (5.58) 

Finally, by comparison of the last three equatioHs we get a relation bctween thc dynamic 

correlation flill etion at time zero and its static counterpart: 

G(r. 0) = J(r) + Pog(L). (5.59) 

This equation expresses the fact that thc diffraction experiment (g(r» gives an average 

snapshot pieturc (G(,·,O)) of the sampIe. 

In the classical approximation the operators cotnmute always, especially also at different 

times. Then the integrals of equations (5.45) and (5.52) ean be canied out and )'ield 

G"(r., t) 

G"(,· t) , -, 

I = N L o(r: - [j(t) + [,(0)) and 
' ,} 

I = 'T L J(r - r,(t) + r,(O)) , 
h i 

5··18 
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respcct ively. T he former equatioll expresses t.he probabili ty to fi nd any parUcie a1 a time 

i. in Cl dist ance L from another 1.1t time O. T he latter equa tion denote1::i th is probability 

for thc same pm-tide. [t therefore depends only Oll thc particle's displacement dming a 

time interval .6.[ j(t) = tA t ) - [jeO) leading to a simple expression for thc intermedia te 

incoheren t sca t tel'ing fun ction: 

Sf;,(Q,/) = J~ 2:: ( exp (- iQ n[;(/) ) ) , 
(5.62) 

In ccrtain eases this expression can be further simplified using the IIGaussian approxima­

tion" 7: 

(5.63) 

Here (.6.r2 (t» is thc average mean squarcd displaccmcnt which orten follow5 simple laws, 

e.g. (n"'( /)) = 6DI. for simple diffusion. Becaus. one of the prerequisites of the Gaussian 

approximat ion is that all par ticlcs move statistically in the sallle way (dynamic homo­

geneity) the particle average a llel the index i vanish. An analogous expression can bc 

derived for the cohcrent scat tering. 

In order to decide whether the classical approximation can bc lIsed the following rule has 

ta be taken into account: Quantum effects playa roJe if the distance of two particles is of 

the order of the DeBroglie wavclellgth An = h/ ..j2mscksT or if thc t imes considered are 

sm aller than h/ kßT. 

Figure 5.10 schematically shows on the left siele the behaviour of the cOlTclatioll fun ctians 

G(,', I ) and G,(r, t) for a simple liquid (in cJassical approximation). On thc right side the 

corresponding intermediate scattering functions Scoh(Q, t) ancl Siuc(Q, t) are displayed: 

• Für t = 0 the self cürrcla tion functioll is given by a delta fUHction a t 1" = O. The pair 

correlation fun et iOll follows thc sta tic correlation fUll ction 9(r ). Thc intermed ia te 

scattering functions are constant one for the incaherent amI the static structure 

faetar for the coherent. 

• For inte rmediate t imes thc self corrclat ion fun ction broadens ta a bell-shaped func­

lion ",hile t he pair correlat ion fUl1c t.ion loses its st ructure. T he intermediate scat-

7 For solids the lang- time limit of this equation is ca lJeei the Lamb- :tvlößbauer factel". 

Hs coherent counterpart is t hc Debye-\Valler factar. 
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Figure 5.10: Schematic Cmnparison of the corrclation functions G(T, t), Gs (1' , t) alld thc 

intermediate scattering fun ctions Scoh(Q, t.), Sinc(Q, t) for a simple liquid at different times. 

The solid Iines denote the eoherent easc, the dashed liues the self/ incoherent. 

tering fun ctions eleeay with respect to the t = 0 va ll1e. Thc deeny is faster for lligher 

Q and (in the coherent ease) less pronounced at the structurc raetar maximum . 

• T he lang time limit of thc pair corrclation function is the average density po while 

thc self corrclation simply vanishes (in a liquid). In consequcnce bath the eoherent 

and the incohcrent intermediate scattering fUll ct iOil deeny to zero for lang times anel 

an)' Q. 

5.4 Scattering from an Ideal Gas 

\Ve cOlls ider agas of N atoms in a volume " neglecti ng the spin coordinates a and assume 

t hat alJ scattcring lcngths are identical bi = 1. The wave funetion of a frce atom confillcd 
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to a volumc \f is simply a plane wave with wave veclor ji: 

1 
W(T) = ("1,,) = - cXI,(i,,· 1'). 
~- -- VV -- (5.64) 

Using t his expressioll , the mat.rix element in thc double differential cross sectioH (5.27) 

can immediatei)' be calculatcd: 

(5.65) 

The resulting delta function expresses the momcutum conscl'vation. Onl)' if momentum 

is cOJlserved the matrix element is l - otherwise zero. 

In thc sccond 8tep we havc to consider cnergy conservution. Thc cnergy of thc atom with 

wave vector f\. is 

(5.66) 

where msc is thc mass of thc scattering atom. For the evaluat ion of the delta fUllction 

in (5.27) we IIced the energy difference bctween thc states K. al1(l ",', BeC811se of the delta 

funct iOll faetor (5.65) onl)' such states with ts!.... = ti:. - q havc Lo be considered and für 

those thc cnergy dW'erence is: 

(5.67) 

\'Vith this rcsult Olle can calcula te the scattering fUll ction: 

(5.68) 

In the limi t of a la rge yolume V, !i becol11es a conti nuous variable. In addition only 

thc componenl of ti. parallel la Q is relevant. Thcrefare, (5.68) can bc writlen as a one­

dimensional in tegra l: 

(5.69) 

The probability of a l11ol11enlulll state I\, fo llows from the ßoltzmann distribution : 

(5.70) 

wit.h the state Sllm bcing 

(5.71) 
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Insertion of this restllt in to (5.69) yields; 

h /00 (h'r') ('i ) S(Q ,w) = , cl".exp 2 ~ T J tJw - -2- (Q' + 2Q,,) 
J2rrUl sc kBT - 00 1Hsc B 11lsc 

. (5.72) 

Substitution of W '" tJw - -, r, (Q' + 2Q,,) into this integral allows the evaluation of the 
m.c 

delta funcLion: 

S(Q,w) = 
J2rr111 scknT 

I: clw ;:;0 exp ( 2m~:ßT (;';0 (tJw - w) - ~) ') J(w) 

= V41TE:knT exp ( (1i4WE~k:/) (5.73) 

with E r = 1i.2Q2/211l sc bcing the rccoil encrgy eX)Jcrienced by the atom during the seat­

tering c"cnt. Thus, thc dynamical structurc faeler of an ideal gas is a Gaussian cen­

tl'ed aronnd thc recoil cnergy for a givcn Q. Thc width of the Gaussian J2Er J..: BT = 
JkllT/mscftQ increases with temperature and scattering vector Q. 

Double inverse Fourier transform with respect to wand Q givcs the correlation function 

G(r, t); 

S(Q, t) 

G(r·, t) 

Tl / 00 clwexp(iwt) E\ T exp ( 
- 00 411'" r II 

exp - -- knTt - IM , ( 
Q' ( ,.)) 

2msc 

(liw - E,)') 
4E,knT 

C~) 3 J cl3Q exp( -iQ. . r) cxp ( - 2~':, (kßTt' - ir,t) ) 

( 
m", )3/' ( m",,' ) 

= 21TknTt(t - ili/knT) exp 2knTt(t - ih/knT) 

(5.74) 

(5.75) 

Because of the quantum mcchanicalnature of thc underlying dynamics both S(Q, t) and 

G(r, t) have an imaginary part. 

The samc reslIl t can bc obtaincd via thc Van Hove corrclation fUllction. For this routc 

we start with equation (5.39) for which we have ta calculate exp(if{. r(t)) far a frcc atom. 

This can be done using the equation of motion 

cl [ 1 in-d eXfJ(iQ· dt)) = exp(iQ· [(tl), H t - - (5.76) 

where 

(5.77) 
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is thc Hamil tonian of a free atom alld p the 1Il0mentHlll operator. In thc following the 

time depclldent operator exp(iQ.' r.(t.)) shall bc calculatcd. This is done lISillg the equation 

of motion 

ir'-'--II exp (iQ . r(t)) = [exp(iQ. r(t)), H] <t - - (5.78) 

Here, thc bracket on the right hand s iele is thc commutator. In analogy to cquatioll (5.3/1) 

_1_ [exp(iQ . r(t)), p'] = _1_ exp(itH) [exp(iQ . r(t)) , p'] exp( - itH) 
2msc - 2msc -

(5.79) 

ho1ds. Thc comlllutator at equal times on thc right hand sidc of the last equation can 

easily be calculated . For this purpose olle uses the coordinate representatiolt E = -ihV . 

By ca lculation of the derivatives 

[exp(iQ. r(t)),p'] = - nexp(iQ' r (O)) (nQ' + 29. · 1» (5.80) 

folIows. Since E COInmutes with thc Hamiltonian in thc cquation of motion the Hamilto­

nian can bc applied dil'ectly on r(0): 

in~ exp(iQ . r(t)) = -~ exp(iQ · r (O)) (nQ' + 2Q· p) elt - 2msc - - - (5.81) 

This differential equatioll can be solved immediately and oue obtains for thc time dcpen­

dent operator: 

exp(iQ . r(t)) = exp(iQ . r(O)) exp (~ (hQ' + 2Q . p)) 
- - 2msc - -

\Vith this result thc corrclator in the scattering function (5.39) can be calculated: 

( ) (ihQ' ) ( (iIiQ ' p)) exp( -iQ' r (O)) cxp(iQ' r(t )) = exp -2 - exp 2- - . 
msc 111sc: 

As in equation (5.72) thc averagc is takcn by using the Boltzmann factor yielding 

( (
iIiQ ' P)) ( exp 2;sc- = exp 

Insertion into (5.83) gives 

t.'Q'kBT) . 
2111sc 

(exp( -iQ . r(O)) exp(iQ . r(t))) = exp ( - 2~':, (t'kBT - ilit) ) 

(5.82) 

(5.83) 

(5.84) 

(5.85) 

identical to equatio ll (5.74). Thus usillg the Van Hove correlatioll fun ction wc obtain 

the same result as was originally derived directly from the definition of the scattering 

function. 
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\Vith this example wc can also demonstrate tha t. neglecting t.hc operalor character of the 

position vectors leads to a wrang result. Ir we wri te the scattering flll1ct.ion lIsing the 

classieal expression (5.60) 

S "(Q,w) = ~ ( OO dtexp(-iwt.) (ex I' (-iQ. (dt) - dOll)) 
27r1t 1- 00 

(5.86) 

is oblained. For a [rce atom we have z..:{t) = dO) + lp./msc . Inserting this expression 

into (5.86) ami averaging leads to: 

S"(Q,w) = V47rE:knTexp ( (5.87) 

Comparison with (5.73) shows that this rcsult is wrong by neglecting thc rccoil energy 

term. lnstead of being centred 3t Er t.he expression (5.87) is symmetrie with respect to 

w =0. 
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O.H . Seeck, IFF8, FZ ]ülich 

6.1 Intl'oduction 

When sludying solids 01' soft matter the explicit molecular structurc is not always of 

particular importancc. Quitc often the properties investigated are long ranged and not dircctly 

connected with the atoms or their positions. One example is a material with a continuolls 

ferromagnctic phase transition: Far helaw a weB defined tCl1lperature (the critical temperatlll'c 

ca lied Curie tempcrature) the material is in a complete ferromagnetic state. Far above 110 

ferromagnetic behavior call be detected. e lose 10 the critical temperature magnetic nuctuations 

appeaL Thc typical width of the magnetic arcas is in thc range of sevcral nanometers up 10 

m3croscopic distances depending on the temperature (see Fig. 6.1a). Thc width is basicaJly 

independent of the latt ice spacing or the particular kind of atoms. Therefore, the knowledgc of 

the detailed molecular structure is not necessary to explain the physical properties of 

ferromagnets. 

Other examples 3rC surfaces or layer systems. The properties of the sampIes such as film 

thicknesscs 01' jn ~plane coneJation lengths are usually also long ranged compared to the atOillic 

distances and Ihe information about the exact atOTllic positions is not relevant (see Fig. 6.1b). 

Figure 6.1: Sketch 0/ systems with relevam mesoscopic or macroscopic properties. (a) 
Ferromagnet dose to file Curie temperature. Ordered regions 111;111 a conelarion lengtll ~ 
exist. (b) MOllolayer system. Tlle layer thicklless d am/fhe in-plane correJatioll Jellgth of fhe 
rOllgh swiace ~fI (Ire milch larger Ilwll fh e atoll/ie spacing. The left pielltre of eaeh example 
sl/Ows fhe real atOlllic s/melnre tlle r;ght partthe approximation as a eamil/Ilous system. 
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A straight forward method 10 invcstigatc mesoseopic length seales without taking into 

accOllllt the exact molccular structlll'e ef the sRmples is the small ang le scattering. 'Small angle' 

in this case means that (he mean valllc of the wavc vec ter transfer IQI ef Ihe scattered beam is 

11111Ch smaller than the typical reciprocal spacing of the atoms in the sampie (e.g., the reciprocal 

lattiec vcctor Iq', fer a crystal with cubie synunetry). In this ease the effeets of the atOlnic 

st ructlll'e on the seattercd signal are negligible. This is schematically explained in Figure 6.2. 

real 
space 

Q­
space 

Q-

space 

real 
space 

r· ",.j 
·~fi~it." .") 
. ~'. 
,;:.l\' 

.~--
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"'l I i .-L _LC?9_-L = AJl!AA) 
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I I small Q I I approximation I 
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J I I I 
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I I I ,0 ,) \ ?9 ,~,) 
i 
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, '.:.~' 

! 
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• 

Figure 6.2: Prillciples oJ small allgle scalle1'ing. The lIIelhod is 1101 sensitive 10 the exaet 
atO/nie strtlctu1'e bllt ol1ly 10 mesoscopic 01' l1Iacroscopie lengtll sca/es. Tlierefo1'e, sampies enll 
be trenled ns COlllillUOUS systems, The operator ® dellotes Ihe cOl/vo[uliol/ 0/ 1wo JUlieliolls. 
A more delailed explanation is given in the lext. 
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Starting point is the exaet atOlnie strueture of the sampie. ln this seetion a crystal with 

some density modulations is ehosen (Fig. 6.2 top row). The potential V(O of sllch a system ean 

be written as a produet of the undisturbcd infinite erystal lattiec potential Vrauer) and the 

modulation VnlOd(r). As it was shown in previous seetions in Bom approximation the scattered 

intensily 

I (~1l -I A«(;1ll' - lI V (rl exp(i ß· Od' ,.1 ' ~ II v"" (rW mod (0 exp(iß· rld,,.I' 

~ IF {V"" (OV mod (0 Hßll' 
(6.1) 

of the sampIe ean be ealculatcd by perfonning a Fourier transformation F{ V([)) of V([). The 

eonvolution theorem for Fourier transformations ean be used to modify cquation (6.1). This 

theorem states timt the convolut ion ® of two Fourier transformed functions}i=F{g;) gives the 

same result as the Fourier transformation of the product of both functions gi . Thus, 

F{ g, . g, } ~ F{g,) ® F{ g, } ~ I, ® I, ~ I I, (fJ)/, ('l- ß)d'q (6.2) 

where the integral is the definition of the eonvolutioll. 

It is also known from previous seetions that for an infinite pcriodic crystal the lauice 

potential Vratt(r) can bc written as a Sllm of deIta-fllnctions weighted with the seattering length 

3nd loeatcd at the position of the atoms. The Fourier transformation of V!Ju([) also yields delta­

functions: the Bragg peaks at the reciprocal lattice positions. ln contrast, the Fourier 

transfonnation of V,nod(r) is usually a 'smooth ' function whieh is strongly decreasing for large 

IQI. The result of the convolution is depicted in the second row of Figure 6.2. 

By doing a small angle scatlering experiment only wave veetor transfers Q with a mean 

value e10se to 0 are eonsidered. All other va lues are omitted. The result of the magnification 

around Q=O is shown in the third row of Figure 6.2. In good approximation it is identical to a 

convolution of just a single delta-funclion at L=O with the Fourier transformation of Vmod(r). In 

real space (Fourier backtransformation) a single delta peak eorresponds to an infinite sampie 

with homogeneous potential whieh tums out to be the averaged value of VllU ([). The fourth 

row of Figure 6.2 proofs that no information abaut the atomic structure is necessary to explain 

a small angle seattering pattc1l1. 
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To study the morphology of surfaces 01' interfaces of thin layer systems slieh as polymer 

films on silicon substrates cr magnetie multilayer systems some spceifie kinds of small angle 

neutron (ar x-ray) scattering experiments c,m be performed. Especially far buried interfaces 

these surfaee sensitive methods are the only way to investigate the film properties without 

deslroying the sampie. Therefore, they nre very frequently applied and have an enormolls 

impact on solid slates and soft condensed matter physics in general. 

The so-ca lied specular reflectivity is a sc an with a wave veetor transfer Q perpendicular 

to the sampie surface which is defined as the z-direction in this section. Bccausc of the missing 

Q.T- and Q}'-component the reflectivity is only sensitive to the thickness, the potential and the 

roughness of each film. In-plane propcl1ics of the interfaces such as lateral correlation lenglhs 

are accessible with different kinds of diffuse scaUering experiments where at least one of the 

components Q. ... or Q)' are not vanishing. 

In the following, the specular reflectivity and the diffuse scattering are explained in more 

detail. The usunl experimental setup will bc showll and the basic theory of specular and diffuse 

scattering will be presented with some examples. 

6.2 Experimental Principals of Sm'face Sensilive Neutron Scattering 

A sketch of a typical neutron surface scattering experiment is displayed in Figure 6.3, a 

more dctailed description is given in other sections. The direction of the primary beam is 

defined by some slits. Before the primary beam hits the sampie the flux is llsllally monitored. 

The incident angle 8 which is detennined with respect to the sampie surface is set by rotating 

the sampIe in the bcam. The scattered beam is detected at an angle 8' (also with respcct to the 

surface) which is determincd by e and thc scattering angle $=8'+8. In the literature 4> is 

sometimes called 28 (which is actually inaccurate because $ is not necessarily equal to 2·0). 

sample'"j 

6.4 

Figure 6.3: Sketch of ([ typical 
sl/1face sensitive lle/llrOll 
scaltering experiment. The 
incidellt angle is denoted by 
8, the olltgoing angle with 
respecl 10 the smface by 8'. 
The scaltering angle is cal/ed 
$. 



Für spccular reOeetivity Illcasurements the eondition 0=8' IlOlds whieh is lIsually not tnle 

for diffuse scatteling cxpel;ments. The mcan value of the wave vector trnnsfer is given by 

411 ($) IQI = -sin -
- A 2 

(6.3) 

with the de Broglie wavelength of the neutrons A=h1(2111E)lf!.. As it was mentioned before for a 

small angle seattering experiment [Q[ has to be mueh smaller thall the Lypieal reciproeal 

distance of the atoms in the sampie. Therefore, ~., also has to bc smal!. Depending on the 

chosen wavelength the angle 4> is ahnost never larger than a few degrees. For a surfaee 

sensitive experiment, which is performed in refleetion and not in transmission (see Fig, 6.4), 

this me ans that 8 and 8' are also small and positive, 

z(X) Ox - 0 
0 " k' 

8' 

.!st 

X 

Fig. 6.4: Sketch oi the wave 
vectal's /a,. (l swface sensitive 
experimellt. The parameters 0/ 
the Ira1/Sl11ilted beam are 
labe/ed wirll file im/ex 1. The 
potel/tial 0/ air is del/oted by 
Vo Ihal ol/e 0/ Ihe substrate 
w;tll VI . 

From simple geometrical eonsiderations the eomponents of the wave veetor transfer ean be 

dedueed. They are defined by 

211 
Q, =T(eos8'-eos9) 

211 
Q. = T(sinO'+sin 0) Q, =0 (6.4) 

and ean be lIsed to estimate Lhe aeeessible Q-range of surfaee sensi ti ve experiments. At a 

typical wavelength of the neutrons of abata 0.2nm=2Ä and angles not larger than l.0 degree 

Q. would always be less than O.l},: '. IQ,I would even be restrieted to S·IO·'},:'. For 

eomparison: A simple cubic erystal with 3Ä lattice spacing has a smallest reciproeal lattice 

vcetor of 2.1},:'. 
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6.3 Spcculnr Neutron Rcilcctivity in Borll Approximation 

For specular reflectivity measurcmcnts the exit angle 0' is always identical 10 the incidcnt 

angle 9. Therefore, the Q.I-component is equal 10 zero and the reflectivity data does not contain 

any partieuhu information about the in-plane st ructure of the sampIe. In first order Born 

approximation (1] Ihe scattered intensity is given by 

I If dl'(z) I' I (Q,) - Q: ~cxp( - iQ, z)dz (6.5) 

which means, that the specular reflectivity is basically determined by the Fourier transformation 

of the gradient of the potential profile perpendicular 10 the sampIe surface. The averaged 

(contilluous) potential of a particular material with N components is defined by 

(6.6) 

where the bj are the scattering lengths and the Pi are the particlc number densities of the 

components. A one-component sampie with a perfcctly smooth and flat surface which is 

oriented in the (x,y)-plane would yield a step funeti on for the z-dependent potential: 

2nfl'bP( I I ) { 0 I'(z) = -- ---0(z) = , 
111" 2 2 2ntl bp 1111" 

z> o 

z'; O 
(6.7) 

The derivative of I'(z) is a delta-funclion dl'(z)ldz-Ö(z). \Vilh Eq. (6.5) one gels I(Q,) - Q;' 

because the Fourier transformation of a delta-function at z:::O is idenlical to 1. 

However, a perfectly smooth and flat surface does not exist. Instead sm'face roughness Of 

density gradients have to be taken into account (2,3]. As shown in Fig. 6.5 roughness means 

that the z·position of the surface is loca lly di ffe rent from the mean position at z=O. Averaging 

the density in the (x,y)-plane al each z-coordinate gives a smooth profile V(z) perpendicular to 

the surface. The exact shape of the profile depends on the actual physical and chemieal 

propert ies elose to the surface. For simple rough surfaces in good approximation an error­

fun ct ion 
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I'I'(z) I'(z)= ---crf --
2 2 J2cr 

Wilh 
2 ' 

crf(z) = cI cxp(-t ' )dt 
,,11 0 

(6.8) 

is sufficient to model the profile. The parameter 0 is ca lied rms-roughncss and is a mcasure for 

the root mean square width of \fez) given by Ihc guussian probability fUllclion 

dl'(z) I {z' ) 
- - - P(z) = = ex - -, . 

dz ,,211cr 2cr 
(6.9) 

Figure 6.5 also shows Ihat the profile c10es not contain 3ny information about the lateral 

structurc of the rough surface. Therefore, the reflcctivily is insensitivc to different in-plane 

length seales l;... It even cannot be used 10 distinguish betwcen a rough interface Of a density 

gradient caused by e.g., interdiffusion. It will bc explaincd later thai this can only be done by 

using diffuse scattering experiments. 

~p----3> ~ 

WV1}\)~trhr~Ir1J~~lWi\ 

I 

z~ 

+-.::o....~~V(Z) 
-~ I 

(J v 
Figure 6.5: Three different sill/aces wirll flie same 11Ils-rouglmess Cf detel1l1illcd by Ihe rool 
meall square widlh oJ fhe probabililY jimclioll (dashed line) oJ fhe profile V(z) (solid fine) . 
Tlle in-plane sfmc!llre is determillcd by Ih e lateral correlalioll lellgtll ~p whie" is large Jor ,Ile 
vel)' left example quile small Jor Ihe rOllgll swiace sllowlI in Ille cellter ami not defined Jor 'he 
deI/sir)' gradient example (r;g/lI). 

The reflectivity of a rough surfaces with an error fllnetion profile can easily be ealculated. 

The derivative af I'(z) is determined by the probability functian P(z) [see Eq. (6.9)]. \Vith Eq. 

(6.5) this yields I(Q,) - Q,~exp(- Q,'cr'). Campared \Vith the perfectly smoath surface the 

reflected intensity is damped by a Debye-WaUer factor: The rollgher the surfaees the less 

intensity is reflected at large Q, (see Figure 6.6 left). 

Refleetivity seans are not only extremely sensitive to surfaees rollghnesses but also to film 

thicknesses of layer systems. If a thin film with thickness d and an averaged potential VI is 

deposited on a substrate with potential V2 the density profile V(z) is given by 
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(6. 10) 

if thc interfnci<ll fms-roughncsses 0'1 and 0'2 are neglected. Thc derivative yields Iwo dclta­

funetions: dl'(z)ld, - (b,p, -b,p, )o(, )+b,p,o(z-d) . Using Eq . (6.5), the speeularily reflee ted 

inlensity of a pClfectly smooth mOllolayer system is given by 

(6.11) 

This means that films cause oscillalions in thc rcfleClivity. Thc period is detcnnined by the film 

thiekness the strength (usually ealled 'eontrast' ) by the difrerenee of the potentials 1', and 1', 

(see Fig. 6.6 right) . 

0. 20 

~ 12 
'c 
o 

' 0 

d=300Ä, b 2p2"" 4 , b ,P,=2 

d=JOO1\" b .P2 = 4, b,P, =3 

d= 600&, b :1Pl= 4, b,P, = .3 

0 , 

Figure 6.6: The feit graph displays file el/eer 01 fil e swface raug/mess 0 11 file specillarily 
reflected ifllells;ty: fh e rGugher fli e swfnce ,he fess ;lIIelisily is reflected al lllrge Qz. The rie'" 
figl/re shows reflectivities 01 pelfeetly smoolll lI/oll oJayer systems. Tile Cll1l'es (Ire shifred ill 

imelJsity Jor elari')', The [/ticker the film ,he smaller tlle distance 01 Ille so-called Kiessig 
fringes. The fess the colllrasl (given by [b1pl-b1ptlJ Ihe less pronollllced Ilic oscillatiolls are. 

In this way every additional layer appcars as an oscillation in the reflectivity curve. 

Interface roughnesses can also quite easily be includcd in the theory and yield a typical 

damping of each oscillatiol1. Multilayer systems with different parameters far each layer 

generally show very complicate renectivities. They are lIsually difficult to analyze especially 

because of the so-ca lied 'phase problem' which prevents an unambiguous solution of Eq. (6.5). 

The "phase problem" appenrs when performing the menn square of the complex fUllction 
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F(dV(z)/dz) to caleulate the reneetcd intensity [sec Eg. (6.5)]. The loss of the phase 

information may end IIp in identical rcOectivitics evcll though thc potential profiles are 

different. E.g., lIsing Eg. (6.11) it can easily be ShOWIl , that a mOllolayer system wilh b1Pt:::;4 

and b.PI=3 exact ly results in the same reflectivity as blP2=4 and b l p,=1, if the film thickncsses 

ure identica l. 

6.4 Diffuse Neutron Scattcl'ing in Born Approximation 

Performing a surface scattcring experiment it turns out that same intensity is also 

sc~tttered in direclions with 6-t.O·. ]n this case the wave vector transfer Q has a componcnt in 

Qt-direction (see Hg. 6.4). This off-specular signal is called diffuse scattering and is caused by 

lateral st ruetures (in-plane, in thc (x,y)-plane) of the sampie [4]. If the sampies are perfectly 

smooth cr if there is no lateral slrliclure (see Fig. 6.5 right) no diffuse scatteting is expected. 

In general, for rough layer systems the diffuse scattering is sensitive to the correlation 

fUllction CjAUD between two interfaces j and k where R is an in-plane vector (x,y). Thc 

corrclation fUTlction is defincd by 

(6.12) 

with the Jocal deviation lj(r) from the averaged position of thc interface j. Thc corrclatioll 

fUllction between two different interfaces is lIslially ealled 'c ross-correlation '. lf j=k holds 

q,(KJ~CiJ(fIJ is called 'auto-correlation' . Qualitatively, Cj,(!i) is large if two areas of the 

interfaces j und k, whieh are B. apart from each other, 'look similar'. E.g., if the two interfaces 

contain a periodic strueture with the same periodic distance D the correlatiol1 function exhibits 

maxima at D,2D,3D .... For an auto-eorrclation fUIlction of a single rough surfaces one ge ts a 

monotone decreasing function: For very small dist.mces the parts of the surfacc look similar, 

the larger the distance thc more different they becomc. The width of the curve is connected to 

the lateral eorrelation length s.. of the interface (see e.g., Fig 6.5) [5]. 

The diffuse scattering can be used to investigate periodic in-plane structures, in-plane 

correlation lengths of a single rough interface and correlations bctween 1wo different 

interfaces. Figure 6.7 depicts some examples. Thc complete mathematical formaüsm to deduce 

lhe diffusely scattered intensity is quite complicute [6]. Therefore, the fuH theory is omitted in 

this section. Instead, the diffuse scattering is explained using a simple Hlonolayer system. 
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Figure 6.7: Same examples o[ mOllo/ayer systems with rough swfaces. a) 80th intel/aces are 
Hol correlated al all. b) Pelfeet cross-correlatioll betwecll fhe lower alld fhe lipper inte/face. 
c) A cross-correlatioll is visible bllf il is /lot pelfeet: The ime/taces da nol exactly look ,he 
same. d) Peljeetl)' allti-correlated il1leifaces. 

In Born Approximation the diffusely scattered intcnsity of a monolaycr system with the 

intcrfacesj=l,2 and the film thickncss d can be calculated by 

["rr (Q"Q, ) - ~; [(b,P, -b,P,)' exp( - Q;CI;)S1l (Q,) + (b,P,)' Cxp( - Q; CI:)Sll (Q,) 

+ 2(b,p, - b,p, )(b,P, )exp(- Q; [CI ; + Cln 12 )S12(Q, )cos(Q,d) 1 

Thc nns-roughncsses are gi yen by (J'J.2 und the so-called structure fHctor by 

(6.13) 

(6.14) 

Eq. (6.13) obviollsly looks similar to Eq. (6.11) which describes the speclliar renectivity. The 

exponcntial Debye-Waller fUllctions would also appenr in Eq. (6.11) if roughness is laken into 

account, the only difference are the additional structure factors Sjt(Qr) which modify the 

scauering duc 10 the in ~plane stmctUl'e of the interfaces. 

Some examples of diffuse scattering experiments are depicted in Fig. 6.8. They show Ihat 

the in ~plane cOlTelation length l;... of a rough surface (see Fig 6.5) is directly connected with the 

widlh of the diffuse scattering in ß~directiol1. Furthermore, a Qz~scan al fixed Q( contains the 

information about cross~correl ations of two interfaces. If cross~coll'elations are present with 

Sj'-"O for j# the last term of Eq. (6.13) leads to characteristic oscillations of the diffuse 

scatlering which are in-phase with the specular renectivity in the case of correlated interfaces 

and ollt~of-phase in the cnse of anti-correlation. 
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Equation (6.13) also shows timt the diffuse scallcring can bc detected in the whole Q­

space cvcn at Q,=O which is actllally the position of the specularily retlccted signal. This means 

that rcflcctivity measuremcnts (Q~-scalls at Q,=O) always cantain bath the spccular reflcctivity 

and the diffuse scattcring at Q...=O. To extract the specular reOect ivity [rom thc reflectivity 

measurcment the diffuse scattering has to be subtracted. This is usually dOlle by performing a 

Qc scan wil h a smnJl offset .6.Q, so that the specular condition is not exactly matched. This so­

called longitudinal diffuse sean is subtraeted from the measured reOectivity 10 get the true 

specular reflectivity. 

5 speculor rcflected 
peak 

0 _L6~~_4~~_~2~~0~~±2~~4~~6 
a. [O.OOI)\-'J 

'5 • 

.'] 

.~ 10 

o 

0.00 

speculor refl ec tivity 

d iff. in t. ot 0,=0 

not co rre lo ed 

correloted 

onti - orreloted 

0.05 0.10 0.1 5 0.20 

a, W' J 

Figure 6.8: Examples of (/Jffllse scatteri1lg experimellls. Left: Qx-scall al jixed Qzfrom a si1lgle 
rOllgh sltl!ace. The solid Cl/n'e correspollds 10 a sampie wilh an in-plane correlalioll lengI" of 
Sp=5000A the dashed lilie to Sp=lOOOÄ. 111e peaks tII tlle eOllditioll Q.=O (whete 8=8') ate 
1I0t diffuse scatterillg bill cOl/sed by the speclllar reflectivity. Right: Speclliar reflectivity 
(symbols) and l/iffllse scalleriflg Qz-SCWIS at Qx=O (solid lines) of a mOllolayer system will! 
d=300Ä, b,p,=4, cr,=5Ä, b,p,=3 alld cr,=5Ä. The diffllse sams show the eff eet of cross­
correlatiofls. The measured refleclivity is delennined by the SWlI 01 Ille specullir a1l(1 tlle 
d{ffllse scan. 

Unfortunatc!y, the intensity of the diffuse seattering is tlsually orders of magnitude 

smaller thau the specularily reflected signal. 1'0 get good statistics and reJiable data a very high 

primary flux is neeessary. This eall easily bc achieved with synclu'otron radiation x-ray somees 

but is hardly possibly for neutron sources (see sectiol1 6.5). Therefore, it is extrcmely difficult 

to extract quantitative infoI111ation from the ncutron diffuse scattering data. 
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6.5 The Regime of the Total External Ref1cction: Exact Solulion of the Wave Eqllation 

It is obvious that the Bom approximation [Eqs. (6.5) and (6.13)] fails for Q,-->O because 

the intensity would become infinite at Ql=O. The renson is timt multiple scattering processes are 

neglccled within the Dom approximation. For surface sensit ive experiments multiple scattering 

processes become essential at vcry small anglcs [7}. An exact description of the scattered 

intcnsity can be dcduced for a perfectly smooth surface from quantum theory. 

Starting point is the Schrödinger equation 

[ 
h' ] - -ß+V(r) 'l'(r) = E'I'(r) 

2mn 

(6.15) 

for the wave fllllction of the neutrons o/([). The cncrgy of the ncutrons is given by 

E = fl 2 k l I (2111n ) with the mean value k=2wA of the wave vector k (the incident and the 

outgoing beam have identical k bccausc e lastic scattcring is assumcd). For a homogeneous 

sampie the potential is determined by Eq. (6.6), thus 

(6.16) 

with the wave veetor k, inside the medium (see Fig. 6.4). From Eq. (6.16) it is justified to 

introduce the refraction index 1l,=k,lk of the material. In very goad approximation one yie lds 

(6.17) 

far the refraction index which is a number elose to 1 for neutrons of approximate lA 
wavelength (lhe cOITection 0, is ca lied dispersion and is on the order of lO,s ... lO-6) 

By introducing the rcfractioll index the basic principles of optics can be applied for all 

furt her considerations. First of all it is remat'kable lhat for many materials 11, is smaller than 1 

(beeause bj is usually and pj always positive. thus 01 is usually positive). This mcans that the 

transmittecl beam is refracted towards the sampie surfacc (9,<8. see Fig. 6.4). For values of 8 

below the so-called cl'itienl angle Sc the incoming beam cannot penetrate lhe sampie surfacc 
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but is complctely reflected. The critical angle can be estimated by 8("=(20/)111 alld is on the order 

of some 0.1 degree depending on the dcnsity, the scattering lengths of Ihe atoms anel the 

wavelength of the neutrons. For evalues beyone! S,.. the beam can penelratc the sampie anel is 

only partly reflected. At the sampIe surface thc reflection and transmission cocfficients l i anel '1 

are obtained by the Fresnel fonnulars 

2k, 
I[ 

k - k 
! I ,l allel (6.18) 

with k~ :::ksin6 and k" t ;:: k,sinO/ ;:: k(n/ _C05
28)1I2 (see Fig. 6.4). Thc specular reflccted intcnsily 

[:=l/l is determined by Ihe absolute square of thc re flection coefficient. It shows thc typical 

plateau below the critical angle, the regime cf thc total extemal reflection, alld the rapidly 

decreasing intensity beyone! Sr. With appropriate approximations one gets 1.=:Ö?1(4sin4S)_Q~·4 

for incidcnt angles e larger than 30/ which is the confirmation of the Born approximation (see 

Fig.6.9). 
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Figure 6.9: Effecl of Ille 
lotal extemal rejleetioll . 
Tile large Jigl/re shows a 
rej7ectivity oJ a smootll 
sill/ace ill Bom approxi. 
mafio1l (symbols) mut Ille 
exacl Fresllel J0I111 (solid 
line). Tlle dashed Ji1le 
marks the critical Q.z. 
Tile fejr illset displays 
absolpfioll effects ill fil e 
rejleclivity 011 a lillear 
sea fe. The same is depic· 
led Jor fh e lransmitted 
i",ensify ill tlle righ' insel. 

Not addressed yet in this section is the absorption ßt of the neutrons inside the sampie. 

For most materials sllch as silicon the absorption is negligible but this is not the case for e.g. 

cadmium 01' indium. Most straight forward, it can be introduced by including an imaginary part 

10 the refraction index 
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(6.19) 

The effect of the absorption is shown in Fig. 6.9. It basically srnoothes the sharp features of thc 

intcnsit y elose thc critical angle and nlso restriets thc penet ration depth of the neutrons 10 finite 

va lucs. 

The diffuse scattering is also modified in the regime of thc total external reflcction [8,9]. 

In gooel approximation one gels 

(6.20) 

for a single rough surface. For laycr systems this expression becomes much more complicatc. 

Eq. (6.20) shows, that the transmission functions of the incoming and the outgoing beam have 

10 be taken into account. The transmission fu nct ion I, exhibits a maximum at the critical angle 

(or thc critical Ql' respcctively, see Fig. 6 .9) because for incident angles 9 = 8(" an evanesccnt 

wavc appears which runs parallel to the surface (8' = 0) [10] . Therefore, the diffuse scattering 

also has maxima called Yoneda wings at the posit ions O=8c and 8';::;.Oc (see Fig.6.1O). 
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Figure 6.10: DlffE/se scatlering 
scan aI fixed Qz. The symbols 
correspolld '0 ,he Bom 
approximation (dashed line in 
Fig. 6.8). The solid li"e displays 
the belter approximation 
;lIdE/dillg fh e scaltering effeets 
due to the total extemal reflectiol1 
at S=8c ami S'=9c. They are 
visible as fhe YOlleda-1I1oximo aI 

IQ, I=0 .0032A-' . 
Th e peak at fli c eenter is fhe 
specular reflecled illtellsily (0=0'). 

In summary, Ihe optical properties of the sampie affect the scattering only if the incident 

or the exil angle is comparable or smaller than the critical angle which is usually smaller than 
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0.4°. The full dynamical theory can only be deduced far the specular reflectivity. For the diffuse 

scattering no exact solution exist righl now, 

6.6 Important Applications of Neutron Renectl'Ometo·y 

For many standard scatlering experiments on layer systems x-mys ure much more suitable 

than neutrons becausc of the higher flux, the better colLimation and (he less divergence. In 

J1umbers: A standard synchrotron radiation somce has a primm'y beam illtensity of about 1010 

counts/sec at a typical spot size of (0.2xI)mm2
, The beam divergence which delermines the Q­

space resolution is less than 11100 of a dcgree. For a modem ncutron SOUl'ce olle gels less thall 

107 counts/sec in an area of (O.Sx20)nun2 with a divergence of larger thall 0.02°. 

Howevcr, for some lopics of rcsearch neutron scattering is superior. One example is the 

investigation of materials which mainly contain hydrogen, carbon, nitrogen 01' oxygen such as 

organic 1110leculcs. In this case the electron density [which for x-mys replaces the potential 

V(u] is vcry low and thc x-ray contrast becomes very smal!. In contrast, for neutron Ver) 

strongly depends on the isotope of the elements. Thercfore, by lIsing deuterated or 

hydrogenated organic materials the scattcring contrast can easily be tUl1cd without changing the 

chemical properties of the sampies. Figure 6.11 shows an examplc of a polymer bilayer. 
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Figure 6.11: Camparisoll 
of an x-ray (left co/umn) 
and a neutron (right 
C01WIIIl) rejlecfivity o[ a 
polymer bilayer (210). 
polys'yrelle (PS] Oll 70). 
dellterated polyvillylpyrri­
dine /d-P2VPj on a silicon 
substrate). The x-ray 
cant rast belween file two 
polymers given by file 
electroll density is ollly 
abotll 5%. 

It can c1early be seen that the x-ray reflcctivity only exhibits olle significant oscillation 

period which is duc to the whole film thickness. The x-ray contrast at the polymer interface is 
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tao smalilo modulate Ihe intcllsity. Advanced anfllyzing methods have to be lI sed to extract Ihe 

information of the polymer-polymer interface [11] . This is different for neutrons: By 

dcuterating the OOtt0111 polymer the contrast is enhanced dramatica l1y. The reflectivity shows 

separate oscillations: 11 long period due to lhe thin d-P2VP film and a shon period which is 

callsed by the h-PS film . The analysis is straight forward alld ll slIally very reliable. 

AllOther very important applicfltion is the magnetic neutron scaltcring. Neutrons have a 

sp in of 1/2 which means that they are sensitive to the magnetization of the sampIe. A sketch of 

a magnetic neutron reflectivity experiment is depicted in Fig. 6.12. The sampIe is illuminated 

with polm'ized neutrons. The polarization is determined by Ihe direc tion of the neutron spins 

with respect to an extemal ficld ll.: They are usually eithcr parallel 01' antiparalleJ 10 H. 

Figure 6.12: Sketch of a 
neutroll reflectivity e),pen'­
wellt Oll a maglletic Iflyer. 
The spills 0/ a,e i"eide"t 
Heutrons § are oriellfed paral­
lel (ei/her IIp 01' down) to an 
extemal fiehl H. After the 
scallerillg file directioll 0/ the 
spins f lIIay "ave j1ipped 
depelldillg 011 ß. whie" is 
given by fh e magllelilatioll o[ 
tllefilm "lid H· 

After the scattering process Ihe spin direction of the neutrons may have f1ipped . ThllS, 

foul' di fferent rcflect ivities can be measured: 

• RH : The spins of the incident neutrons are parallel to H. The spins of the scattered neutrons 

are also parnllello t1 (non-spin-flip proccss). 

• R .. : The spins of the incident neutrons are antiparallel to H. The spins of the scattered 

neutrons are also antiparallel to H (non-spin-flip process). 

• R-t-: The spins of the incident neutrons are parallel to H. The spins of the scattcred neutrons 

are anliparallello t1 (spin-flip process). 

• R.+ : The spins of the incident neutrons are antiparaUel to H. Tlte spins of the scattered 

neutrons are paralle l to!i (spin-flip process). 

The foul' reflectivitics can be deduced from the Schrödinger equalion considering the extemal 

field, the magnetization of the sampie and the spin direclion of the neutrons (12]. In (he 

following only some qualitative descriptions are given. 
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1) Ir no magnelie inductioll 11. (which is determincd by Ihc external fjeld f1 alld the 

magnet ization of the sampie) is present olle yields RH ::: R .. and R+- = R. .. :;;; O. Thus, Ihere is 

BO dependence of the scaltering on the spin OIientation of the incoming neutrons. 

2) ]f 11 = lb. (magnetie induction perpendiculnr 10 the surface) 110 magnetie scattering is 

cxpected cüher. Thc reason are the Maxwell equations wh ich da not allow a change of the 

menn vaille of !1 in field direclion (Y . 11 = 0). This means that !1 does not change at Ihe 

sampie surfaces. Thercfore, RH- = R .. alld R+- ::: R .• ::: O. 

3) If 11. = l1t only non·spin-flip processes appear (~ = {). Thc reason is Ihe vanishing cross 

pro duc I betwcen ~ allel 11. This means tllat 110 interaction betwecn the spins and lhe 

induction is present so that the spins cannot flip. However, a magnetic contribution 10 the 

refraction index has to be added for R_ and subtracted for R .. . Thus, R_:I: R.. but still R ... = 

R.,=O. 

4) If l1 = lL thc spins can flip during the scattering process. Therefore, non-spin-flip processes 

appenr with R ... *- 0 and R .• *- O. In contrast to point 3) thc non-spill-flip renectivities are 

identical (RH = R .. ). 

1n summary. from all reflectivities R_ , R .. , R ... and K. the exact magnitude and orientatiol1 of 

the magnetization profile of the sampIe can be determined with polruized neutron renectivity. 
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7.1 Illtrodllctiou 

For pure elastie scattering the scattering funetion S(Q,ro) is reduced to the special case 

witflOut energy transfer (Eo = EI and ntiJ = Eo - EI = 0) and equallength of the wave vectors 

of the ineident and scattered beams (11)&1 = I!ü I). S(Q.co = 0) and henee the scattering 

intensity is only depcnding on the scattering vector Q = kD - fu. The coherent elastic neutron 

scattering (a neutron diffraction) yields information on thc positions (distribution) of Ihe 

atOlnic nuclei and the arrangement of Ilte localised magnetic spins in crystalline solids. lhe 

pair conelation function ofliquids ami glasses, and the conformation of polymer chains. 

Depending on the scientific problem 10 be investigated adequ3te diffraction methods may be 

quite different. For fluids and glasses diffractioll data of high statistical relevance ovcr a ver)' 

large I Q I range are requircd. The direction of the scattering vector Q is not dcfilled for these 

non-crystalline slates and a good resolution I M11 / I Q I is of no imp0l1anee. Besides of the 

pure elastic scattering also inelastic contributions are involved. 

Completely differcnt are the necds for a diffraction stud)' of crystalline solids. Thc difTraction 

at the cr)'stal laUice gives rise 10 pure elastic scattering localised at the nodes of the so-called 

reciprocal latticc. The scattering vcctors Q for Ihe different UBragg-reflcctions" are weil 

defined. For the separation of reflections with similar Q va lues a good resolution fjQ/Q is 

ver)' important. A measured data-set of Bragg-intensities (integrated intensities of Bragg­

refleetions) as comptete as possible over a targe IQI range is required, An experimental 

stability and accuracy leading 10 aprecision of the intensity data of about 2% is desircd and 

may be achieved. 

Diffraction measurcments Oll polyerystallinc sampies depend onl)' on the length of the 

seatJering veetorl QI. Vcry smaliline widths (aeeording to an eKeelient resolution I M11 /1 QI) 

eombined with weil defined reflcction profiles are prerequisites for a quantitative line-profile 

analysis. The complete powder diagrams rcsulting from overlapping reflectiolls are described 

and analyscd by means of the Rietveld method. 

For all diffraction methods firstly the energ)' of the ineident neutron bcam (expressed in 

another way as its wavelenglh or velocity) must be specified. 1n the ease of angular dispersive 

diffractiol1, the 2-axes diffractomeler (see fig, I) is equipped with a crystal monochromator to 
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seleet a special wavelengths band (1. ± 6)J).) out of the "",hitc" beam aeeording to thc Bragg 

eondition for its seatlering plane (hk/) 

(I) 

\Vith the intcrplanar spacing d"kf and the monochromator scattering angle 2fhH = 29M. The 

width of the wavelengths band ß')JJ.., wh ich is important for the Q-resolution, depcncls on the 

divergences afthe beam before and after the monochromator (collimations al and (X2), on the 

mosaic spread of lhe monochromator crystal i1M, and on Ihe monochromator angle 29"". In 

order to increase the intcnsity of the monochromatic beam at the s8mple position the 

monochromator crystal is orten bent in vertical direction perpendicular to Ihe diffraction plane 

of the experiment. ln this way Ihe verlieal beam divergence is incrcased leading to a lass of 

resolution in thc reciprocal space. The diffractcd intensity from the sampie is measured as a 

fllnetion of the scattering angle 29 and the sampie orientation (especially in ease of a single 

crysta!): 

for a single cryst.1 --> !(Q), and for a polycrystalline sampie --> I( I Q I). 
29 is defined by the collimators 0.2 and 0.3. As there is no analysis of the energy of the 

Deteetor 

---
~ ----".= 28 . ~//Jt I/) 
Sampie 

I Souree I 
Q=.k.l!o 

6E =0 (ko= ~ ) 

Pig. 1. Sehcmatie representation of a 2-axes diffraetometer. 
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scattered beam behind the sampie, the encrgy resolution aEIE of a 2-axes di ffractomcter is 

not weil defined (typically of lhe order of SQme %). In addition to the dominant elnstie 

scattering also quasi-elastic and some inelastic scattering contributions are to be taken into 

account. The name 2-axes-diffractometer results from its {wo axes of rotation, the 

monochromator axis defining 29M and the sampie axis (29). 

In the case of energy dispersive diffraction, the timc·of-flight diffractometer uses thc 

complete energy spectnllll of a pulscd ncutron beam alld lhe wnvelengths of the scattered 

neutrons are determined by velocity analysis. The meaSlIfcment of the neutron intensity as a 

function of velocity at fi xed scattering angle 2fJ has to be calibrated according to the energy 

spectmm of the neutron beam. Assuming BO energ)' transfer at the sampie thc time-of-flight 

diffraction yields again I(Q) (and for a polycrystalline sam pie I( I Q I). 

7.2 Reciprocnllattice and Ewald coustrucfion 

Bragg scatterillg (diffraction) mcans coherent elastic scattering of a wave by a crystal. The 

experimental information consists of the scattering fllnctioll S(Q,ro = 0) with no change of 

energy or wavelength of the diffracted beam. For an ideal crystal and an infinite latticc with 

thc basis vectors lli,!!2.!!J., there is onl )' diffraction intensit)' I(t!) at the vectors 

(2) 

of the reciprocal lattice. It,k,l are the integer Miller indices and !!1 *, !!l*, !U *, the basis vectors 

ofthe recipl'Ocallatticc, sat isfying the two conditions 

or in tenns of the Kronecker symbol with i, j and k = I , 2, 3 

Oij = 0 for i::t:. j and 8ij = 1 for i = j with cU = !h*' !!/'. (3) 

The basis vectors of the rccipl'Ocal lattice can be calclliated from those of the unit cell in real 

space 

!!i * = (!!jx.ru)fV c, (4) 

where x mcans the cross product, and Vc = !!.L·Ü!;.xßi) is the volume ofthe unit cell. 

Here is a compilation of some properlies of the reciprocaI lattice: 

• The reciprocaI latt ice vectors are perpcndicular 10 those in real space: !!j*..l !!j and!!k (i::t:. j ,k) 

• The lenglhs ofthe reeiprocallattiee vcetors are lili*1 ~ I Nd~jHl!JiI ·sin L(;Jj,!!0. 

• Each point hkl in the reciprocallattice refers to a set ofplanes (hk!) in real space. 
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• The direction ofthe reciprocallattice vector H is normal to the (hkl) planes and its length is 

reciproeal to the interplanar spacing dhA:l: IHI = l/dhkl . 

• Duality principle: The reeiprocallattice Dfille reciprocallattice is Ihe direct lattice. 

From the positions of the Bodes of the reeiprocal lattiee obtained by diffraction experiments 

one can detcrmine directly the parameters ofthe unit cell of a crystal. 

Although somewhat abstract, the cOl1cept of the reciprocal space providcs a practical tool to 

express gcomctrically the condition for Bragg scattering in the so-eallcd Ewald construction. 

In this way the different diffraetion methods can be discussed. 

Wc eonsidcr the reciprocal lattice of a erystal and choosc its origin 000. In Fig. 2 the wave 

vector k.!l (defined in the crystallographcrs' conventioll with Iknl = llA) of the incident beam is 

marked with its end at 000 and its origill P. \Ve now draw a sphere ofradills IIsol = 1/t.. arollnd 

P passing through 000. No\\', ifan)' point hkl oflhe rceiprocallattiee lies on the surfaee ofthis 

E\Vald sphere, Ihen Ihe diffraclion condilion for Ihe (hk/) lattiee planes is fulfilled: The \Vave 

veclor of Ihe diffracled beam li (\Vilh ils origin also al P) for Ihe seI of planes (hk/) , is of Ihe 

same lenglh as liQ (Ilil = IliQD and Ihe resulting veelor diagram salisfies li = !iQ + H. Inlroducing 

the seattering angle 29 (and henee thc Bragg angle 9hkl) ,WC can deduee immediately from 

21li1'sin9 = IHI Ihe Bragg equalion: 

(5) 

29 
~d~ire~c~ti~o~n~o~f __ -r __________ ~~ ______ ~ 000 

incident beam 

Fig.2. Ewald cotlstruetioll in reeiprocal spaee, showing the diffraetion condition foe the 

hkl reflection. 
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In the case of single crystal diffraction a rotation of the crystal and therefore also of the 

correspondillg reciprocal lattice (which is rigidly attached 10 the crystal) is often used 10 set 

the diffraction conditions for Ihe measurcment of intensities I(H). 

If l!:ll > 2/), (then d"" < )../2) the refleetion hkl cannot be observed. This condition dcfines the 

so ca lied limiting sphere, with center at 000 and radius 2/A: only the points of the reciprocal 

lattice inside the limiting sphere can be rotated iuto diffraction positions. Vice versa if]~ > 

2dmax• whcrc dma.'( is the largest interplanar spacing of the unit eell, then the diameter of the 

Ewald sphere is smaller thell IHlmin. Under these conditions 110 node of the reciprocal lattice 

can intercept the Ewald sphere. Timt is thc reason why diffraetion ofvisible light (wavelength 

== 5000 A) call never be obtained frolll crystals. )'min determincs the mUOlmt of information 

available from a diffraction experiment. In ideal conditions Amin should be short enough to 

measure aH points ofthe rcciprocallattice with significant diffraction intensities. 

For areal erystal of Iill1ited perfeetion and size the infinitely sharp eliffraction peaks (delta 

fUllctions) are 10 be replaced by broadened Hne shapes. One reason ean be Ihe local variation 

of the orientation of Ihe crystallattice (mosaic spread) implying somc angular splitting of the 

vector H. A spread of interpJanar spaeings öd/cl. whieh lIlay be causeel by some 

inhomogclleities in the chemical cOlnpositioll of the sampfe, gives rise to a variation of its 

magnitude IHI. The ideal diffraction geometry on the other hand is also to be modified. In a 

real experiment the pril11ary beum has a finite divergence and wavelellgth spread. The detector 

apert ure is also finite . A gain of intellsity. which ean be aeeomplished by increasing Ihe 

angular divergence and wavelengths bandwidth. has to be paid for by some worsening of the 

resolution function anel hence by a limitation of the ability to separate different Bragg 

reflections. 

All of these influences can be studied by the Ewald eonstmctioll. The influence of a 

horizontal beam divergenee on the experimental eonditions for a measurement of Bragg­

intensities of a single crystal is illustrated in Fig. 3 where strictly monochromatiseel radiation 

(only ooe wavelength ]~ with 6AO~ = 0) is assumed. A so-called (J}-sean. where the crystal is 

rotated arouncl the sam pie axis perpendicular to the diffractioll plane, may be used for a 

reliable collection of integrated intensities in adapting the detector aperture .629 as a function 

cf the scattering angle 29. It is obvious that larger 620-values will give rise to a ltigher 

background and may lead to difficulties for the separation of ncighbourcd reflections with 

similar H-vectors in the reciproeal lattice. It is shown by this example timt a larger beam 

divergence with an increase in intensity ean restrict the resolution conditions. 
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Bragg-intensities of single crystals are recordcd in general by ro/n·29-scans (0 ~ 11 S I) with a 

couplecl rotation ofthe s3mple and the detector. The mainly lIsed bisectic special case consists 

of ffi = 9. The horizontal and vertical detector aperture must be chosen in a way to avoid 

syslcmatie eITers from cutting seme intensity of arefleetion. rhe pure m-scan (rocking-scan) 

recerds an intensity distribution of retlcctien ahnest perpendicular to the scattering vector 

Q = 21tH ~ Le. almost cOITesponding 10 a transversal scan. The rul2S-sean represents a 

longitudinal scan in reciprocal space reeording reflectioll profiles along H. 

",2 e 

Fig.3. Ewald-construction: Influence ofthe horizontal beam divergence on the experimental 

conditions for the measurement of Bragg-intensities 

direclion 01 

incident beam 

26 

p 

diffraction 

cone 

Fig.4. Ewald-construetion in case ofpowder diffraction 
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Powder diffractioll also may be disclissed on the basis of the Ewald·constrllction. An ideal 

polycrystalline sampie is characterised by a very large number of arbitrary orientcd small 

crystallites. Therefore, for CI powder only I tll is defined without prcfcrred micntalian. In 

Fig. 4 the corresponding sphere with radius Itll = l /dhkf is drawll around the origin of the 

reciprocal lattice 8t 000. For euch Bragg·re tlect ion the cifcle of intersectiOll with the Ewald­

sphere yie lds a diffraction cone. All reflections with equal intcrplanar spacing are perfectly 

superposed and C3IUlOt bc separatcd. 

7.3 Powdcl' diffl'actomctcl' 

There are two principally different powder diffraction techniques: the angular-dispersive 

ADP-method alld Ihe energy-dispcrsive EDP-mcthod, better kllown as time-of-mght method 

in the case of neutron diffractioll. In the ADP measurcmcnt the sam pie is irradiated by a 

monochromat ic beam CA = COIl St.). To each dhkl belongs a Bragg-angle Ohkl.Most of the 

neutron powder diffractomcters at steady-state reactor sources work according 10 the ADP 

melhod (e. g. Ihe D2B-instrument at Ihe HFRlILL in Grcnoble). Thc angular resolution of a 

powdcr diffraction diagram depcnds on the bcam divergences before and behind the 

:::: 
:< 
J: 
~ 
u. 

"" • & 

". 6r-------------~------------_.------------~ 

0.4 

0. 2 

Co X I noSoller ... ,'" 
nv. -ra'( S 11 -' o er :: -::. __ ._. _ ._. _ 

_ .-'_'_' - _._._.- :-;.-

Diffraction Angle I") 

, 

, 
, , / 

Fig. 5. Comparison of Ihe half-widths of powder Hnes for selected neutron powder 

diffractometers: D2ß at the HFRlILL in Grenoble(F), HRPD at NBSR in Lucas 

Boights (USA), SEPD at ANL in Argorme (USA) - the time-of-flight data of this 

instmment with 6d1d ::::: 1.5· 10-3 are converted in 29-values - and X-ray powder 

diffractometers: conventional and synchrotron facilities (CHESS, USA) [I] 
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monochromator, on the mosaic spread of the monochromator crystal , anel on the 

monochromator's scattcrillg angle 28M. In Fig. 5 for several X-ray- allel neutron powder 

diffractometcrs the half-width of powder lines (Bragg-reflcctions) 629 is given as a function 

of the scattcring angle 28. A largc 28M -valuc can be favourable to fealise sm aller line widths 

628 at lligher diffraction angles as can be seen for the D2B-instrument (20" = 135°). 

The plan of the E9 instrument at the HMI-reactor BER II in ßertin is shown in Pig. 6. The 

typical tcchnical data ofthis new powder diffractometer are: 

• collimations al = ) 0', a2 = 20', 0.3 = 10' 

• germanium and graphite monochromators with mosaic-spreads 6.M(Ge) ::::: 20' anel 

6M(PG) '" 30' 

• m.onochromator's scattering angle 400:s; 29M ~ 1400 

• 64 high pressure gas deteetors (,He, 8 bar) arranged with an angular interval of 620 = 2.5° 

164 co:!imators and detectors 

coUinator ' beam tube I vetocity 
seiectOl 

Fig. 6. Plan ofthe E9 powder diffractometer at BER IIIHMI in Berlin. 
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For a ADP-powder diffractometer the measuring time can be reduced substantially by the 

simultaneous use of many single detectOl's or of linear multideteetor systems. 

As an excmlple for a 2-axes diffraetollleter specially designed for the investigation of 

amorphaus systems and liquids the 7C2-instrument installed at Ihe hot neutron source of the 

ORPI-IEE-reactor in Sacla)' (F) is shown in Fig. 7. Combined with an exchange of 

monochromator erystals there are three different standard wavelengths available: A(Oe(111)) 

~ 1.1 A, A(Cu(III)) ~ 0.7 A, A(Oe(31 1)) ~ 0.57 A. rhe linear Illnltidetector allows a 

continuolls intellsity mcasurclllcnt over a range in scattering angle of 1280
• The angular 

resolution of this instrument is limited as there is 110 collilllatioll in between the sampie 

position and the deteetor. Dut the 1 Q I-range is very large. For the shortest wavelength 

A(Oe(3 11)) ~ 0.57 A the aeeessible values extend up to I Q I '''' = 2n I!:! I m" ~ 20 A·'. 

_ _ - 50URCE C"AUOE 

C'f'·----------· _~3 1Yl'E 5 OE COlll'."1101J (BARlllE1) 

, - .J MOIIOCHRO!.1'1EURS UlIlI5ABlES : 
Ge 111 : Cu 111 : Ge 311 

r - LVll".>'"VK SOUS WO[ 

~fll1RE )../2 

..... / ~ .-MONII [Ufl 
./ 

__ --OIAPHh'ACM[ 

___ _ -COl lll'A1lUR IImRNf 
>_ 1-- ---- - E/lCEIIJlE , v,OE POUR PAS\EUR OlCHAlJII lLO>J 

rOUR 0" CBrOSIA1 
., ._ [CHAIJl lllOIJ 

__ - '.II.'U"Jl Il'''UK 640 ClLlUlfS 

Fig. 7. Plan of the 2-axes diffraetometer 7C2 at the hot source of the ORPHEE-reaetor in 

Saelay (F) 

In the ease of the EDP method a polyclu'olllatie white beam is used with the seattering angle 

being fixed (29 = COIlSt.), The dhkrvalues result from the time-of-flight measurement of the 

neutron velocities - eonvet1ed to wavelengths - foe the hkl refleetions. This teclmique is 

specially suitable for pulsed neutron samees. Moreover, it offers some advantages for 
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complex sampie envirorul1cnts, such as extreme temperatures, magnetic fields, external 

pressures, etc. due to its fixcd scattering geometry. Thc resolution of the time·of-flight 

analysis ßt/t depends on the wavelength·dependant pulse structure of the moderator, on the 

length of the tlight path, a11(1 on the scattering angle 28 (a back·scattering geometry is 

recommended). As there are nonnally relatively short wavelengths in the beam, too, also 

higher indexed reflections with sh0l1er dhkl·values may be reached. Some typical technical 

data of the HRPD instalIed at the spallation source ISISIRAL in England are shown in Fig. 8. 

A special feature of this instmment consists in the very long flight path of about 100 m. 

scmple 
(96m) 

Fig. 8. HRDP (high-resolution powdcr diffraetometer) at the spallation souree ISISIRAL, 

England. Aresolution of ßd/d ~ 4·10-4 is achieved with a sampie position at 95 111. 
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Fig.9. Pawder diffractogram afbenzene: (a) section from 0.72 A,; d,; 1.03 A 
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Fig.9. Powder diffraelogram ofbenzene: (b) enlarged seelion from 0.73 A ,; d ,; 0.78 A 

The calculated dhu-values are indicated by the small Hnes at the top of the upper 

graph. The quality of the refinement C8n be judged from the difference in between 

experimental data and profile calculation in the lower graph. 

Thc excellent resolution of this timc-of-flight diffractometer is demonstrated by sections of 

the powdcr diffractogram of benzene shown in Fig. 9. Thc complete rage of 0.5 ::;:; cl ,:5; 2.0 A 

was analysed by means of the Rietveld profile method in order to refine the crystal structure 

of this molecular compound [2] (space group Phca; lattice parameters: a = 7.3551 A. 
b ~ 9.3712 A, e ~ 6.6994 A). 

7.4 Single er)'stal diffraetometcr 

For neutron diffract ion studies on single crystals actually there are in use the Laue-method 

with 2-dim. posi tional sensitive detectors (e.g. LADI-instrument with an image-plate detector 

al HFRJILL in Grenoblc (F)) and 2-axes diffractometers with single deteetors. New 

developments with 2-dim. detection systems become more and more important. 

To fulfil the diffraction condition for all vectors H of the reciprocal lattice (within 2sinOI)" < 

I H I max) single crystal diffractometers are equipped with a special goniometer consist illg of 

three independant rotations. Thc eularian cradle in Fig. 10 has in addition to the ro-axis (.1 to 
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the diffraction plane) two further rotation axcs '" and !.p, which are pClvendicular to each other. 

The ",-axis is also perpendicular to the ro-axis . Together with the rotation axis of the detector 

29 <11 to the ro-axis) this mcchanieal unit is ealled 4-circlc goniomcter (leading to the nmne 

4-circle diffractometer for this type of single erystal diffraetometers), The measuremcnt of 

integrated intensities Iili) of individual Bragg-rcilections is performcd aecording to the 

m/n,29-sean techniqucs described in chupter 7.2. For a eomputcr-eontrolled automatie data 

eolleetion a detailed knowledge of the crystal lattice is needed. Therefore, a single crystal 

diffraction experiment slal1s by a systematic search of re fleet ions in varying X and <p, with lhe 

restriction ro = e (bisected eondition), From the aecurale angular positions of typieally 20 

indexed refleetions the lattiec eonstants and the orientatioll matrix are determined. 

As an cxample for a single erystal neutron diffraetometer the Pli O/5C2-instrument installed 

at the hot neutron souree of the ORPHEE-reaetor in Saclay (F) is shown in Fig. 10. The 

monochromatic neutron Ilux at the sampIe position is increased by a monochromator system 

with vertieal foeussing. The use of small wavelengths allows lhe measurement of Bragg­

intensi ties up to large I!::! I-values (I!::! I m", = 2sin8m"l), = 2.8 A-'). 

, ;.: : .... :; 
, " 'Z' ,," . 

""" """ __ ..,-- C«l~~.2l1'.1 

Fig. 10. Single crystal diffraetometer PIIOISC2 at the hot neutron souree of the ORPHEE­

reaetor in Saelay (F) 

Attention: The lengtl,s of both the veetor !::! of the reeiproeal laUiee used in erystallography 

and the seattering veetor Q of solid state physies are expressed in A· l
. But there is a factor of 

2" wh ich means that I!::! I = 2.8 A-' corresponds to IQI = 17.6 A-'. 
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The influencc of the primary collimatioll 0.1 on lhe half-width of Bragg-reflections of a peffeet 

Ge crystal is showll in Fig. 11. The resolution curves for two different wavelcngths 

1..(Cu(420» ~ 0.525 A ancll,(Cu(220)) ~ 0.831 Aare plotted as a funetion ofsin an,. 

<il 
'W 
~ 

Cl 
W 
~ 

2 

). = .831 A 
.....-- °Cu (220) 

/ 
:2 
I 

a, = 14' "1 = 58-=-'" 1..0 = .525 A 
Cu (420) 

5 
u. 

0 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1 .. 

Fig. 11. Resolution curvcs of the single crystal diffractometer PIIO/SC2 at thc hot neutron 

souree of thc ORPHEE-reaetor in Saclay (F) 
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8 Sm all-angle Scattering and Reflectometry 
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8.1 . Illtl'oduction 

The methods of elastic scattering with neutrons del iver stmctural information from 

arrangements of atoms and magnetic moments in condensed material. Those arrangements 

can be precipitatcd phases in mixtures of metals, low ll10lecular liquids or polymers and olle 

gels information abaut sizc, Ilumber density and correlatiolls betwcen the objects. In 

scattering experiments the intensity of neutrons is measured as a fimction of 1ll0mCnlUIll 

transfer Q 

Q 4" . 0 ::;;-SIIl ~ 

/,. 
(8. 1) 

with the scattering angle 20 and the wavelcngth )~ of thc neutrons. Q is Ihe difference of thc 

wave numbers k (absolute value k=21t /A ) of incoming and scattered neutrons. Thc 

momentum transfer is inverscly proportional to the length seale of investigation; at Q of tlIC 

order of 1 Ä -I one measures inter atOlllic distances and in the region 10-1 Ä -1 -10-' A -I 

mcsoskopic objects of sizes betwecn IOÄ _ 104 A. Far aJl these invcstigatiolls specialized 

instnllnents have been developed. ]n this lecture we will introduce instruments fer small angle 

scattering and reflcctometry with neutrons. With these instruments objects within the bulk and 

at the surfaee are investigated. The maill elements of these elastie methods will bc separately 

int roduced in the last part of the leeture. We will discuss instnunents working at stationary 

Huc1ear research rcactors. In future spallation sources will become the more important sources 

as they show a larger neutron flux with a periodic time slrueture; those instruments necd qu ite 

different conditions far optimization. 

8.2. lntcnsity at Sam pie anel DetectOl' 

]n Fig. 8. 1 thc traces of neutrons far elastic scattering are depicled in real and reciprocal 

space. The il1/el1sity al Ihe somple (in linguistic lIsage: primary illtensity) is determined 

aecording to 

lIIo =L·F·ilO (8.2) 

by the luwinosily ol lhe sOl/ree given in units [cm-2 
S·l steradian- I

] 
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(8.3) 

for neutrons with wave vector ,k, the irradiated area of the s3mple F, and the divergency ofthe 

primary beam dcscribcd by the space angle M2. The Illminosity L is determined by the total 

Sampie 

k lIk/k 

Figure 8.1 : linees 0/ neu/rons in real- lind I'eciprocal space 

thermal flux of the neutrons $, the temperature ofthe moderator (h / 2rc) 2 k ~ / 2m;::: kn T and 

the resolution of wave length distribution according to 6k/k and detenllined by the 

monochromator. The scattcred intensity in adetector element with space angle öOo and 

scattering angle 20 Of scattering vector Q respectively is given as 

d1: 
"'I (0Q)~ "'1 ·D ·T· - (0Q) ·M2 

D ' _ 0 dn '_ 0 
(8.4) 

with sample thickness D and diminution coeft1cient T of the primary intensity (transmission). 

The macroscopic scattering cross section dL/dn is the experimental result and is uSllally 

givcll in absolute units [I /em]. 

8.3. Small Angle Scnttering with Neutrons 

The method of small angle seaHering (SANS) is a broadly used tool in research. There are 

Ihree different SANS techniqlles: The pin-holc SANS, the double erystal diffractometer, and 

the focusing SANS. The first two types of instnunents are being used in our laboratory in 

Jülich, and a first focusing SANS instrument is presently built ami will start operation in our 

laboratory within the next year. 
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8.3.1. Pill -Holc SANS 

The prilleipie layout of a pin-hole SANS is depieted ill Fig. 8.2. After the fission proeess, 

thermalizatioll. and a furt her moderation in the cold source the neutrons are guided through 

neufron guides 10 the instrument. Monochromator and collimator are filters for neutrons with 

a predetermined wavc length and divergcncy. Thc collimator consists oftwo apertures of 

I--jfiL-c ~-1;-:-"20'-;m;;l--1 - "1' --I"L-
p
--;-;Jl-='-2>iiO~m~I ----+ii '" I 

~ __ I 

Figure 8.2: Principle design afpinlwle SANS 

neutron absorbing material as fi. Cd and as monochromator OIlC has a velocity selec/or, 

delivering a monochromatic beam of wave lengths betwecn 5 and 15 A with a relative mean 

square deviation of about < Ö/~2 >05 I< A. >= 0.1. After passing balh apertures the neutrons 

irradiate the sampie and part of Ihe neutrons are scattered. The thickness of the sam pIe should 

be adjusted in a way, that only about 10% of the neutrons are scattered in order to avoid 

remarkable effects from multiple scattering. The scattered neutrons are counted in a two 

dimensional/ocal sensitive de/ec/or. The neutrons not scattered by the sampie remain in thc 

primaI)' beam and are absorbed in the beam stop in front of the detector. The resolution 

funct ion of this cxperiment is given as 

< öQ' >~~[(~)' +(~)' + d ~ (_I +_1_ ), +0 ' (~)' 1. (8.5) 
12 Lo Ls L, L p <A> 

The symbols Ls und LI) represent the distanccs bctwcen thc two apertures and betweell 

sampie and dctector, the symbols dD and dF, the diameter of the two apertures. For a given 

instrumental setting neutrons can be detected in a Iimited angular interval ~ the setting is 

adjus ted by the distance between sampie and detector bet\Vcen 1.25 und 20 111 leading for the 
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possible neutron wave Icngths belween 5 and 15 A to a Q intcrval of 10-) A-' - O.3A-'. The 

resolution has always been adjustcd 10 the instrumental setting and which is dctennined by the 

length ofcollimation Ls ' The space between selector ,md first apert ure is always bridged by 

• 
KWSI: Flux on Smnple 

10' 
~ 

N 
V> L l.Ql.to.o~ 
S 
U 

5 
0 .v; 10 c: 

] J.==7; 11U}.=O.2 

EntranccApcrture 3·3 CIIl 
, 

Reactor Power 20MW 

Collimation [m] 

Fignre 8.3: Sampie il1lellsity/or di[(erel1llellgth q( collimatioll 

neutron guides which in segments cf Im length cau bc posed in Of out the beam; in this way 

lhe primary intensity can be rcmarkably enhanced hy a bcam with larger divergency. This is 

showll in Fig .8.3 where lhe measured primary intensity is depicted versus the length of 

callimation. 'fhe optimized conditions of the instnllllcnt are achieved, when all elements of 

resolution in Eq.(8.5) contribute the same amount 10 the "desmearing" of the scattered 

intensity. Optimal conditions are accordingly obtained for the following instrumental setting: 

lind (8.6) 

Olle always tries 10 perform measurements with as much intensity as possible with 

sufficielltly good resolution. Such an optimized instnllllent has aresolution of 

BQ,,>. ~ (k I J:l). dEI L D (see Eqs.(8.5) und (8.6)) and deli vers an inlensity al the sampIe 

according 10 

öl ~LÖQ~L' ~L(BQ), L' . 
o L1 D k n 

o 
(8.7) 

'fhe last relationship shows that the intensity at the sampie is proport ional to the square of its 

length and is the reason of 40111 lang pin-hole SANS instmments. The upper limit is 
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determined by the maximum divergence of the neutrons aceording to the total angle of 

reflection. 

A further important eritcrion for the quality of a SAS difrractometer is the sharpness of 

the primary neutron beam prepared by the collimator. In Fig.8.4 prilllary beam for a given 

10' 
, ."'-"'. . ~ 

10'1 
, , , 

~ , 
.2 

, , , , 
10.2 , , 

~ • • " B 
, , , 

.5 10.3 

'0 

" 
, 

N 
, 

10'4 
, 

~ 
, , , , 
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• • 

0 10'5 
; ., 

Z ~ oY_ . -~. ' . 
10" . .. ~'r \ ... , .. 

.!I#~. 2[' 2r 1fl-
• I fl 

-20 -15 -10 -5 0 5 10 15 20 

Position [em] 

Figure 8.4 : Resolution curvefor a given conjigllration 

configuration has been depicted in a scmi-Iogarithmie presentatioll . One recognizes, timt at 

twiee the full half width the primary intcllsi ty has been decreased to va lues between 

10-5 und 10-6
. This result demonstrales that the instnullent is in a good eondition; the 

background ncar the primary beam is suft1eiently smalI. so that also in this region scattered 

neutrons ean be sensitively deteeted aud analyzed. 

8.3.2. FoclIsing SANS 

The principle of a focusing SANS has been depicted in Fig.8.5. The monochromatic neutrons 

ellter the instnullent through an apert ure with a diameter of about 1111111 and eilt er the focusing 

mirror with the fuH divergence of the neutron guide. From the mirror the neutrons are 

reflected and in the focal point the neutrons are detected from a local sensitive detector. The 

resolution element of this detector has the same size as the aperture of about Imll1. Just 

behind the mirror is the position of thc sampie. The instmment with the lengths given in the 

8-5 



figure and with neutrons of about I sA wave length covers a Q range of (10 -3 - IO"'"""' )Ä. - I ; it 

measures in the resolution range of light scattering. The intensity at the sampie is given as 

Detector ".... 

I ____ AP e rture :5 

I "'. 
l lic coc 

[ I 

[. 10 m 

·1 
10 M 

Figure 8.S: Schematic design ofa focusing SANS 

öl ~LM.l~L2 =L(4y' )(BQ), L' 
(I L 2 D C k D 

D 

(8.8) 

\Vithin these small Q ranges this instnllllent is superior to the pin-hole instnllnent because 

neutrons with the maximum space angle 4y~ of the neutron guide are used. The concept of 

100 b 
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Abb.8.6: Resolutioll Cl/lve 0/ ajocusillg SANS 
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the fOClISillg SANS is knowil far 10ng time. Howevcr, only quite recently it is possible to 

build such instruments with the necessary good quality as showll from the experimental 

resolution curve depicted in Fig. 8.6. The reasan is the high demand Oll the surface quality of 

the focusing mirror; those mirrors can be built taday as the result of an extended project for 

the developll1cnt ofX-ray satellites. 

8.3.3. Double eryst"1 DiiTI'"ctoll1ctcr 

Froll1 all three SANS instmments the double crystal diffractoll1eter (DCD) has the highest 

resolut ion. Hs coneept is depictcd in Fig.S.? The central part ofthi5 instrument are tWD 

Ch~nnel c[y st ~l s 

~t~+1 
$ a mp le Optical 

Be n c h 
Detecto r ~ 

V 
FiguTe 8.7: Schematic design 0/ a double cJystal di!frClctometer 

perfect Silicon single crystals, mounted on an aptical benelI. The renectivity of a perfect 

crystal is described by the Danvin curve accordi llg to 

(8.9) 

and depicted in Fig. 8.8. The parameter y is the scattering angle which is normalized in a way 

that the interval where neutrons are fhlly reflected are within I yl~ I . Tile second crystal is 

rotated with respect to the first one. When the corresponding lattice planes ofboth crystals are 

oriented parallel to each other the Danvin curves of both crystals overlap completely and olle 

measures the maximum illtensity of the resolution curve as showll in Fig. 8.9 at ß=O. Ir the 

second crystal is rotated, balh Darwin curves only partly overlap with the result of a smaller 

reflected intensity. The rotation of the second crystal is mathematically equivalent with the 

folding of the two Danvin curves, which gives the resolution curve in 
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Y 

Figure 8.8 : Dcull'ill CUl've q{ler single (md 'riple rejlecliolls. 

Fig.8.9 and which is the scattered intcnsity from the second crystal. In the region Iyls 1 the 

reflectivity is equal one, which Illcans total renection. The width oftotal reflection is givcn as 

b e-wIFINA' 
60 -..c:-c --'--''----

411: sin20 A 

(8 .10) 

For instance, for the (331) lattice planes of a Silicon single c!)'stal and A= 1.8Ä neutrons the 

Bragg angle of diftraction is about 45° and the half width of the resolution curve is 

A0 = 3.2Wad, which correspollds to an angle ofslightly more than halfa second ofarc cr a 

Q = 1.12 ·IO -~ A - ! . This examples shows, that this method mcasures at very small angles; this 

dcmands protectiolls against mechanical vibrations, fluctuations of temperature, anel Illuch 

patience from experimentalist. 

The strength of this instrument is its vcry high resolution, wh ich is even bett er than of 

light and its relatively simple and cheap design in comparison \Virh most other neutron 

scattering instruments. This illstnnnent can also be successfully operated at smaller research 

reactors. Disadvantages are that it measures in sJit geometry, that the experiment points are 

measured in sequence, and that it is rat her poar in intensity. There are, however, 

improvements possible by special designs of the crysta1s. So, the relative high background 

near the primary beam ean be strongly improved by so ealled channel cut crystals. Ir the 

neutrons are reflected \Vithin the channels of a compact single c!)'stal (Fig.8.7 and Fig.8.8) f.i. 
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three limes, thell olle mcasures a Darwin curve l11ultiplied three limes with itself and gels a 

reflection curve as depicted in Fig. 8.9 with the region oCtatal rcfleclion and rnuch sharper 

f 
Si",; A~4.48A 

2.0 (~ 

1.5 
0 

~.s mode 'v; 
il 1.0 ~ 

.8 .VHmodc 

~ 0.5 

0 ,0 
-5 -4 -3 -2 -I 0 2 3 4 5 

0[60] 

Figure 8.9: Theorelical ClII'lles 0/ resolution 0/ the double cIyslal d([fraclomeler JOI' single­

sillgle (.,-s) alld Iriple-Iriple (I-I) rejlecliol/S. 

10' 

I 

Experim . Resolution: Si
lll

; A=4.48Ä 

L\li( s-s)= 5'1.2 ,und 

ßö(H)=25.8~und 

-30 o 30 60 90 

Scattering Angle 0 [wad] 

Figme 8.10: Experimental resoilition after single-single alld triple-triple l'ejlecliolls withil1lhe 

cllmme! cul cl)'slal. 
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tails. This reflection curve leads after folding to a Illuch sharpcr resolution cUlVe. 

Experimental resolution cUJ"ves of single-single emd triple-triple reflectiol1s are showll in 

Fig.8. 10. One clearly see the effect ofmultiple renections. 

8.4. Reflcctomctcl' 

lnvesligatiolls of surfacc propertics by surface reflection of neutrons or X-rays is a relatively 

new technique and is presently very active field in research. In Fig. 8.11 the specular 

Q 

Figure 8.11 : Traces 0/ neutrons (md diagram 0/ momen/ulII 0/ specu/ar ref!ec/ion 

refleclion of neutrons at a surface is shown alld in Fig. 8. 12 a refleclometer for neutrons has 

been schcmatically depicted. Similarly to the pin-hole SANS instrument in Fig.8.2 the 

divergcncy of the ll1onochromatic neutron primary bC8m is detennincd by two apertures. In 

this example the monochromatic neutron beam is detennined by a single crystal within the 

neutron guides. A linear position detector measures the reflected neutrons. Specular reflection 

as shown in Fig. 8.11 is defined by the same incoming alld outgoing angle. In this case the Q 

vector has an orient at ion perpendicular to the surface anel only heterogeneities in dircction 

perpendicular to the surface e.g. parallel to Q are measured . An example is shown in Fig. 8. 13 

givillg the reflection profile of a Nickel metallic film coated on glass. In this case Olle 

measures the heterogeneities formeel between Nickel ami glass and in addition the surface 

roughness between Nickel and vacllum according to the different values of the coherent 

scattering Icngth densities. The intensity profile shows total reflection at slllalJ angles and thell 

at larger angles slrongly decreases with periodic oscillatiolls. From this profile one can 

determine thicklless and roughness oflhe metallic film . 
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Figurc 8. 12: Schemofic design 0/ Cl dtUI'({CIOmelerfor neutroJl ref/ec/ometIY. 
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Figure 8.13: Curve ojrejleclionjrom a Nickel sill/ace measllre al/he "HADAS" instrument. 
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For the Nickel film olle gets a thickness of 838 A and a rollghness of 15 A. The open dots in 

Fig. 8.13 show the reflection from glass a10l1e. One clearly observes a smaller angle of total 

reflection aud a dccreasc equivalent to the Darwin eurve in Eq. (8.9). At relatively small 

intensities of 10'3 scattering from background becomes visible. 

Olle ean also study heterogeneities within the surface whieh are fi. formed by phase 

separation. In those cases Olle also observes nonspeeular reflection in direelioll paral1el to the 

surface. 

8.5. 1111POl't:1l1t Elements of Sill all Angle Scattel'ing and Rcflectioll 

The most important elements of small angle scattering and refleetion are (1) the neutron 

gllides far an effective transport of neutrons. (2) the velocity selector and the perrect single 

crystals far monoehromatization of the neutrons, anel (3) the loeal sensitive detector for a fast 

detennination ofthe scattering anglc. 

8.5.1. Ncutron GlIide 

The phenomenon of total refleetion is demollstrated in Fig.S. I3 on a Nickel film . This effect 

is used to transport neutrons through neutron guides over long distances without ll1uch loses. 

The angle of total reflection is given as 

(8.11) 

with the coherent scattering lengtl1 dCllsity p. Natural Nickel is a good ehoice for eoating 

material in order to have a large angle of total reflection (see Figure 8.13); an even better 

choice is the isotope Nickel 58 becallse of its large coherent seattering length. So, for natural 

Nickel one gets a total angular of reflection of 0 c = 6'.)"[Äj "nd fOT the isotope 58 a 

O e :;:;7.1'· f..[Ä] . About 30 years ago neutron guides were invented at the research reaetor in 

München; Neutron guides lead to a mueh broader use of neutron scattering with instmmcllts 

posed far from the sOllree and with Illuch better conditions. 

Neutron guides eoated with a so-called super mirror transport neutrons with cven 

larger angles of divergence. In addition to Nickel those mirrors cOllsist of alternating layers of 

two difrerent met als (their coherent scattering length density must be suftlcient ly different) 

with an ingenious scquenee of different thiekness, in order to excite Bragg scattering in a 

eontinuolls range of Q perpendieular to the surfaee. In this way the angle of refleetion of 

Nickel can be increased by more than a faetor of two; howcver, the best aehieved reflectivity 

of super llliITors is still slight ly less than one so that one gets appreciably losses of neutrons if 

transported over long distanees .. 
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Neutron guides also enable to transport neutrons Oll curved traces. The bending rad ii 

can bc made very small by so-called bender guides consislillg of several small and parallel 

channels. BCllder with proper materials for thc layers are also used as a polariser. 

8.5.2. Velocity Selectol' 

Figure 8.14: ROlor 0/ a wlocily selector built /r01l/ Dorniel'. 
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Figure 8.15 : Time-of:flight spec/tuIU jrom a velocity selee/al'. 171e neutroll wave lellglll is 
evoluGfed jrom l/re velocity, e.g. 11'0111 the flight time alld l/re distclIIce belweell chopper and 
defeclor. Thc small dip il1 Ihe imens;ly 01 7.94A is caused frolJl Eragg scatlering ill Ihe 
Bismutit /iiterjllsl behind Ihe cold souree and is tlsed os Cl reference value. 
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The rotor of a velocity selector is shown in Figure 8.14. This rotor is mounted in a housing 

and can rotate with a speed up to 30000 rpm. It is transparent for a given wave length 

depending on the speed of the rotalor. A distribution of neutron wave length after passing the 

selector is shown in Figure 8.15 . The neutron wave length is inversely proportional to the 

frequency of rotation; the exact relationship and the half width of the wave length distribution 

is determined by the tilt angle aud the width of the channels. 

8.5.3. Local sensitive Detectors 

Loeal sensitive dctectors are necessary for an optimized use of small angle scattering alld 

reflectioll instnJlnents. The resolution element of adeteetor for the pin-hole SANS is typically 

O.5-lcm, for the foclIsing SANS and reflectometer 1111111. A two dimensional local sensitive 

detector has at least 64x64 resolution elements. There are deteetors on the basis of gas- and 

seintillation detcctioll . 

8.5.3.1. Gas Deleelo!' 

The presently Illostly used deteetor for SANS are JHe gas deteetors. The neutron is absorbed 

by an 1 He gas atom which then decomposes according 10 

JHe+n --> JH +' H+O.77MeV 

cothode neutron 

pnmory 
ionizotion 

\, 
3H .. 

.... "I dri ft 
----r-- region 

I 

anode 

Figure8.17: Process Cl! de/ec/ioll ol/he 1 He gas deleclor 
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into two ionic particles with kinetic cnergies ofO.573Mev and O.191Mev for the proton and 

the 3H (tritium), respectively. As show" in Figure 8.17, balh ions cause a "primary" 

ionization cloud \Vithin the surroundings where the neutron was absorbed. These ions afe 

accelerated by an clectric field and produce by a so-called "secondary" iOllization process an 

avalanche of ions. Only the electrons give a signal at lhe anode because they achieve a much 

larger acceleration according to their smal1mass. Thc size of lhe voltage pulse at both ends of 

thc anode is used for determination lhe position of absorption and thereby the scattering 

angle. 111 a two-dimensional detector there are two perpcndicularly arranged wire lattices, 

from wh ich by coil1cidence measurements the position ofthe absorbed neutron is determined. 

8.5.3.2. Scintillatioll Detectol' 

Another type of detector are solid state detectors llsing the principle of scintillation. The 

reaction equation is the following: 

' Li+n --> 'He+J H+4 .79MeV (813) 

A Li glass with 6 .6% 6Li is mixed with Cerium (Ce). By absorbing a neutron in 6Li two 

ionic products of reaction are formcd, which interacting with Cerium prodllce about 4000 

photons of 400nm wave length per neutron. In the disperser the photons form a light cone of 

90° as depicted in Fignre 8.18. The light eone is adjusted by the thiekness ofthe disperser and 

by the slit between scintillator ami disperser (total reflection) so tllat the light overshadows 

two photo multiplier. The photo multiplier have a diameter of 8cm alld in tota l 8x8 photo 

Neutron copsvent ~ ::::::::or 

~========~·~=====~~~f--Air Gap }'IM 
~!II\~ Ught D;spemr 

// I/I \ \\""'-----+-- Ught Cone 

Photocathode 

-t-- PMs 

f--------- Anode Cvrrent 

Figure 8.18: Process 0/ delecli011 0/ a 6Li sänlillalioJl deleClor 
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multiplier are arranged in a quadratic array. 'fhe resolution of one pixel is 0.8 CI11 . Such a 

resolution beeomes possible by an algorithm ealeuills from the light intensities of several 

photo multipliers. In a first stage a rat her mde determination with an llncertainty of 8em is 

made by the position of the photo Illultiplier with the largest light intensity. In a second stage 

he neutron position is detennined by also eonsidering the intensity of the neighboring photo 

multipliers. An important advantage of this deteetor is the !arge atOlllic density of the 

absorbing material and it s eonsequently large detection probability; a 1ll1m thiek absorbing 

material of a scintillator has a 93% detection sensitivity of 7 A neutrons. Such adetector 

(Anger camera) was developed at the Forschungszentrul11 Jülich and is lIsed in our KWSI 

small angle instnllnent. 
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9 Cl'ystal spectl'ometel': triple-axis 
and back-scattel'ing spectl'ometel' 

F. Güthoff, H.Grimm 

It has been emphasized in lhe preceding lectures that thermal neutrons provide wavelengths 

Ä comparablc 10 inter-atomic distances and encrgies tIw in Ihe order of collective excitations 

of condcnscd matter. In order 10 determine lhe properties of a sample - as represented by Ihe 

scattering [ultclion SCQ,M) oc d 2a /dQdE' - a variety of instruments may be used. The 

evaluation of Ihe single differential cross seetion reprcscntcd by da I dQ is Ihe (apie of dif­

fractometers. However, since - in general - the scattering of neutrons by the sampie is COIl­

necled with an energy transfer it suggests itself 10 analyze Ihe neutrons scattered inlo Ihe solid 

angle dQ in addition with regard to their energy. Introducing and investigating the double 

differential cross section d2a / d.QdE' thus corresponds to the switching from diffractometer 

to spectrometer. In order to determine wh ich energy transfer E - E' ::; tlW is associated witlt 

which momentulll transfer Q. the neutrons have to be characterized before lütting the sampIe 

by means of the so-ca lied primary spectrometer and after leaving the s3mple by the secondary 

spectrometer. It will be shown in the lecture on time-of-flight spectrometers that the energy 

of neutrons can be detennined via selectioll of velocity and travel time. Recall that thermal 

neutrons (300K) having an energy of kBT::;Xm/ .... 25 meV travel with a speed of about 

2200m/s. According to de Broglie one may associate a wavelength A to a moving partic1e 

with mass 111 • This fact is used by crystal spectrometers wh ich - by means of Bragg scattering 

Il''!' =2dsin0 (9.1) 

seleet neutrons of energy 

tz 2k2 /i } 
E=-=--

2m 2mA/ 
(9.2) 

llllder Bragg angle e for given spacing d cf the selected atomie planes. The modulus of the 

wave vector is reinted to the wavelength by k ::; 2n I A. . 
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Two types of crystal spectrometers will be introduced in this lecture. The triple-axes spec­

trometcr represents olle of the earHest neutron spectrometer types. Jt was developed by ß. N. 

Brockhouse. By means of Ihis facilily his essential sludies [I] resulled by the eud of the 

fifthies laying ground for his winning of the Nobel prize for physics in 1995. In contrast, Ihe 

backscattering spectrometer is of more recent origin (the first facility of this type was put illte 

operalion in JUlieh al Ihe begiuning of Ihe sevenlielhs by B. Alefeld) and was slimulaied by 

ideas of Maier-Leibnitz [2]. 

Deth types of spectrometers can be - similar to time-of-flighl machines - positioned at cold 

and thermal neutron sources. Especially for triple-axes spectrometers the possibility is real­

ized to lIse them at hot sources wltere neutron cnergies range up 10 leV. 

9.1 COinmon fcaturcs of cryslal spcctrolllctel's 

Olle of the most important properties describing and charactcrizing spectrometers is the reso­

hit ion functioll. It is essential to detennine and to optimize this function sinee it detennines 

the type of dynamical behaviour wh ich may sueeessfully be measured. For a substance to be 

investigated, Ihis might mean that several different spectrometers are to be employed in order 

to detennine the whole range of interesting excitations. According to the expected excitation 

energies not ollly a change in the moderation of the neutron souree but also switching to a 

conceptually different speetrometer might become nccessary. However, already for a given 

spectrometer, resolution and flux may be varied by an order of magnitude taking advantage of 

available measures. Amongst other aspects. the knowledge of the instntmental resolution 

functiOJl is of central importance in view of lhe rat her limited neutron flux , since ~ for exam­

pie - the size of the measured signal varies proportional to the inverse fourth power of the 

chosen average collimation for a triple~axes spectrometer. Thus, for each experiment, a suit­

able compromises between resolution and intensity have to be chosen. A comparison nught 

elucidate this point: e.g. 1017 
- 1021 quanta/s are typical for a LASER beam whereas a reac­

tor like Ihe DlDO offers normally 106 
- 10' neutrons lem'· s (monoehromalic) al the sampie 

position. In order to make the most efficient use of those neutrons, different strategies - dis­

eussed below - are pursued by the various crystal spectrometers, 

For a crystal spectrometer olle may write the measured intensity scattered into the solid angle 

6Q with the energy spread 6tzw in the form: 
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(9.3) 

The first part of eq. (9.3) up 10 (he cross section of the sampie represents information aholll 

the spcctrum of (he neutron sauree A(k) und the reflectivity of the Ill.ollochromator p(!s); the 

!lumber of seatterees in Ihe sampie is N. Thc last part refers 10 Ihe signal measured by thc 

secondary spectrometcr. Since monochromator (primary side) and analyzer (secondary side) 

act by the same physical principlcs it is advanlageous 10 describe Ihe instrumental factors ami 

thus the resolution in eq. (9.3) more symmetrically. Ta this end we lIse the atready introduccd 

relation betwcen cross section and scattering fUllction 

(9.4) 

.nd lVilh Ihe help of M' M' fj''l fj ? .6.V' 
6Q. f/t;(j) = " " .. :"" k'6k' = -'-' - lVe can relVrile eq. (9.3) 10 

k,2 111 • 111 . k' 

M ~ A(k)· N · S(Q,W)' p(k)6V· p'(k.:,)6V' , (9.5) 

wltere - as will be shown below - Ihe volume elements in wave vector space are given by 

av = äkJ.. ' ·/)J(J..1 ·6kl · 

In this section, now, the most important elements for the triple~axis and the backscauering 

spcctrometcr shall be introduced. It will become obviolls that exploiting an essentially identi­

ca! principle leads to quite different set-ups and properties. As a first step the general influ­

ence of various components on the resolution will be described by means of the triple-axis 

machine wh ich will be followed by an optimizalion of Ihe physics involved (one sided in a 

certain sense) in the shape of the backscattering spectrometer. 

9.2 Pl'inciple of the cl'ystal spectl'omctcl' wHIt threc variable axes 

Fig.9.l shows the prillciplc layout of a Iriple~axi s spcclromcter. Neutrons of a defined wavc· 

length Aare selected from an incident "whitc" beam by means of a single crystal (mono-
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chromator M, first axis) under the associated angle 20~, according to eq. (9.1). The sampie S 

undcr inspection is positioned in the diffracted bcam. The sccondm·y spcctrometer moves 

around the sampie thereby selecting ncutrons scattered by an angle 28s(second axis) which 

are further sorted with regard to their energy via tlte angular setting 28 A of an analyzer crys­

tal. A (third axis) and coulllcd by dctector D. Thc scattering vector Q as weil as lhe energy 

transfer tuv are determined by the angles 20.$ and 20 A for given incident wave vector k 

(see also Fig.9.2). 

Fig.9.1: 

a 
o M 

2B 
M 

a 
2 

D

II 

Schematic layout of a triple-axis spectrometer with: collimutors Oi" monochroma­
tor M, sampie S, analyzer A, detcctor D, incidcnt (scattered) wave vector!s. (!s.') 

Thereby, the wave veclors !s. und !s.' are connected with lhe variables Q and hw by the COIl­

servation of momentum and energy. In the resulting scattering triangle (Fig.9.2) the deviation 

of the foot F from Yt Q determines lhe energy transfer hw. The sense of this deviation de­

termines whether the neutron has gained (k < k', E-E'=hw < 0) or lost energy (! > k: tlW 

> 0) by the scattering process. In order to influence the divergence of the neutron beam, col­

limators aare inserted before and after lhe crystals by wh ich neutrons are selected, Detection 

of neutrons is by materials with an exceptionally large absorption cross seetion, The involvcd 

nuclear processes are e.g. I08(n, 0 ), 6Li(n, 0 ), and 3He(n,p). The most common type of de­

tee tors is eonceived as proportional counter filled with 3He havillg an absorption eross sectioll 
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of 5300 harn far neutrons whh 25 meV. With lhe typical active lCllgth of abaut 5 cm und a 

fillillg pressure of about 5 bar, the coullting probability feaches >95% for thermal neutrons 

(the absorption cross section is reciprocal 10 Ihe speed of the neutron). 

Fig.9.2: 

2 1 " 

t; E = h W -k -) I 2m 

} 112 g = l12(t - t') 

1/2 hw Q , , 
11 Q 12m -

Geometrical relation between wave vectors k and k' on the one hand siele 10 mo­
mentum- fi Q and energy transfer !iw on Ihe other hand. Since (Js.. !f ") represents 6 
dimensions, yet (Q.CO) 4 dimensions, only, arbitrary sohnions of vcctor r. on lhe 

plane perpendicular 10 Q resull for a given (Q,w )-point. 

It is meaningful to insert a neutron monitor at the exil of the primary spectrometer . This de­

vice is principally similar 10 a counter absorbing and detecting, howcver, a small fraction of 

the incident neutrons, only. The measured spectra may thus be normalized to the number of 

incident neutrons which is essential far lang measuring periods sinee the neutron flux may 

undergo appreciable fluetuations. In addition, für a reaetor of the type DIDO, the average 

neutron flux inereases by obout 10% du ring anormal eyete. 
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Fig.9.3: 

h w 

, , 
' --.' , . : 

-- ' ,,-- r-·',·, 
k ' ," 
- :~-

9 

a, 

a, 

Representfilion of the theoretical measuring range of a neutron spectrometer with 
fixed incident wave veetar fi. 

The term Iriple-axis speclromeler indicates already the versatility of (his instrument (not only 

in real space) which distinguishes Ihis cancept [rom other types of spectrometers. As lang as 

the radius of action is not barred by Ihe radiation shielding, arbilrary points in Q.w - space 

may be selected, For fixed incident wave veetar, those points belang 10 a parabolic surface 

wh ich is defined by momentulll- and energy cOllservation as shown jn Fig.9.3). 

(9.6) 

/1E = t/w =-"-(k' -k") 'm . (9.7) 

9.3 ßcam shaping 

Duc 10 Ihe fact that neutrons are uncharged and thus may penetrate materials ralher easily, 

neutrons may be bundled oe focused 10 n limited extent, only. This aspect aggravates with in~ 

creasing neutron energy. Already in the source, there arises the problem to guide a suitable 
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llumber of neutrons through "holes" (beam tubes) in the biologieal shiclding 10 the experimen· 

tal setup. From the total solid angle of 4 0 • only Ihe fraction travelling in Ihe direction of (he 

beam tube will contribute 10 Ihe flux. Thc lI sed divergcnce of the beam is can merely be eho· 

sen by annihilating all those neutrons by absorbing materials travelling outside a defined an­

gular range. Thus a beam tube represents Ihe simplest version of a collimator. It is comparable 

10 a system of two diaphragms positioned in a distanee of same meters. With a typicallength 

of 3 m for the beam tube and a cross sec tion of 0.1 m Ihere results a divergence of about 2° 

for Ihe neutron bcam. 

Now it turns out timt it is less rneaningful 10 collimate Ihe neutron bealll in the vertical plane 

as tight as in the horizonta l (scattering) plane. Tilting the scattering triangle (Fig.9.2) slight ly 

out of the scattering plane inflllences (he selected (Q,W) -point either not nl all or in second 

order, only. If collimation shall be achieved within a short distanee, thereby making allow­

allee for a desired anisotropy, olle lIses a so-called Salier collimator. Ta this end, a set of co­

planar foils coated with absorbing material is mounted vertieally with a distance of say I 105 

nun. Choosing about 30 cm for the leng th of the foils, olle may achieve a horizontal diver­

genee of the neutron beam in the order of 10 milllites of angle. Yel one has to take into ac­

count that switching to half of the divergenee entails about the same reduction of the neutron 

flu x! The facts that the foils have a finite thickness and that their absorption is less than 100% 

modifies the ideal triangular transmission curve by rounding the top and by the appearance of 

tails beyond the base. This modified cllrve may weil be represented by a normal distribution -

a useful property for folding operations. In regard to the interpretation of measured data the 

more sharply Iimited resolution triangle as realizcd by the chopper of a time-of-flight ma­

chi nc would be more desirable. Since a weil defined cut-off clearly separates the change from 

elas ti c to inelastic scatlerillg the difficulties in interpreting the quasi-elastic transition region 

which involve the knowledge of the exact shape of the resolution fUllction are greatly reduced. 

The anisotropy of the divergence may be exploited by a vertically focll sing arrangement of 

monochromator and/or analyzer crystal in order to increase the neutron flllx at the sampie as 

shown in Fig.9.4). It is weil known from optics timt the inverse focal length is given by 

11 f;:::: C-t; + i;) and that the ratios of heights for image and saurce is equal to that of their dis­

tances LY; •. Since, in genera l, the Bragg angle e * 0°, the focallenglh depends on the 

Bragg angle and thc radius of vertical curvat ll re by 
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R 
f=­

sinG 
(9.8) 

The distanccs 4 ~ for a given spcctrometer are 10 be considered as fixed quantities and thus 

the curvature R of lhe crystal has 10 be variable. This may e.g. be realized by lhe parallel ar­

rangement of lamellac of single crystals which can bc tilted individually. An additional gain 

facter results from the height ratio of monochromator 10 souree. Depending on Ihe relative 

heights of s3mple and ceystals an increase of Ihe neutron flux at the sampie by a fuctor of 210 

6 might be achieved. The possibility of a horizontal focusing - whereby the influence on the 

resolution is no longer negligible - will be discusscd fmlher down. 

Fig.9.4: Verlieat focusing: Thc gain factor P for Ihe intensity at the sampie is given by the 
ratio of heights for souree and image (h,lh,) and the height of the defleeting crys-

tal hM in units of the height of the source by: 

Silllilarly to e.g. light, one may mirror and thus guide neutrons. On the basis of the Fermi 

pseudo potential Vone obtains Ihe index cf refraclion for neutron by 

kR 11 =-= 1- - = I 
k, E 

27d1'1I'-' . p(r) . b,., (1') 
2 2 I =: 1 t, k (2m) 

J..' PU:) . b, .• (r) 

2" 
(9.9) 

where b,., (L) denotes the average scattering length and P(l') the partic1e density. The lasses 

duc to the total renection are small even far a rather modest quulity of Ihe mirroring surface. 
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By suitablc coating the simple beam tube may become a neutron guide und lhe l/r2-1aw is 

thus ci rCllIllvented, Accord illg to eq. (9.9) one should lIse materials far such Illirrors wh ich 

possess a large coherent cross section tagether with a large atOlnic dcnsity wh ich is fulfilled 

for lhe isotope 58Ni with b= 14.4 ·10- J' m. Since the limiting angle for total refleetion is ex­

tremely small (t/Jc- I A. =:: O,Jo/lO·iOm), simple homogcncous couting could be used success­

fully far cold neutrons, ollly (the tcchniquc to produce super mirrors opened the possibility 

far guiding neutrons with encrgies up 10 lhe thermal range). By means of the neutron guides 

instruments having still a high neutron flu x cnn be sei up a! larger distances from the reaeter 

core. If • in addition, such a neutron guide is sligh tly curved one can avoid the direct view 

onto the core which reduces Ihe background. Simultaneously, olle obtains an emcient AI2-

filter by suppress ing the ullwelcome faster neutrons. A marginal note might be added: in the 

case of extreme cooling of neutrons one may keep and siore Ihern in "boules" since they are 

totally reflected under arbi trary augles. 

9.4 Resolution for diffraction by a crystal 

As we have seen al ready, single crystals offer the possibility 10 cont ro l the travelling direction 

of neutrons. Thereby lI se is made of Iheir coherent . elastic scattering properties wh ich - ac­

cording 10 eq. (9.1) - allow for deflecling neutrons from an incident "while" beam under the 

angle 28, This Bragg scatteri ng becomes possible as soon as the scattering vector corre­

spands 10 a reciprocal lauice vec tor, Le. 

Q=l;-k:=$2 

and eq. (9.7) satisfies the condition llE = 0, or expressed differently by: 

1 , 
Ci ·k=-G 

2 

(9.10) 

(9.11) 

This case is fulfilled if - as shown in Fig.9.S - the projection of the wave vectors onlo Q is 

just equal to 1/2 . G and is thus negligible for triplc-axis spectrometers. 
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Fig.9.5: Illustration for the seleclion of scattered wave vectors und their divergence as de~ 

tcrmined by the modllius G and the scattering angle . "'0/0 is of Ihe order of 10.4, 

The variance of aselected k -vector is given by the derivative of X G :::; ksin6. er 

I'.k LU 1 AE AG 
- ~- ~ --~-+COle'Ae 
k A 2 E G 

(9.12) 

\Vith increasing wavelength of the neutron the energy resolution will be improved. 

Back 10 Ihe "bouled" neutrons: in Ihis case it is the half life time of the fcee neutron of abaut 

13 minutes which finally limits the variance of the cllcrgy. 

The probability far a k-veclor to obey the Bragg condition is bOlh given by lhe "lhickness" of 

the bisecting plane (constmctive interference of Ihe contribution of Ihe lattiee planes) and by 

the variance of the orientation of Q. The former condition means a relative sharpness of the 

modllills of Q in the range of 10-4 to 10-5
• whereas the laller is fulfilled with an accuracy of 

about 10-8 for an illuminated crystal surface in the order of cm2. Simllitaneously, eq. (9.12) 

expresses the dependence of the resolution on the material of lhe crysta l. Le. the lattice pa­

rameter. This is exemplified in Fig.9.6. The smallest variance in k (or A) results for a Bragg 

angle of 90°. This range of 0 :::90° is not accessible for lIs11al triple-axis spectrometers. 
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Fig.9 .6: Schematic representation of the variance ßA as a function of scattering angle and 
material 
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Fig.9.7: M monochromatic flux at the IN8 (ILL) for various materials as a function of Ii 
[3] 
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Ideal crystals would be nearly prohibiti ve for meaSli rements with the triple-axis spectrometer 

since their variances in the latticc veclor are tao small as to reflect sllfficient intensily. There­

fore, the perfection of the crystals is artificially degraded by various methods. Possible mcth­

ods are elastic bending of the crystals or a continllous variation of the lattice parameter in so­

called gradient crystals. The breakthrollgh in the sllccessful preparation of gradient crystals 

wh ich implies a complicated and costly procedure was achieved satisfactorily in 1995 in Ber­

lin-Adlershof with Ge-Si crystals. A comparably wide-spread method is the deformation of 

perfect crystals, thereby generating an imperfect mosaic crystal by introducing dislocations. 

On may imagine such a crystal as being composed of small perfectly crystalline blocks - the 

mosaic pebbles - whose orientation is nonnally distributed. A common full-width-lmlf­

maximum or mosaic spread is in the order of 30', 

Fig.9.8 i1hlstrates the operation of such a crystal as monochromator. The neutron beam inci­

dent on the crystal is given a divcrgenceao' Aperfect crystal would reflect just olle wave­

length for each angle e~I' as expressed by the section of the dashed line (bisecting plane) Hm­

ited by a, (:> a o)' It is the distribution of biseeting planes (mosaie) whieh spans the hatehed 

area being proportional to e eotG,!.!' Together with the vertical divergence ß delivering a 

contribution of ßk there results aresolution volume being proportionalto eeOleM • The 

varianee ofthe seattering angle 60 in eq. (9. 12) follows to (withollt derivat ion): 

60= 
a~a: + a~ 1J2 + a,2 ,12 

a~ + all + 4112 
(9.13) 

This dependenee shows that the gain in intensi ty by the mosaic crystal is not to be "paid" bya 

worse energy resolution for Cl, = a, ! Generally, the influenee of 'Ion 60 is weak. (Fig.9.9) 

Wh ich erystals should now be uscd as monochromators for neut ron? Apart from the laUice pa­

rameters further criteria are to be cOllsidered: those are the refleetivity, the suppression of 

AI2-contamination, and last Itotleast the availability as given by the teehnical al1(l financial ef­

fort for thei r produetion in suitable quality and size. For example, for Ihe same reflected 

wavelenglh, Cu has a better resolution as graphite (PO means pyrolytic depositcd graphite), 

however, an appreeiably lower rcflee tivity (see table 9.1 and Fig.9.7). 
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Fig.9.8: Bragg~ reflexion by a crystal width mosaic spread 11 and collimations o.{) und al 

Fig.9.9: Dependence of tl0 on ao and'l 
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The elastic form factor of the crystal 

F(Q) = ~>. (Q). exp(iQ. ß. ) (9.14) 

plays an important role sinec it represents the eoherent seattering length and the extinction 

rules. Eq. (9.14) delivers fOf Ihe diamond lalliee Ihe fOfm faelors: 

h+k+1 = 411 

= 21/ + 
= 2(211 + I) !! 

Thus Ge and Si have the desired property to suppress the t..12·eontamination of the reflected 

beam by means of Ihe forbidden (222)-reflcclion when using Ihe (111 )-refleclion. 

1.0 ~ • • ~37 A 

i . • 1.55 A 

0.8 j -. '. 
c: 

n . 2.37 A 
.~ 0.6 
<I> 

'E 2). . 2.37 A 

~ OA 

~ 
0.2 

0.5 1.0 1.5 2.0 2.5 

wavelenglh ), JA 

Fig.9.IO: Transmission of PO-fillers [4] 

Choosing PO cr Cu one gets contributions of lligher order apart from the wavelength seat· 

tered first order. It is important to eliminate those contributions carefully in order to avoid any 

ambiguity of the measured signal. One may circumvent this problem by inserting suitable 

materials as filter, however, at the expense of weakened intensity. In addition, there result 

limitatiolls in regard of the freedom to ehoose the wavelength as can be seen by the example 
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of the frequently used PO-filter. The corresponding transmission curve is shown in Fig.9.10. 

The goal is 10 choose n wavelength A far which the filter offers an especially large transmis­

sion und, however, Cl largc absorption for integer fraclionsA/n. With the choice of ), ::;2.37 

. 10,10 111 , neutrons wilh 2), and 3), =2.37' 10,10 111 will be largely suppressed. The wavelenglh 

Ä =1.55' 10,10 m offers itself, as weIl. Above A == 4, 10.10 m . as in the ease of a triple-axis 

spectrometer at a cold samce, one uses a Beryllium-filter cooled by liquid nitrogen as a cut­

off for shorter wavelengths. 

Mosaic distribution of a cryslal and beam divergcllce are not the only means 10 influcnce 

resolution und intensity. Those properties may be varied also directly by the choice of ~. In 

order to offer more neutrons at the correspondingly large or small incident energies, Olle shifls 

the maximum in the energy spectmm of the reactor neutrons by cooJing (D2 at 25 K) or heat· 

ing (C at 2000 K) of a moderator. A spectromcter placed at a cold source (small 1;), has a 

higher resolution as comparcd 10 those placed at thermal or hot sources. Thus, by selecting 

different moderation, one may vary 6.E between orders of 0.01 meV, 1 meV, and 100 meV. 

Tablc 9.1: Pl'opel'tics of fl'cqucntly uscd mosaie el'ystals 

material graphite (PO) Oe Cu 
refleelion (hkll (002) (111 ) (220) 

). -range IlO'ovm upper limit 6.708 6.533 2,556 
( ~ 2d) 

lower limit 1.16 L13 0.444 
L0=IOO) 

peak- reflectivity ). -I ' 10"" m - - 14 
(%) =2 . 10,10 m 74 24 32 

= 3· 10~JO m 82 34 -
=4· 10'10 m 87 43 -

absorption 5, 10-4 0.058 0.19 
details (222) forbiddcn "bad" mosaic distri-

bution 
costs 20000 15000 5000 
per cfystal in DM (coarse) 

Olle notes that nenrly nU intfoduced components affect the resolution fUl1ctiOll of the spec· 

trometer. This functioll - a four dimensional ellipsoid - results by projecting the product of the 

volume elements 6.V and 6.V' onlo the (Q,W).space (integration over the lwo dimensional 
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vector!!.. in Fig.9.2 [5]. In the upper part of Fig.9.11, Ihe oricnlalion of Ihe volume elements 

wilh respect 10 !i and !i' are indicaled as weil as projeclions of the resolution funetion. Inclina· 

tion and widths of the ellipsoids depend strongly on the scaltering sense - part (11) of the fig­

ure. Part (111) shows that Ihere resulls an appreciable inerease of the wave veetor spread for 

scattcring twice in the same sense. lL is jllstlhose different projeetions Oll the variolls (Q,(()) . 

directions wh ich is exploited for the mcasurement of phonons. By adapting the slope of the 

resolution ellipsoid to the slope of the dispersion curve in question one aehieves a focusing ef­

feet - as shown schemalieallyinFig.9.12.This exemplifies an important possibility to intlu­

ellee Ihe quality of Ihe measllrement. The following two figures shall demonstrate 

(111) 

Fig.9.11: Dependence of widths and inclinations of the resolution ellipsoid from the 
configuration of the spectrometer «I) .nd (11) from B. Domer [6J. with k; = k and 
kr=ki 
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Fig.9.12: Effect of focusing for measurements of phonons. The integrated intensity is the 
same in both cases. The focused mode (upper part) exhibits a sl11aller width and a 
better signal-ta-background ratio. 

How one can obtain a complete picture of the dispersion surfaces by measuring phonons at se­

lected symmetry direction and making use of a lattice dynamical calculation. In cant rast 10 

TOF-instruments recording simultaneously many points Oll the surface shown in Fig.9.3 (e.g. 

128 angles * 1024 time channels), olle Illay measure just one point with a conventional tripie 

axis spectrometer. Fig.9.13a shows a scan in energy direction, Le. aseries of such points, 

whereby the veetor Q. is kept fixed in the system of the inspeeted erystal. Thus the widths of 

the observed peaks represent the frequency or energy width of the phonons folded with the 

resolution. The sean also demonstrates the general case that several phonons will eontribute 

to a scan according to their dynamical strueture faeter. In fact, the same peak positions but 

quite different intensities will be observed at equivalent positions in other Brillouin zones. 

On the one hand side this equivalence serves as experimental cross check for the peak posi­

tions (eigcllvalues) and on the other hand one may derh'e (he eigenveetor from (he observed 

intensities for aselected phonon. 
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Fig.9.13: Phonon dispersion for AI2ü3 (sapphire) along Ihe (OIO)-direclion al 20 K. The 

points (phonons) in a) resuil from the maxirna observed in many separate seans. 
E.g. Ihe results within the marked region are obtained from seans as showil in b). 
Such seans display however 110t always all theoretically expecled phonons simul­
talleously. The solid Hnc in a) represents the fit of the experimentally obtained 
dala 10 a lattice dynamical model; in b) Ihe line corresponds 10 the fit of the re­
sponse funtion broadened by the resolution function of Ihe instrument 10 the ob­
served scattering intensity (in mnny enses, a olle dimensional folding with a 
Gaussian is sufficienl for fitting Ihe measured speclea). [7J. 

The dispersion - often iIIustrated as eurves along symmetry directions (e.g. Fig.9.13b) - rep· 

resent cf course dispersion surfaees being periodie with the Brillouin zone. In general, this 

surfaee needs not 10 be determined eompletely by further seans. One rat her fits a lattice dy­

namical model (see lecture on inelastie neutron scattering) to the observed peaks and may ex· 

tent Ihis ealculalion lO arbilrary wave vcctors which "predictions" might in turn be tesled ex­

perimenlally. The dispersion sllrface for Barhllll is shown in Fig.9.14 in Ihe (011)-plane [8J. 

Direclly measured have been the indicalcd points, only. The rcmainder results from a fittcd 

lattiee dynamical model. 
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Fig.9.14: Dispersion surfaces for Barium in Ihe ( 1 IO)-planc. TI1C solid lincs correspond to 
the main symmetry directions, the points to the various observed peak positions 
of intensity. The transition from Iighter to darkee points corresponds 10 that [rom 
longitudinal 10 transverse polarisation of the phonons . 

• 
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k=k=k=k=k 
1 2 345 

Fig.9.15: Left hand side: energy aud resolution are determined by the deflection angle 0 as 
weil as by the collimators absorbing oll neutrons travelling outside the accepted 
divergence. Right hand side: rar the so called mOllochromatic focusing, all deflec­
tion angles alld thus the energy of the neutrons are equal duc 10 the curved crystal 
such tllat Ihe divergent (i.e. relaxed Q-resolution) but monochromatic neutrons 
merge together at the focusing point. Caution! Ihe average encrgy of the set-up 
has now become dcpcndellt on Ihe sampie position duc 10 the omitted collimators. 
Thc resolution will depend on lhe size of source and sampie relative 10 Ihe ra­
dius of curvalurc. 
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A final aspect far optimisillg the speclromeler sha11 naw be mentioned. Considering Ihe dis· 

persion for Barium it becomes obvious Ihat the dependence on wave vector for Ihe so called 

acollstic phonons is not exceedingly )arge towards the zone boundary. Optieal phonons (see 

the leelure Oll phonons and magnolls) exhibit this property in most eases even more clearly. 

This meaus that olle could achieve more intensily or shorler measllring times by reducing (he 

Q -resolution and keeping the energy resolution constant, Le. keeping the distinctness of the 

variolls phonon branches. This can be achieved by means of a horizolltally curved mono­

chromator and/or analyzer as drafted in Fig.9.15 . AboUl a factor of five in intensity may be 

gained by this horizontal arrangement. Experiments lI sing doubly focusing deflection crystals 

exisl since a eOllple of years requiring, however, a high degree of skill and experience. 

9.5 ßack-Scattcl'ing Spectl'ometcl' 

It follows from Fig.9.16 and eq. (9.12) that for a given divcrgence of the neutron beam a crys­

tal will achieve the optimum resolution in the modlilus of k for the case of backscattering, Le. 

for e = 90°. This is the basic idea for the backscattering-(1l' )-speetrometer whieh realizes Ihis 

optimum defleeti on angle both at the monochromator and the analyzer. For Ihe case of back­

scattering one may rewrite eq. (9.12) to: 

( !J.k) = --'::--:-:-:-
k, ,,, cos(A0 /2) 

(80 )' 
1 =-­- 8 (9.15) 

Assuming Ihat the divergence of the beam is determined by a neutron guide, one gets from 

eq. (9.9) and for the isotope 58Ni 

A0 .. = 2M,; = 2../f4iiPbJ . 
N, k k (9.16) 
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Fig.9.16: Bragg-refleclion in the case of near backscattering. 

Inserling ß8" into eq. (9.15) delivers ('.x.),,,. = 5· 10-5 and \Vith eq. (9.12) an energy resolu-

lion of 6.E = t 6.kNi 1 • E / k 1 == 2.4- 10-7 e V. This contribution 10 the energy resolution is thus 

independent of the selccted energy. Evcn with a tripIe axis speclrometer at a cold SQurce Ihis 

extreme value of 6.E is out of questioll. An additional contribution 10 the variance of k results 

from primary extillction, i.e. the fact that a final !lumber of lattice planes cOlltributes 10 the 

Bragg-reflection, only. Perfeet crystals are lI sed in order 10 maximise Ihis Ilumber. This sec­

ond variance is exprcssed in Fig.9.S by the thickness of the bisecting plane. The pdmary ex­

tinction is proportional to the number of unit cells per volume Nz and the absolute value of 

the slructure factor F G. and inversely proportional 10 C 2
. For perfeet crystals like e.g. Si the 

additional variance is of abotlt the same order as that due to the divergence of the k-vector. 

The maximum crror for the energy results then from the sum of bOlh contributions, i.e. add­

ing the extinetion in eq. (9.15) (whhollt derivation). 

I'!.E = iM) =2(ß8)' + 161CN,F.i 
E l k, ,,, 8 G') 

(9.17) 

Yet, how is it now still possiblc to vary the incident energy at such a spectrometer being re­

stricted 10 the defleclion angles e =900 ? Ta Ihis end olle needs - according 10 eq. (9.1) - a 

variation of the lattice parameter or the reciprocal lattke vector Q. This can be achieved by 

heating the monochromator crystal or simply by moving the crystal (periodically) parallel 10 
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the di rection of Q with a velocity \Iv' The change of energy (in the laboratory system, 

Doppler effecl) is lhen 

(9. 18) 

whereby E and 1':-; denote energy and speed of the backscattered neutrons fi nd v IJ die veloci ty 

of the Doppler drive. Moving a crystal - set 10 neutrons with A ~ 6.3' 10-10 m by using the 

Si( lll ) reflection - with a velocity amplitude of 2.5 m/s results in an energy range of 

± 15 tl eV. Fig.9.17 now displays the realisation of the above considerations by means of an 

experimental facility. 

Analyzer -"'W-~ 
Plates 

Supermirror 
Guide 

Sampie 
Detectors 

Monitor 

Analyzer 
/ Rings 

Deflector Chopper Doppler 
Monochromator Drive 

- I~ 
Neutron Guide 

Fig.9.17: Layoul of lhe backscallering speclromeler in JOlich 

Not unexpectedly, this set up is quite different from tllat of tripie axis spcctrorneter. The 

backscallered and Doppler shifled neul rons have lo be dellecled by a second cryslal off from 

the neutron guide towards the sampie position. This so called deflector is positiOJled next to 

the neutron guide wh ich entnils a slight deviation [rom perfect backscattering and thus the op­

timum energy resolution. Exact backscattering has been nttempted in the first experimental set 

up by placing a deflec tor covering l/lOth of the beam size inside the neutron guide. Despite 
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the somewhnt better resolution this option results in tao a low Dux far most applications. Af­

ter deflectioll , the neutrons tcavel through a conicnl shaped, supermirror coated neutron guide 

which foclIses lhe benm onto the sampie. A chopper with about 50% dead time interrupts Ihe 

continuolls benm and triggers the gate of lhe counters. Thereby olle avoids counting of those 

neutrons being scattered directly from lhe sampie into Ihe nearby counters, whereas neutrons 

having passed lhe analyzers are detected according (0 lhe Doppler velocity . The analyzers 

(elastically curved Si single crystals) are arranged at a fixcd radius around the sampie and fo­

eus (he backscattcred neutrons on the associated detectors. Note, that the energy resolution of 

the backscattcring instrument also depends on Ihe flight path. lt inereases with increasing 

flight path since the deteetors have a finite volume wh ich means slightly different detection 

times. The accuracy of the counting electronic may thereby be considered as perfecL 

After all those constraints on the deteclcd neutrons it might astonish that there remains suffi­

cient intensity for measuremcnls. We had learned abolll the cost of inlensity for optimizing 

the resolution. In order to aehieve a useful signal/noise ratio here, olle has 10 relax the resolu­

tion in the l110mentum transfer. Taking Ihe width of 45 cm for an analyzer plate being posi­

tiOlled at a distallee of 150 em to the sampie, olle gets an angular resolution of about 90 
• For 

an average g value, gi yen by Q = 4 ~ sin e s = 1041· 10 10 m- l for es = 900 and a wavelenglh 

A = 6.3' 10.10 Ill, this means aresolution of±O.l· 1010 m- 1. Foreomparison: at the tripIe axis 

speetrometer olle has a resolution in Q of about 0.01' 1010 rn-I . On the other hand, most 

problems investigated on a baekscatterillg spectrometer exhibit srnooth functions on IQI, only, 

which allow for such a relaxed Q -resolution. The isotropie scattering also permits the simul­

tancous rccording of several moment um transfers by arranging many counters and associated 

analyzer plates around (he sampie. In this respeet the efficiency of a backscattering instmment 

is lligher Ihan that of a tri pie axis spcctrometer which lI ses on detector, only .. 

Finally, as an example for a measurement on the backscattering instrument in Jülich, the tem­

perature dependence of the spectrum of Paracetamol is shown in Fig.9.18. In Ihis case, one is 

interested in the rotatiOllal or more exac tly - pennutational - tunneling of the methyl group of 

the moleeule. Eigenvalues and eigenvectors of the associated hamiltionian result from Ihe 

Mathieu equation for threefold symmetry. 
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Fig.9.18: ROlational tUllneling cf the methyl group in Paracetamol. 

The goal is to detcnnine those eigenvalues (hefe abüllt 30cV for Ihe A HE transition, A = 10-

rally symmetrie, E = doubly degenerate) and thus 10 oblain rather precise information on the 

intra- and intcr-molecular interactions. A remarkable observation thereby is that (he excitation 

energie, are mnch ,maller than the thermal energy of ,ay 10 K of the ,ampie (I OeV z 1/100 

K). This may be understood by considering the basically different coupling of phonon (spin ~ 

0) and neutron (spin = Yz) 10 (he eigenstatcs wilh different symmetries (see lccture on Transla­

t;OIl Glld Rotation) . 
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10 Time-of-flight spectrometers 

Michael Monkenbusch 

10.1 Introduction 

The information that may be extracted from a neut ron scattering experiment can be ex­

pressecl in terms of t hc scattering /uTlcliol1 S(Q, w). All propertics accessi ble by these kinds 

of scattering experiments are containcd in S(.Q.,w). Thc restilting in tens ity represents the 

double different ial cross section: 

,[la 

dOdE' 

k' 
= N - b'S(Q, w) k - (10.1 ) 

whcrc 1/, " is the modulus of tbc scattered anel incoming neutrons respect ivcly. N denotes 

t hc number of atom s in t hc sam pIe allel b is t hc scattel'illg leng/bI . T he cnergy transfer 

during scaUering is fiw = (E - E'), here E , 1':' dCllotc thc energies of thc incoming and 

scatte red neutrons rcspcdively. Thc variables of thc scattering fun ction depend on k, f{j 

9. = k - f{ is the moment um transfer and 

liw = (I!' /2m,,) (k' _ k") (10.2) 

t he energy transfer th at occurred during t he scattering proccss. Since lhe modulus of the 

wavevector k of the neutron is related as weil to the nc utron velociLy, !l (momcntum) as 

to lhe wavelength (l / wavenumber): 

!llH n 

2rr 
A 

= li li. 

= k 

(10.3) 

(10.4) 

it is possible to determine t he encrgy t ra nsfer (10.2) as weil - by employing the wave 

prope rties of the ne ut ron- by analys is of the wavelength )..' as - hy using ihe par ticlc 

character- by measurement of thc velocity v' of thc scattered neutrons. Thc first method 

is applied in crys tal-spect l'ometcl's like the c1assical triple-axis-sp ectl'ometer 01' the 

l For compounds containing different types or a10ms (elements or iso topes) the corresponding expres­

sion consists of t he SUlll or parti al structure ractors mu ltipl ied by the correspolld ing scatt erillg lellgths 

bjbj in bilinear combillation. For the discussioll or inst rument s the simple version is sufficient . 
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backscattering-iT-spectrometel'j for detai ls see chapter 10. 'fhe second method leads 

to the spectromcter typcs that are the topic of tltis chapter , namely differen t variants of 

til11e-of-ftight (TOF)-spectl'ometers. Also the neutron spin-echo spectl'ometel', 

NSE that is describecl in the next chapter employs - solllewhat les:; obvious- directly the 

velocity change of the neutrons to infel' the energy transfer. The generic geometry of 

a scattering experiment in reciprocal (i.e. vclocity, momentulll 01' wavevector) space is 

iIlustrated in Fig. 1. The scatterillf!; tria nf!;le consistinf!; of thc incominf!; wavevector /i.., 

k' 

28 
k 

Figure 10.1: Scattering triangle. 

the wavevector of t he scattcred neutrons !{ alld the resulting momentum transfer (+Il.) , 

2., thc figure shows the general situation of inclastic scattering (here: energy gain of the 

neutron). 20 is the scattering angle, Q indicates the momentum transfer for elastic 
~ 

scattering (i.e. without energy transfer). 

A llucleal' research reactar as neutron somce basically yiclds a thermal (Maxwellian) 

spectrulll of neutron vclocities, the temperature of the moderator (D 20-cooJing water 

approx. 60°0) cletcrmines the temperature of the neutron cloud. ß'lany faci lities contain 

additional small moderators of different temperature that supply single beam tubes with 

Ileutrons of a different spectral distribution (different temperature). In particular the so 

called Hcold sources ll have to be ment ioned. in Jiilich the "cold samce" , which supplies 

the neutron guide hall (ELLA) with long wavelength neutrons, consists of a small volume 

filled with liquid H2 corl'csponding Lo a temeparture of 20 TC The following table enables 

a qui ck survey over thc average values of the corresponding neutron spectra. 
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T~toder6tor/ J( N/m/s >../nm Iiw/eV 1/ :::; w/27r /S~I 

330 2870 0.14 28 x 10-3 6.87 X 1012 

20 706 0.56 1.7 x 10- 3 0.42 X 1012 

5 177 2.24 0.4 x 10-3 0.1 X 1012 

Fer specific experiments of course also neu trons of deviati ng vclocities within a band 

around the average are employed, however rar from that the available number density 

resp. t.he ftu x drops strongly. Typical neut.ron velocitics are in the order of 1000 mjs 

the correspollding time-of-ft ight per meter is 1 ms/m , i.c. such neutrons need a couple of 

milliseconds for their jotlrney through a spectrometer. 

10.2 The c1assic time-of-flight spectl'ometel' 

Figure 10.2 Hlustratcs the generic setup of a c1assical time-of-ftighL (TOF) instrument. 

SPEICHER 
Inkrementierend 

Figure 10.2: Gencric setup of a c1assical TOF instrument. 
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From thc thermal spectl'um of the neutron beam entering from thc left a. monochromator 

(of any t.ype) filters a limited wavelength band ~\±ßA. Ry doing t.his typica lly a bandwidth 

of ß}"I). :::::: 1O~2 is achieved. The lIlU S monochromatized bcam enters CL so-calIcd chopper 

which opens the bcam path periodi cally für a short moment. Typical frequencies are 

between 20 and 200 Hz, the ratio of time-open:time·closed is öround 1:100. Thc l'csulting 

pulse widths are of the order of several (tens) of microseconds. After an as short as 

possible flight path the neutron bunches hit the sampIe ami are scatlered according to 

the double differential cross section of thc sarnple matcrial. In this process süme neutrons 

exchange kinetic energy with excitations in the sampie, Le. change their velocities. After 

scattel'ing in to different directiolls the neutrons transverse t.hc flight space bctween samp]c 

ami the detcctors. The path length bctwcen sampie an<.! detectOl' is usually kept thc same 

for all detectors placed at the periphery of the flight space. The dctectors most often 

consists of 3He (0=10 bar) filled counting tubes of 30···40 cm length. VI' 10 1000 (ami 

more) tubes are used in some installations to cover as lll11ch solid angle as possible. 

The c1astically scattered neutrons (like those from thc direct beam) reach the detectors 

after the time tcp + to = dchopper-s l.lmplelVo + Llvol those scatterecl inelastically arrive 

earlier (energy gaill of the neutron) 01' later (energy loss of the neutron). Each pulse 

from a counting tube causes via the associated electl'onics an incremcnt of one cell in 

the histogrammic memory. Thc addrcss of this cell is clerived from the time difference 

bctween chopper opelling and arrival time of the neutron (pulse), i.c. TOF, and the 

detcctor number (--t scattering angle). Thus thc distribution of flight times evolves as a 

histogram of 512···2048 channels with a width of around 10,ls each. For each detector 

(resp. group of dctcclors) such an histogramm vs. time is obtained. A monitor OV1o) in 

the direct beam serves to normalize thc histograms to the incoming neutron flu x. 2 

2)\ "monitor" is a detection dcvicc (counting "tube" ) that covcrs thc bea lll cross section and has a 

high transmission for neutrons (> 90%) ami low detection probability (10- 3 ... 10- 7). In the figure only 

Olle monitor behind thc sampIe is showll for clarity. In general <tnother monitor (more important) is 

located bctween chopper and sampie, it mcasures thc incoming flux without the inßuence of the sam pIe 

transmission. 
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10.2.1 Interpretat ion of spectl'a 

As clisplayed in the path- time diagram in fig . 10.3 pu lses of neutrons with clefinecl velocity 

are periodically transmitted by the chopper with the frequen c)' 3 NO, = I/r. The slope 

of the dashed lines corresponds Lo t he average velocity Vo_ The neutron pulse needs a 

constanL time tcp for the di stallcc from the chopper to the sampie d Choppe r- Probe. After 

_ _ _ --1 __ -"--

1 

1 

1 

1 

1 
1 

1 

1 

1 

----1 Probe 
1 

1 

• 1 • 1 • 1 
. ---- - -1, --- - - -+ -;- - - - -- -1 (Chopper 2) 
• I. I. 1 

1 

~------~~------~--------~ Chopper 

Zeit 

Figure 10.3: Path(Flugweg)-time(Zeit) diagran1. 

Th is velo city spreacl is indicated by the filled grey triangles. The analysis of arrival 

3According to the technical rea lization there is an integer factar between rotation frequency of thc 

chopper and pulse repetition frcquencYi e.g. a Fermi chopper thal opens I..wice per oue revolut.ion (sec 

10.2.4). 
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times is pcrfol'lIlcd at the detector distailCe dcp + IJ. A possible resu lting "spectrum" is 

indicated on top of the detector distance line. The extrapolat ion of the dashed li ne to the 

detector posi tion ind icates the loeation of the "elastic linell 
I i.e. the time channel where 

neutrons without energl' transfer arrive .J. 'fhe left ver tieal eelge of the triangle defines 

the 'Ibeginning" of the time-of- flight spectru m, i.c. t he earliest possible time of arrival 

occurring only for nead l' infini te energ)' gain of the neutron. In reali t)' there are no infiniLe 

large energl' gaills allel thc proper spectrum starts somewhat later. Thc fi ght edge of the 

Ilvclocity fan ll sl'mbolized bl' the tri angle is less weil elefined, in principle the neutron may 

transfer onl l' apart of its euerg)' but also vi rt ually all of its energy to thc sampie, thus 

virtually hOl'tizonta l path-time curves mal' result . I.e. strietly speaking the spectrum does 

not end at some maximum channel number. However it is immediately recognizable that 

fortun atell' this cfl'ect goes along with a eOlTcsponding c'dilution" of the intensitl' which 

becomes virtually stnictureless on the scale of the histogram channe! windows ('Iframes") 

causing a constant background in all chanllels of a (' frame" that mal' be subtracted during 

data treatment. Thereby it becomes possible to repeat the uptake of a "frame" with a 

frequenc)' n and to accumulate the spcctra iuto the histograms mentioned above. Bach 

chopper pulse resets the clock to t ime zero and the channels of the histogram cover the 

time interval T in terms of bins of width ßTJ( ~ T / N. If due to resolution rcquirement-s 

5 0 1' duc to other technica l demands n has to be chosen such that the above discussed 

Cl frame" -overlap effeci st.ill distorts the spectl'a, it is possible, as indicated in f1 g. 10.'1 , to 

use an additional coarse chopper ta transmit onll' every 2nd 01' n-tll pulse. By doillg this 

sufficieni spacing between 'I frames" may be gained to collect an undistorted spectrum, 

however with an n-fo1d reduction of eITective data collection ra te. 

10.2.2 Time-of-flight spectra 

]n fig. 10.5 several spectra as the)' are accumulated in the histogrammic memory are 

displayed. The time-of-ftight scale of the horizontal ax is refers to the distance L between 

sam pIe alld detectors. This time-of-fli ght is directll' proportional to the wavclength ).' 

of t.he scattered neutrons as is indicated bl' t he diagonal represcnting tltis linea l' relation 

4Gcncrally t hc scaUer ing without (sizcablc) encrgy transfer is thc most probable process. 
sThe pulse width (opening t ime) of a chopper depcnds - for a given dcsign- Oll its rotation frcqu ency. 
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Figure 10.4: Path~time diagram for a configuratioll with "Prame overlap choppers'), chop-

per 2. 

using the right hand vcrtical scale. This diagonal st.raight line intersects the level >'0 = 
O.6nm at the loeation of thc lIelastic channePl where neutrons are collected that did not 

change their vclocity dnring scattering. Since in liquid water whieh was the sam pie all 

ll101ccu les may diffuse withoul restriction only a so called quasielastic lilie is observcd 

whieh corresponds to a Lorentzian with a width proportional to Q2. The maximurn of 

in tcnsity is uevertheless at the clastic channel (--+ quasielast ic). 'fhc difl'erence belween a 

solid with at.oms/molecu lcs fixed at lattice sites anel a liquid is illustrated by the right part 

of the figure. Imidazole in the solid state exhibits an intense line at the elastic channel 

with a width correspond ing to the instrumental resolution. In contrast molten imiclazole 

(especially for the relatively lal'ge scattering angle displaycd hefe ~ large Q) shows only a 

broad quasielastic intensity distribution. At shorter times-of-flight correspond ing ta larger 
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energy transfers (ga ins) structures in the spectra are visible that stem from molecular and 

lattice vibrations. Note the second left scale in combination wit.h the dashed line t.hat. 

illustrates tlte strongly nonlinear relation hetween energy and time-of-flight. Für energy 

gains ö'E» kB'l' t.he scattering energy dies out due to the expollcntial Boltzmanll factor. 

At ambient temperature kBT is equivalent to 25meV. \~'ell above that cncrgy gain the 

unavoidable virlually constaut background due Lo "frame overlapl! may bc dctermined. 
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Figure 10.5: Left: TOF-spectra from liquid water at ambient Lemperature for different 

scattering angles between 30° anel 1400
• Parameters: Ao = 0.6nm, ßr = 18/1s , L = 3.05m, 

N = 512. Right: TOF-spectrllm from imidazole (C,H4 NH) as crystalline solid at 300!( 

(the dashed lines displays the same data scaled by xO.1) anel as melt at 403K at a 

scatLering angle of 950
• 

Technically a TOF spectrum is accumulated at a fixcd scattering angle for each detector. 

That corresponds to the situation of the scattering tri angle as depicted in fig. 10.1. A 

glimpse on this figure rnakes deal' that different momentum transfers Q and Q (depeneling 
~ -

Oll energy transfer) far elastic anel inclastic scatterlng havc to be assignecl to tbe different 

time channels of the histogram from one specific detect.or. That applies as weH for the 

modulus Q as for the clirection of 9,: The sequence of curves in the left figure 10.5 shows 

t.he values of Q as fUllction of scattering angle (different curves) anel time channe!. Thc 

property that the values become very similar for large energy gains - also expressed by 
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the simi lar in tensiLy distribution of that part ur the spectra for different angles- follows 

from thc fact t hat the main contribution to Q at high energy gain s tems from the length 

d ifferencc of k and J/ (see fi g. 10.1 ). The variation of IQll11a)' be compcnsated within 

certain limit.s by combining the data from differen t dctectors (anglesL however tha t does 

not appl)' for thc dired ion change of Q.. Thercfore TOP-instruments - in contrast to triple­

axis spectrometers- are bettel' suited for isotropic sampies (liquids, powders, amorphous 

substances) than for si ngle cr)'s tals 0 1' other highl)' oriented sampIes. 

10.2.3 'l'ransfornls 

Since the physics of the systems undcr investigation is usually expressed in terms of 

S(Q,w), a transfor mation of thc raw data representing 1(20 , /.) il1to the (Q,w)-space is 

necessary. vVith t = LJv' and Lo = L/v inscl-ted in Eqn. 10.2 yields 

a nd 

( ) _ m" L' t' - 1& 
wt - - - -

2fi t.2t~ 

Q = 111" L t' + t~ - 2cos(20)lol 
h t~t2 

(10.5) 

(10.6) 

The nonlinear mapping from channcls Lo energ)' given by Eqn. 10.5 also causcs a strongly 

varyi ng energy-width of TOFvchannels, f(. 

01' somcwhat simpler 

with 

alld 

the result 

[«(:JoT 

/(20,11) C( J ~kJ4"b'8(Q,w(t))cllw dt 
. - If 

(K - I ),dT 

k' to 

k t 

dw(t.) 111", I 
- - = - [ , -

dt n /3 

/( 20 , J() cx 8(g,w(K t.r)) I' 
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is obtai ned, all eonstanl fadors are omitted alld lumped into a still undeterm ined pro~ 

portionality factol' 6. Note the factor t- 4 bctween S' and ] whieh eauses a signifiean t 

intensity cnhancement for the early arriving time channels, ho\Vcvcr iniimately cOllneded 

with a corresponding lass of energy resolution. Appli catioll of the transforms Eqns. ] 0.5 

and 10. 11 allows a. displa.y of the spcctra in terms of S(20,w). Figure 10.6 shows a 

eorresponding S'(20 ,w) dCl'ived from the water data (medium angle data in fig. 10.5). 

2.0 2.0 

1.5 1.5 

.~ ; 
~ 1.0 'ho 
~ ~ 

0.5 0.5 

0 0 -. -2 0 2 -40 - 20 0 
hE/meV !J.E/meV 

Figure 10.6: TOF spectrum from liquid water (see fig . 10.5) cOllverted to S(20,w) 

displayed over iwo different energy ranges. 

The diffusion is easily recognizable but tbe st ructure duc to (internal) vibrations is lost in 

t his type of representation . As S0011 as a model for S(Q,w) is ava ilablc, it is in most eases 

more aclvantageolls to apply the inverse transform to thai model to computc / (20 , j() 

and to eompare th is rcsult with the raw TOF data. 'fhis procedures also allows for a 

simpler more direct applieation of resolution corrections. 

Rem ' l'k: applicatioll of a coordinate transform (here (Q,w) --+ (20 , f() resp. (Q,w) (­

(20 , ](» requil'es - besides the observation of the (nonlillear) coordinate depcndence- the 

application of a Jacobiall determinant as factor to preserve Ilvolume". 1"0 1' thc time~ 

frequ enc)' par t this is also done here (t- 'I-factor). The lransfOl'm 20 -+ Q, however 

6For pract ical purpost's the proportionality factot is determined by an absolute calibratioll using a 

standard sam pie, e.g. vanadium which is a pute]y incoherent. clastic sca tterer. 
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is performed withoui Jacobian duc ia an asymmeLry in definitions of S(Q,wL namcly 

d,,(20) /d0. = S(Q(20)) ! 

10.2.4 Ferlni chopp er 

One possibili ty La open thc beam for Cl. short t ime La create t.hc required neutron pulse 

consists in the placement of a shori rotaiing coll imator in the beam such that it transmi ts 

neutrons onl)' for Cl narrow interval of the rotation angle . T he collimator consists of of 

a parallel arrangement of neutron absol'bing sheet.s (cadmium , gadolinitllll , boron). T hc 

gaps are filled with a material which is t.ransparent ror neut rons (alum inum). Such Cl 

chopper is skeichcd in fig. 10.1, ihis type of chopper is called IIFermi chopper". Thc 

divergence ßQ' is determined by thc distance between llcigbouring sheets D ami thcir 

length I in beam directioJ1, D"QFWHM = arctan(D/I) (typical values are ] 0 .. ·2°). The 

duralion of the opelling 6.r is given by the rotation frequency n 

(10.12) 

Note that thc neutron pulse frequen cy for a chopper wit.h straight coll imator sl its is 2n, 

bccause the collimator axis is twice per revolution parallel to the beam axis. Sincc the 

neutrons have a fini te velocity, t he chopping colli mator must not be too long, because oth­

erwise thc transmission direction drops too much even before thc neutrons t hat entered, 

when t he collimator oricntation corresponded to transm ission, have cmerged from the 

collimator. 1t is also possible to use a ucollimator" with curved sEts, which accounts for 

thc above mentioned cffect, however such a curved-sl it-choppcr exhibits a wavelength de­

pendent transmission characlcrist ic. Sometimes this is a desi red characterisLic to suppress 

unwanted orders of monochromator Bragg reflections. 

10.2.5 Disc choppers 

Besides the Fermi choppers also so callet! \\disc choppers" are used. Figure 10.7 shows a 

fron t view with rcspect 10 the beam direct ion of such a chopper di sco 

Thc di sc is coveret! by a neutron absorbing laycr (dark grey) and conta ins - for counter­

balancing two- window ZOlles, J\ anel B. The beam cross sectioH is indicated as striped area 

in A. The typical diameter of such discs is 0.5··· 1m. From thc figure it is immediate!y 

visible that thc ratio pulse width to pulse-pulse distance fol' a copper of this type is rather 
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F'igure 10.7: Disc chopper. 

10% than 1 %. A reduction of ihe window size would not help to improvc thi s ratio, 

since timt would also imposc a reduced beam width on the system which would reduce 

the avai laule intcnsity to an unacceptable level. Ta achieve nevertheless a rcasonable 

temporal resolution with the required pulse-pulse distance (ta avoid "frame overlap"), 

it is necessary to combine several disc choppers where slow choppers select only Olle of 

several open ings of faster ones (rotating with a integer multiple 11 of the pulse repetioll 

frequenc)' 0). T he resutting pulse has - according to the lligher rotation frequenc)' 110- a 

lengUl which is shortcr by a fador l /n. Also counter rOlati ng discs are employed. Thc 

multiple disc chopper techniquc rcquires exact eleclroni c controI of the relative rotation 

phascs of the choppers. 
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10.2.6 Crystnl monochromators 

Thc monochromator indicated in fig . 10.2 has t hc funclion ta selecL neutrons (rom a 

nano\\' band of velocities (approx. 1%) out of the ~iIax\Vellian spectrum of the incoming 

primar)' bea m. It ma)' be realized by different mealls. First the cl'ystal monochromator 

is described. It uses thc matter wave properties of the neutrons ta sclecl neutrons of a 

defined wavelength (i.e. velocity) by interference in a crystal laUice (Bragg reßcction) . 

Neutrons with a wavelength of 

A = 2d si n(0M j2) 
11 

(10.13) 

are reftectcd in direclion of the sampie; here d i5 the distanc.:e of latticc planes of the 

monochromator crystal (often pyrolytic graphite 002, d = 0.6708I11n), 11 the diffraction 

order and 0 M the angle of reßection. Le. a simple crystal monochromator ratales the 

beam directioll hy GM; if the wavelength should be changcd thc bulky rest of thc spec­

tromeler must be rotated around thc IDeation of the monochromator crystal. See figure 

10.9 in the following secl ioH. 7 In addition Eqn. 10.13 implies lhal generally se \'eral 

difrraction orders are reflccted. Ta Sllppress thc unwanted orders mainly three methocls 

are used: 

1. Filter : if lhe desired wa.velength ,\ is lang enough it is possible to use a block of 

polycrysta llinc material (mostly beryllium) which ha5 negligible neutron absorption. 

The shortcl' wavelength neu trolls are Bragg refleeted by some crystallites in the 

block and removed from the beam diredion while tbc long wavelength neutrons 

with A > 2dmru are transmitted with low losses. 

2. Curved slit choppers: by eUl'ving the sli ts of a Fermi chopper it is possible to 

achieve tlwt thc chopper is only transparent fol' a ecrtain band of neutron velocities. 

This band may be selected such that onl)' the select.ed diffraction order is included. 

3. Second (coarse) chopper: by a second (coar5e) chopper at. some distance from 

the main chopper it is possible to select the desired difTract.ion order via thc TOF 

7This Illay be avoided by the usc oftwo crysta ls in a parallel arrangement. The sccond crystal performs 

a reflcclioll that restores the original beam directiOll and rotation and translation of the cryslals in such 

a "double monochromator" are performcd such that the direction and position of the monochromatizcd 

beam stays the same for all wavelclIgths. However this advantage is connected wit.h an intensil.y loss. 

More about crystal monochromators may be found in the chapter "Crysta l spcctromcters". 
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between the two choppers. See also sectioll TOr-TOF. 

10.2.7 Tinle fo c ussing 

lt seems ullsalisfactory that by a TOr spectromctcr at a continuotls source (reactor) only 

a sIlla ll fraction (I %) of the cont inuous primary bcam is ut ilizeel . On t he other hand the 

TOF-aui:\lysis correlates the cnergy resolution with the length of t.he neutron pulses 6r. 

Howevcr t.herc is tri ck to partly compensate for this correlation alld Lo achieve a mul t i­

plication of the intensity without resolution loss (at thc elaslic lille), see fig . 10.8. T he 

chopper opening may last longer if there is a correlat ion between t ime aud wavelength 

(velocity) of the neutrons during the opcning interval sllch that all neutrons arrive at thc 

same time at t he eletector - as indicatecl in fig. 10.8. By this means the elastic line remains 

I 
I 
I 
I 
I 
I 
I 
I 

I/-----+- !---------I Probe 
I 
I 
I 

-I (Chopper 2) 
I 

'-------"-'------'------' Chopper 

Zeit 

Figure 10.8: Path-time diagram, time focussing. 

narrow hut t he focussing effect depends on encrgy transfer allel becolnes ineffect ive for 
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la rgcr energ)' transfers. IIowcver it. is possiblc to move thc focusing point ta some inelaslic 

energ)' transfer by chüsing a different; chopper frequen c)'. Figure 10.9 shows a technical 

rea lizatioll of t he time fo clI ssing principlc . 

," 

. ,"',. Detektoren . '. <, ~,..~- " . 
• :-':~'-': ':1<' ' 

., 

Figure 10,9: TOF-spectl'ometcl' with time-focussing. 

Instead of on ly olle monochromator crystal several crystals one after thc other form the 

monochrol1'\alor, each crystal reAeds a sliglüly different wavelength >" > '\2 '" > '\5, such 

t ha t the slowest neutrons Pd are t ransmitted first when thc chopper channel approaches 

transm ission during a revolutioll j thereaftcr t hc gradua lly faster neutrons (A2' .. AS) follow 

subsequently. For a. set of matched distances between crysta ls and between monochroma­

tor and chopper alld frequency n of thc chopper a path-time behaviour as illuslrated in 

fig. 10.8 may be achicved. ßy the use of 5 instead of one crystal about 5 limes as much 

neut rons hi t t he sam pie. 
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10.2.8 TOF-TOF: TOF-monochl'omatol' 

lllstead of a crysta l monochromator (sec ahove) the incoming wavelength (velocily) may bc 

cqually weil selectcd by the time-of-ßight bctween two choppers (sec fig. 10.10), thcrefore 

thc abbreviation TOF( Illonochromator)-TOF( analyzer). 

Probe 

__ --I Chopper 2 

~------~~------~~------~Chopper 

Zeit 

Figure 10.10: Path-time diagram for an instrument with TOF-monochromator. 

A techllical realization of ihis principle is e.g. thc IN5 spcct.romcter at the ILL in Grcnoble. 

It is cquipped with a system of disc choppers. Besides thc flcxibility to choose wavelength 

simply by changing the chopper phasing a better dcfined resolution fUBetioH, duc ta 

cOllvolution of several real tri angular window opcning functions, is advantageous. In any 

case this method of monochromatization automatically yields a pulsed beam hitting on 

the sampIe. 
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10.3 Inverted TOF-spectrometer 

In the speclromctcl' types described above the sampie was llilluminatecl" by pulses of neu­

trons wit.h a single <lefi ned wavelength (velndt)') whieh havc beeil prepared by a chopper­

monochromator combination . Thc analysis of the velocit ies of thc scaUered neutrons was 

cITected by TOF-measuremcll t. 

lt is also possible to invel't this sequence, thc incoming velocity (Le. wavelength , energy, 

k) is determincd by the TOF between chopper (pulsed sOUl'ce) and sa mpie. Thcn - ta 

obtain a dcfilled cnergy ami momcntum transfcl'- onl)' scattered neutrons of a giVCIl final 

wavelcngth that may pass an analyzer are delecled. 

'-----~'----------f------' Chopper 

Zeit Quelle 

Figure 10.11: Path-t imc diagram of a Tor spectrometer with inverled geomet.ry. 

The correspondi ng palh-time diagram is displayed in figure 10.11. Neut rons cmerging 

thc pulsed SOUl·ce fly according to lhei r individual velocity in dircct ion of the samplc, 
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the associated paths are indicated by the grey triangle. Thc intensity within the range 

of this triangle is of course not uniform but depends on thc spectral properties of the 

source. 8 Neutrons that have beeil elastically scattered by thc sampie (path 2) pass thc 

analyzer/fi lter ~-IfF and lead to the c1ast ic lille in the TOF-histogram. Neutrons that loose 

energy (}lath 1) arc faster before thc sam pie scattering and arrivc earlier at the detector 

than the elast ically scattered Olles. Analogonsl)' path 3 represents neutrons that. gaincd 

encl'gy during scatLering. Compared to allnormal" TOF instrument the energy gain allel 

cllergy lass sieles of the histogram are reversed. Thereforc also high energy ex ci tat ions 

that are thermally not occupied may be mcasured. 

(Spallationstarget) 

~ 
Figure 10.12: Setup of a TOr spectrometer with inverted geometry. 

Figure 10.12 shows a corresponding setup. Thc pulse at the chopper contains neutrons 

from a broad velocity distribution (Maxwellian spectrum at moderator temperature). 

DUl'ing the path from chopper (pulsed sOIllTe) La sam pie this pulse separates into differ­

ent wavelcngths >. , resp. different incident encrgies, that arrive at different times at thc 

sampie. Since a wavclcngth seleclioll (ta >'0) is perfonned between sam pie ami detectol's , 

all cletected neutrons have the same velocity ami the distance sample-detector adds a 

8 In particular overlap of the triangles ("frame overlap" ) may happen, wh ich Illny bc suppressed by 

fillers tayloring t.he incomiug spectrum. 
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constant offsct to the TOF. To be ahle ta COlTect the TOF-hislograms with respcd ta 

t he spedral dist ribution of thc incoming pulse, it is important La detectecl the incom ing 

neutron flux by a monitor UvIo) located e10se ta the sam pie position accumulaled in a 

separate TOF-histogram. T his type of TOF-spectromcter is preferclltially used al pulsed 

saurces, ideally it may be possible La am it the first chopper by taking the pulse as gen­

erated by t hc pulse<.! sam ce (spallat ion target ). 9 All neutrons from the pulse (Hying 

inlo the right direction ) are ut ilized. T his mcthod has a few speci fi c advantages anel 

disadvantages, advantages are: 

1. T he pulse contains neutrons with high incident encrgy tha!. mal' perform energy 

lass scattering, the resolution at high eHerg)' loss is relatively goo<!, cspecially if the 

pulsed source supplics very short pulses at high neutron encrgies. 

2. Ir the analyzcrs are used in near backscattering configurat ion high resolutions (cOIn­

parable Lo those Oll true backscattcring spectromcters, see chapter 9) can be at­

ta ined. 

Thc utilization of the rull spectrum has however also disadvantages: 

1. T he fuH "wh ite" pulse enters the shieldcd sam pie detector space. Auy parasitic 

scattering and an)' impcrfcction of the analy;dng filters or failure to absorb neu trons 

of "ullused" final wavelcngth or dircction leads to increased background. In addition 

thc background depends on thc sam pie wh ich makes correcting subtract ions difficul t. 

2. Sampies are hit by a high er integral ftux and therfore become more radioadive. 

In general also "normal" TOr instruments perform bettel' on a pulsed source in com­

parison with a reador (if the average fluxes are equal) since by synchron izing somce and 

chopper onl)' a sIlla ll part of the genera ted neutrons (with the desired wavelength) are not 

used. The distan ce source-chopper may serve at thc same t ime as TOF-monochromator. 

In total the efficiency is comparable wiLh the invcrted type because in hot lt cases Oll 

Olle side of the sam pIe the spectrum is restricted by fi lters/monochromators and on the 

other side the full spcctru111 is ut ilizecl an<! sorted according to t he TOF. Energy transfer 

analys is WitllOUL fi lter on any side is impossible. 

9To Slipptess background or to prevenl "ftame overlap" it mal' be ne\'ert heless auv isable to use an 

addit.ional chopper. 
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10.3.1 Anal ysis by filt ers 

The analyzer thaL is indicated by the gl'CY segment. labelled MI!" in fig. 10.12 mayeither 

cansist. of an aITa)' of crystals reftecting scattcl'cd neutrons of thc selectcd wavelength 

;'0 on to the associated de tectors or of Cl filter. Especially in thc ea rly days of neutron 

scattering filters made from polycrysta lline blocks of Be , DeO cLc. were used. These 

filLers are transpare nt only for neutrons with energies helaw thc I: Bragg-eclge") i.c. for 

wavelengths larger than twice t he la rgest latt ice spacing. All faster neutrons wi ll be 

reftected by same crystalli te in t hc block. By integl'ated absol'b ing plates t he thus reflectcd 

neutrons are rcmovcd. For thc fil ter Lo be sufficient ly t ransparent belaw t hc Bragg· 

edge the tl sec! mater ia l may onl)' have a ver)' lo\\' absorp t.ion cross sect ion. In addition 

the thermal diffuse scattcring by nuct.uating latt.ice deformations (phonons) has to be 

suppressed by cooling (liquid nitrogen). Below thc Dl'agg-edgc t.hese fillel's transmit all 

neutrons from !learly zero energy to t hc edge encl'gy of a few meV . For t he spectroscopy 

of high energy excitation t his is accceptabic since t he cnergy transfer is then detennined 

by the incident energy of a few 100 meV. High resolution quasiclastic scaitering has to 

be doue with other instruments. By employing the diffcl'encc betwcen data obtained with 

two different fi lters (e.g. Be alld BcO) t he effectivc window of final energies may be 

narrowed , ho\Vever two measurements are nceded and the fina l signal is obtained from a 

small differencc of two larger counting s ignals with t he corresponding stat istical errors. 

10.4 R esolution a nd inte n sity 

Olle important quali ty of a spcctromcter is its resolut ion in (Q.,w)-space. Fol' T OF­

spectrometers - unlikc for triple-axis instrumcnts- far many appl ications mai nly Jonly thc 

energy resolution is importallt. since the scattering inte nsi ty has to be collected and accu­

l11ulatcd in a lal'ge solid angle anyway to yield a suffi cicnt. fllUl1bel' of counts. T he enel'gy 

resol ut ion is determincd by the accurac)' of the T OF-measurcment and by t he width of 

the incoming (or analyzed) wavelength band . Thc la tter is given by t he bcam divergence 

in combination with t he mosaic wid th of the crystals (see also chapter on triple-ax is spec­

tl'ometres). Thc TOF-uncertainty is given by thc chopper pulse Icngth allel thc accuracy 

of the flight path. Thc fi ight. path cannot be defincd with arbitrary accuracy, si nce finite 
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sampie size of em and a dctection posi t ion unccrtainty of some nUll in t.he detectors lO . Ir 

all timing uncertainties are lumped into 6l, a c1assical TOF instruments has the following 

resolution: 

c.w = (10.14) 

From EqIls. 10.2 - 10.5 folIows: 

c.w = (10.15) 

Bccause)/o::: I /v' (X t alld elose to the elastic line (N ~ A) it follows thai D..w 0::: 1/),,3, i. c. 

the most efficient measme to increase the "elastic" resolu t ion is the use of a lang neutron 

wayelenglhj For a matched setup t,hc relative timing ullcertainly tlllio allel the relative 

wavelength width D.,)./),. should be about equal. Eqn.lO.15 shows in addition thai thc 

timing ullcertainty tenn cx: b.f. daminates the resolution width for short time t, i.c. largc 

energy gain of thc neutron. Jf path uncertaintics 6.L are treated separatel)', t1t. represents 

only the chopper openi ng amI Eqn. 10.15 reads: 

c.w = (10. 16) 

For the inverted spcctrometer the expressions stay the same except fol' t he exchange of ..\ 

anel N. 

10.4.1 Intensity 

'fhe avai!able neutron sources are rather weak compared to sources of electromagnct.ic 

radiation (laser, synchrotron), ihey cmit neutrons in form of a thennalized gas with a 

broad distributioIl of vclocities ami iuto aB direct ians. Preparation of collimated alld 

l11onochrolllatic ucallls is only possible by sclectioll , i.e. removing all unwanLed neutrons. 

The resulting beams - even at high ftu x reactors- contain only relative!)' few neutrons. 1 1 

For this reason thc available neutrons have Lo be utilized as cfficient as possible. Evcll 

IOFor sampie in form of thin platcs t.he path utlcertainty due 10 scatlering position in the sampie mny 

be rcduccd for (on ly) one scattering angle (region) to the plale Ihickncss. 
IlThe t.ypical neut.ron flux in front of t.hc chopper of a dassica l TOr. instrument is in the order of 

l071l / cm2s , after chopping only 1O~Il/cm2s hit the sam pie all(l are available for scatterill g. In comparison 

a bea lll of a smallI m \V HeNe laser is st rictly coll imated and monochromntic aud represents an int egral 

fi ux of 3 x IO H'Pholonen/s with a cross sect·ion of maybe Inll,,2, i.c. 3 x 1OI7photolls/cm 2s. 
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if an increase in resolution mal' be ach ieved by strictcr wavevector li selection (veloci tl', 

clirection) and by reduction of thc chopper pulse length, it is often not advisable to 

cnhanee aH elements of the resolution up to thc technologiea lli mits because tbis goes along 

with a drastic lass of intensity (detector count rate) . Design of (ncuiron )-spectrometers 

means thc search for the best. compromise hetween resolution alld illtensitl" 'fhe optimum 

depends Oll the nature of the problem) i.e. the features anel structures expccted in S( Q, w). 

TOF specirometers as deseribcd in this cllapter are prefercntially used to invest. igate 

isotropie to weak ll' anisotropie sam pies with onIl' weak structnres in 5'(Q). This enahles 

thc utilization of a large solid angle for detection wh ich compensates for the losses ca uscd 

bl' energy analysis. In the schcmat ics of the speetrometers this is already indicated bl' 

i hc large number of detectors. Modern TOF instruments contain more than 1000 singlc 

counting tubes coverillg a deteding area of 30 x lcl112 each. The tota l area coverd by 

1000 detedors is about 3m2 , for a night path of 3 m this corresponds to a solid angle 

of 0.333 or 1000 degrees squared. Thereby an intesity gain of a factor 500 is obt.ailled 

compared to a tri pie ax is spectrometer with a detecting area of 2 degrces squared, the 

loss eaused hy the fa ct that the chopper opens oll ly for about 1 % of the time is more 

titan compensated. In addition the TOF instrument has a mul t iple advantage: a ll ellergy 

transfers are detected simultancously and not scquentially 1'IS in the ease of a tr iple-axis 

spectrometer. I10wevcr it is seldolll useful to sum the data of ALL detectors in to Olle 

spectrum hut different seattering angle regions have to be evaluated separately. Still 

the)' are measured all at the same time! GeneralI)' t.he TOF instrument is more efficient 

than a triple-axis spectrometer for isot ropie sampies. As 50011 as single crys tals 01' verl' 

anisotropie sam pies with a strong dependence of the spectra on 9. are to be investigated 

the eonvcnt.ional t riple-axis spect romcters are beiter suitcd. 
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11.1 Introduction 

The attempt ta increase the resolution of time·of-flight (TOF) instruments described in 

chapter 10 rar beyond the :::::: 1 % of the presell t realizations would lead ta an unacceptablc 

lass of intensity (as expressed in terms of detcctor count ra te). E.g. a faetol' 0.1 whieh had 

La be applicd as well ta thc monochromatization as to thc pulse lcngth (chopper opening 

time) would on thc one hand increase the resolution accordingly by a factal' of about 10 

hut at the same time the intcnsity is reduced by O.lmonochr. x O.lchopprr == 10- 2
• Still ather 

necessary mcasures ta prescrve the increased resolution as the reduction of sam pie size 

(definitioll of flight path) are not contained in this reduetion fact.or. Thc same situation is 

also given if monochromator and analyzer eonsist of erystals. In general an improvement 

of the spectral resolu t ion requires the narrowing of thc filter transmission fUllct ions before 

and after the sampie seattcring by thc dcsired improvement faetoL Howcver this mcans 

an intensity reduction by the square of the resolution improvement fae toL This situa­

tion would immediatel)' improve, if it would be possible to equip each neutron with an 

individual stop watch whieh could he reael in a way that thc run time diHerencc betwecll 

test tracks bcforc ami after the sam pIe is obtained at detection. Ir t his stop wateh has 

a sufficient time resolution it would be possible to observe very small velocity changes 

cvcn if a beam with a wide range of ini t ial neutron vclocities is nsed, This would allow 

ta escape the intensity trap. 

In the neutron spin echo (NSE) spectromeler-with some restriet ions (with impOl'tant 

consequences for the application)-it is indeed possible to use thc neutron spin dircctions 

as kind of individual stop watch pointers. The cloekwork of this watch is then effectcd 

by the precession of lllc neutron spins in an external magnetic field 1
, The restriet ions 

I It is somewhat involved to cxtract this analogy starting from a quantum meehanical 

view with spin cigenstates and eigcnvalues. Implicitly we are talking about thc behaviour 

of the ensemble average of the spin vectors which obeY8 thc BclassicaP' Bloch equatioll 
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affecting applieation are caused by thc faeL that thc "spin-stop watch U can only bc read 

up to an unknown integer !lumb er of completc precession turns. The reading is performed 

by the eosine type transmission funeLion of an analyzer anel yields onl)' ensemble averages 

ami not individual rotation angles. The intensity at the detector is JIlodulated aecol'dingly. 

In addition inelastic scattering does not produce only one defined velocity change but ß:v 

is distributed aceording to S(Q,w "" ki:>.v). The deteetor signal is then proportional to 

the integral of intensity eontributions modulated by the eosine of the precessioll angle and 

weighted aeeording to the i:>.v of S(Q, w). Therefore, the signal of the NSE speetrameter­

as explained in this ehapter- is eompletely different from the TOF histograms of c1assical 

TOF-spcctl'ometers (ehapter 11) . Instead it is proportional to t.he eosine Fourier transform 

of S(Q1 w), i.e. the intermediate scattering function S(Q, t). A detailed derivation and 

discussion is given below. But first of an the aetual setup of an NSE spcetrometer is 

presented. 

11.2 Setup and Function 

Figure 11.1 shows the schematie setup of aNSE spectrometer (upper part) together with 

the propagation of the neutron spin in the instrument (Io\\'cl' part). 

Longitudinally polarizcd neutrons2 (i.e. spin expcctation value parallel to the beam di­

conccrning its prcccssion in the magnetie field. As long as the kinetic energy of the 

neutrons is much bigger than the magnetie level splitting the classical picture is completely 

sufficicnt. It is much easier to understand thc NSE spectrometer in this way than a 

quantutn mechanical treatment. 
2 The polarized neut.ron beam is obtai ned by reftection by a magnetie multilayer mirror. 

The layer stack cOllsist.s of alternating nonmagnetic (c.g. Fc, Si 01' Ti) al1(l magnetic (Fe 01' 

Co) layers. The effcetive index of refraction of the magnetic laycl's depcnds on the relative 

orientation of magnetization 1'1.11(1 spins of thc neutrons sllch that there is a modulation 

of index of refraction for neutrons in one spin state onl)'. Those neutrons are rcftected, 

the others are transmitted. Fm layer distances of 5 ... 10 um l'eftection anglcs of a few 

degrees rcsult for wavelengths around 10 A. Both the reftected and the transmitted beum 

are polarized (with oppositc spin directions). 
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Figure 11.1: Spin rotations allel setup of a generic NSE-spectromcter. Upper part: Spin 

rotation , middle part: magni t ude of thc magnetic ficld, lower part: schcmatic setup of 

the Jiilich NSE-spectromctcr. 

rection) cnter the spectromcter from thc left. In the first so-called 7T /2-flippcr the spin 

is rotated such t hat on exil it is orthogonal to the longitudinal magneLie field of the 

precession path. That defines the start of the "spin stop watch"! immediately after the 

flipper a prccession of the spins around thc axial magneLie field begius. Thc precession 

frequcllcy increases during the approach to the centrc of the maill precession solenoid 

whcrc it reaches its maximum of up to a few MHz. The accumulation of precession angle 

continucs- with decreasing frequency- until the neutrons reach the n-flipp er dose to the 

sam pie (8). The total preeession angle at that point is: 

lji = :r fl Bldl '" " 
V I 

(lU) 

where ... { = 27r X 2913.06598 X 10" 5- 1 jTesla is thc gyromagneLic ratio of the neutrons and 

IBI is the modulus of the magnetie induetion along the path I. 

T he ICstop watch" does not proeeed uniforml)' but with a position dependend frequ ency 

tlmt is proportional to the loeal magnetic field along the neutron path I see figure 11.1. 

T his mayaIso be eonsidcred as a field dcpcndend distance streehing, whieh releases e.g. 

the mechanical positioning accuracy requirement-s for t he flippers since t hey are located 

in low field regions. Thc total Bumber of precessions a neutron spin undergoes on passage 
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through one arm of the spectrometer lies between 10 alld some 10". 
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Figure 11.2; Field along the axis of a main preccssioll coil. 

e lose to thc samplc (ideally: at thc sam pIe position) the so-ealled 7r-flipper is located, it 

rot.ates the spins by 1800 around a vertieal axis. In this way the tota l preeession angle is 

transformed to W1 = +a --7 -0:. T hc precession angle ö.' is- according to equation 11.1-

extremei)' dependent on velocity allel therefore very different for different neutrons in 

a beam with finite width of t.he wavclcngLh distribution . As fl cOllsequellcc the spin 

vectors at thc sam pie position ('Ir-flipper) are evenly distributcd on a dise orthogonal to 

the field direction. If no velocity change oeems chlring scattcring at thc sampIe (clastic 

scattering) eaeh neutron enters the secondary arm of the spectrometer with unchanged 

velocity. The precession field anel path lellgth of thc secondary arm cxactly match thc 

corresponding elements of the primary arm before sam pie alld 'Ir-flipper. Accordingly, thc 

precession accumu lated in the secondary arm is W2 = +0: and thc total preeession angle 

at the second 1r/2-flipper is WI + \}I2 = - 0 + a = O. l.e. all spins- irrespectivc of their 
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initia l velocity- reassemblc at the same vertical position they hnd at the start point. Thc 

rotation imposed by the second 7r j2-flipp er convcrts this back to the initial longitudinal 

polari;.:ation that is full)' restorcd. The flippers limit the thc 1wo race tracks and realizc 

"st.are' , I<ti lIlC reversal" and tlstop" of thc "spin 810p watchesl!. Thc second 7r /2-flipper is 

the last element t1scd LO manipulate thc spins. It cOllvcrt.s the average prccession angle Lo 

a longitudinal polarization component. Since the field after lhe second 7r /2-flipper is again 

longitudinal, further prcccssiolls da 110t inAuence the analyzed longitudinal polarization 

component (the 810p watch is stopped!). 1'he analyzer acccpts neutrons of olle longitudinal 

spin stute for Lhe detector. After ensemble averaging this mealls that the count rate at 

the detector is proportional to (1 ± cos(ili»j2 3, where ili is the expectation value or the 

angle between spin ami axial direetion. 

11.2.1 Flippers 

Ignoring teehnieal details the main elements needed to perform the spin operations nec­

essary for a NSE speclrometer are: 

• 11' j2-flipper (start) 

• first preeessions field 

• 7T-ßipper ("time reversaP') 

• second precessions field 

• 11' j2-flipper 

\-"hile in the precession fields the spin vector (its expectation value) continuously rotatcs 

araund the field vector on a cone with constant angle (angle Held-spin , ideal value = 

90°) even if the field which the neutron experiences du ring it.s Aight performs (sufficiently 

slow, i.e. adiabatic) direction ehanges\ the flippers rel)' on a sudden change in the field 

The sign in front of the eosine depends Oll thc technical rca li~ati on of polarizer 

anel analyzer (both rcftecting, transmitting, olle reftecting one Lransmitting) and Oll the 

oriental ion of flippers. It may bc scleeted by choosing thc signs of the ftipp er currents. 
.. T he eone of precession follows the direction of the precession Held qui te accuratel)' 

if the efl'ective frequenc)' of the field rotation is much smaller than thc local prccession 
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direcLion that gives rise to a ne\\' drasticall)' changed cone angle. In figure 11.3 a 11/2-

flipper is showlI togethel' with tite field vectors that havc to be generated for an adequate 

fun ction of the ßippeL 

B. l In 

B exl 
=====1> 

=====1> = = ====<1> 
==== _1> =====1> 

Figure 11.3: Schematics and fUll ction of a 7r /2-flipper. 

The rectangular flipper exposes its large sides to the beam . The box consists of electrically 

conducting anel neutron t ransparen material (aluminum wire) which catTies a current I , as 

indicated by the broad a1"l"0\\'5. All side walls rcalize a thin homogeneous current densit)' 

frequenc)'. Such a change in fi eld is called adiabatic. In particular this means that fast.er 

direetioll changes arc the more adiabatic the larger thc fi eld iso For aNSE speetrome­

tel' care must be taken tha t except at the cntry and exi t of flippers the eonditions are 

adiabatic. The magnetic field of the spcctrometcr is of course statie, however thc neu­

tron spins experience a t ime varying field due to the passage of the neutron through the 

spcetromcter. 
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distribution (current sheets) that leads to a homogcneous fi eld ß ;r /2 in the inside of the 

fl ipper. For a sufficicnt length of the flipper the stmy fi eld emcrging from the ends of 

the flipper coi! is negligibl)' sl11all in the beam area in front of the flipp er. To obtain 

the dcsired operation the n /2-flipper has to ue embedded in an cxternal longitudinal 

field Thc resu lting field in thc interior of the flipper Billf has an angle of 45° to the 

longitudinal axis. The magnitude of the ficld must be set such that the neutrons perform 

a precession of exactly 180° during the time the)' need to transverse the flipp er. In this 

way a longitudinal spin ycetor is rotated inlo an orientatian perpcndicular to the axial 

Held. Then the precessian coue has the maximum angle of 90°, i.c. it is a disc (dial of the 

"stop watch"). For a typical flipper thickness of 1 cm thc interior field is in the order of 

0.1 mTesla = 10 Gauss (For comparison thc earth's magnetic ficld is ~ 0.5 Gauss). Since a 

fixed precessioll angle around Bint=const must be accumulatecl during the passage time of 

the neutron through the flipp er, the flipper function is moderatcJy wayclcngth depcndent. 

For the case of setup alld stnbiJity of operation of the spectrometer it is advantageous 

that thc flipp ers are embedded in a comparativcly small external ficld « 10- 3 of the 

maximum preeession field) . I.e. e10se to t he flipp ers thc Hspin eloek" runs slowly amI 

small path difl'erences duc ta positioning inaccuracy and thermal expansion only lead to 

very smaH errors in precession angle. 

The teehnical realization of the n-flipper is identical to the one of thc n /2-flipper, however 

its fun ction- as indicated by its name- is different. It perfonlls a 180° rotation around 

an axis perpendicular to thc beam axis (e.g. a ver tieal axis) wh ich is virtually parallel to 

the axis of the flipp er coil. To do so the internal field has the same magnitude as in the 

1(" /2-flipper howcycr the embedding field is elose to zero and therefore the internat field 

vector is virtually vertical5 . 

5 Unfortuuately it is not possible to cmbed the n-ftipper in a zero field environment, as 

everywhcre in the beam vohIlne this wauld lead to a violation of the adiabatic conditiol1. 

\i\' hile the beam enters stich a zero fi eld region if would suffer uncontrolled inhomogeneous 

tilt.s and rotations of the preeession eone that would cffect ively lead to a depolarization. 

Smallest external stray fields would exert a big innuence on the signal. A defined spin 

operation would not bc possible. For t.hat reason a minimal field in the range of a few 

(1 ... 2 Gauss) is mandatory not to loose the defincd polarization. vVithout further action 

thc n-flipper fUllction is detcriora tcd by t his finite extcrnal field . But by a slight til t of 
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11.3 The detector signal 

As mentioned above thc detcctor signal results fwm thc transmission functioll of thc ana­

Iyzer shaped as thc eosine of the net precessioll angle in combination with the distribution 

of net precession augles duc ta thc distribution of velocity changes during scattcring. Thc 

velocity dist ribution is proportional to the spectral part of S(Q,w). In the following this 

is derived in terms of mathematical expressions. First the ficld integrals along the prima!'j' 

ami secondary paths of preccssion are defined: 

/(111") 

JI J IBldl (11.2) 

1«iT/2)J} 

1«"1I"!2hl 

J, = J IBldl (11.3) 

I(;r) 

for asymmetrie setup J1 = J2 ; 1( 1T 1 (71'-;2)1,2) dcnotes thc positions of thc corresponding 

flippers. The prccessioll angle accumulated on a palh i is 

"' . _ ,Ji 
'<', -

V 
(11.4) 

where v is the neutron velocity (typically sevcral 100 mJs). Because the 1T-ßipper inverts 

thc sign of W 1, a total prcccssion angle of 

(11.5) 

results, where ßv is thc veloeity change of the neutron duc to inelastic seattering. The 

transmission functiou of an (assumedly ideal) analyzer is 

1 [ ( ,JI 
T, = 2 l+cos - -;; (11.6) 

From that the detector intensity 

I = 1/S(Q) JJ Hl± cos ( - ':1 + v :J~v) 1 ww(~v)w.>.(v) d~v du ( 11.7) 

the Hipper 01' by a tiny extra component of the external field in dircction of tha flipp er 

axis the ideal function may be restored. Thc condition ta be fulfillcd is that the resulting 

internal field is orthogonal to t.hc cmbedding field whieh may be slightly tilted from its 

horizontal orientation by the added small extra field component. 
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results, whel'e 1] is an irrelevant calibration factol' alld Ww resp. w>. are normaJized dis­

tribution fUllction s. Ww repl'cscnts the spectrum of the sam pie as faund in the scattering 

funct iOil allel w>. takes aCColint for the fact that the NSE spectl'Omcters usually are op­

erated with a braad incollling wavclength distribution (t:J.~\FII'JlM/).. = 10 ... 20%). Ob­

serving the linear dependences of k , ,\ alld v ami series expallsion of the squares in the 

expression for the double differential cross sectiOll 10.2 allel insertion into cquation 11.7 

leads to: 

"(h--;/I-'-;,J~,,)-;-),-"1 + (h/m"),~~'+ AW/21f)] S(Q,w)w,('\) dw d)' 

(! 1.8) 

11.3.1 SYlnmetric Case 

At the point of symmctry J1 = J2 = J it is possible to callect thc ..\-dependend terms in 

equation 11.8 and to write thcm as series expansion for sm all w: 

1 
-~+ ), 

1 :::::::: _~\3 m/lw 
,+ ),(m,,/h)w/21f h21f 

(11.9) 

To see the salient features of the spectromcter s ignal more elearly thc finite wavclength 

distribution is ternporarily ignored 

I = 1 [ J ( ",' 1/ '2 S(Q) + cos 'YJ h,~~),3 
'--v--" 

=/ 

= ~ (S(Q) + S(Q, I)) 

W)S(Q,W)dW] 

( 11.10) 

The underbraced product has thc unit Utime", thc integral in equation 11.10 represents 

the eosine Fourier trans form of S(Q,w) with respect to w, the rcsulting fUllction is ca lied 

inlermcdiate scattering junctioll, 5'(Q, t) G From equutioll 11.10 it is furthcr reckognizable 

that the time parameter t = 'YJ111~A3 /(h'21f) depend. on the third power of the wavelength 

,\ (i.c. long wavelength , ver)' long Fourier times). In addition t (X J, i.e. mainly 

6 Strittl)' this is on I)' true for a 5'(Q, w) t.hat is symmetrie with respect to w, i.c. in the 

c1assical approximation. For any practica l problems however th is is weIl fulfilled since t.he 

minute encrgy transfers correspondiug to thc NSE time seale are very small compared ta 
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proportional to thc current throught thc main prccessioll solenoids. T his currcnt uSlia lly 

is the parameter used to stepw isc scan the Fourier time during an experiment to get a 

table of S(Q, t) "S. t. 

11.3.2 Elastic Scattering of a Finite Width Wavelength Dis tribution 

Fol' a transm it tccl beam 01' elastically scattered neutrons from a reference sam pie w = 0 

holds, i.e S(Q,w) = b(w). With t hat equation 11.8 bccolllcs 

(Il.ll) 

Far this case the intensity is proportional to the Fourier trallsform of thc wave]ength 

distribution. Here, the unclerbraced part is thc external control parameter. It contains 

the difference between the fi eld integrals alollg thc primary and secondal'Y paths J2 - J 1• 

This difrerence can be casily controllcd by sending a current through an auxiliary coil 

of a few windings around one of thc preeession solenoids. For a Gaussian wavelength 

distr ibution thc envelope of the Fourier trallsform is again a Gaussian whose width is 

inversely proportional to the width of thc wavelcngth distribution. Sinee w). is centercd 

at a fini te nominal wavelength Ao thc cnvelope is mul tiplied by a eosine with aperiod 

<X 1/>'0' This function follows immediatei)' from equation 11.11 ifw, = 6(>') is .ssnmed. 

Figure 11.4 displays the results of an extensive measuremell t using thc attenuatcd direct 

beam wi th a centl'al wavelength of Ao = 0.7nm and !:l.AFWIl/ll/Ao = 0.1 eompared to a 

ealculation (fit) asslllll ing a Gaussian wavclength distribution. 

At t he echo point (Lc. a phase coil currcnt dose to 1.5 A creating perfect symmelry) the 

count rate has aminimum. Ideally the count rate shotlid be zero there, but because a1l 

elcment.s that eontribute to the polarization manipulation and analysis are imperfcct a 

residual intensity is left that has to be determined by calibration mcasurements. From the 

t he funetional dependcnce of the intensity on the phase curren t it is possible to determine 

the wavclength distribution. 
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Figure 11.4: Echo shape: count rate as funct ion of thc magnetic symmetry (cx phase coil 

curfcnt). 

11.4 Experimental Procedures and Evaluation 

In principle the information on S(Q, t) according to cquationll.lO is contained in the ratio 

of the intensities at the symmetry point and the average intensity (1)/2) S(Q). However 

there ure practical reasons that prevent the reliable setting of the symmctry point alone. 

Thc loeation of the symmetry point (Lc. phase zero current in the phase coil) is extremel)' 

sensitive to ti ny variations of the magnetic environment caused e.g. by displacement of 

largcr iron parts at neighbouring instrument,s, movemcnt of thc crane of thc instrument 

hall amI thermal displacements of cails. T hercforc, the position of the symmetry point has 

to be measured as weil as thc intensity for each Qlt setting. In figure 11.5 the minimum 

of single countings is indicated, intensity must be determined for three point.s Pl ..• P3 

separated by a symmetry change corresponding to a quarter precession each. From these 

thrce values it is possible ta extracl the average intcllsity I(Q, O), the echo ampli tude 
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I (Q , t) alld the exact s)'lll llletr)' point loeation. This also holds if any perturbation shifts 

the loeation as indieated b)' the three hollo\\' circlcs in the figure. 

p 
~ -1-----------

:;,-.,. I(Q,t) ---" . ü3 
= fI Cl.:> " ---" 

p~ -=: /\ -tt--~ V 
+. 

= ---" 
c...:> 
Cl.:> 

---" 
Cl.:> = 

I(Q ,O) 
P3 

Symmetry 
Figure 11 .5: Sehematie echo form , idcalized. 

For an ideal spectrollleter I(Q,t)/I(Q,O) = 8(Q,t)/8(Q) would be the desired value of 

the normalizccl intermediate scattering fun chon . In reaHt)' resolution efl'eets and polar­

ization losses reduce the value of I(Q, t) / I(Q, 0) comp.red to 8(Q, t)/8(Q). 

Figure 11.6 shows data from actual experiments t imt are used to determine the echo 

amplitude ami average in tcnsity. Here thc shape of the echo signal (intensity vs. symmetry 

cunent) is sampled for a eOJlsiderably larger number than thc minimum of three points. 

T he parameters ampli tude, average and phase zero cunent are determined by a nonlinear 

fit. Behind the oscillating echo form there are two further groups of points showing the 

minimum and maximum of intensity wh ich indieates thc efficiency of thc polarization 

analysis. These illtensit ies are measured by deactivating t he 1T /2-flippers (m inimum) ami 
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Figure 11.6: "Phase seans" used ta determine the echo amplitude at t he J iilich NSE 

spectrometer. Symbols indicate count rates normalized to a monitor rate. Thc oscillating 

Hues are "fitteel >! echo signals (assuming Gaussian distribution of wavelcngths). At t he 

end of the seans gl'oups of poitIt.s corresponding to thc minimal (n /2-flippers off, 1T-flipper 

on) and maximal (a ll flipp ers off) obtainable count rates are located. T he horizontallincs 

correspond to thc average and the minimum and maximum inlensities. The experimental 

value of interest is computed from the ratio of the echo amplitude and the maximum 

possiblc Hp-down differencc. T he lines starting at one point at the beginlling of the sean 

are measured magnetic field components (differences to the starting value) at the sampie 

position , they serve to monitor variations of thc magnetic environment. 
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then additional deactivation of the Tr-flipper (maximum). An ideal spectrometer would 

have zero transmission in the one case ami 100% transmission of neutrons in the other 

case. T he non-ideal behaviour is caused by depolarization effects at the technica l elements 

of the spectrometer , the wavelength dependence of the flipper operations and the finite 

efficiency of polarizers and analyr.e rs. Also for an ideal spectrOInetel' being free from the 

above effect.s a finite minimum allClless than 100% maximum intensity will result for spin­

ineohercnt seattering whieh is always accompanied by spin flips for 2/3 of the incoherently 

scattered neutrons. 

To aceount for the polarization losses the difference between the tlms determined "up" 

and "down" count rates is used to normalize t he echo amplitude (instead of taking just 

the average intensity). 

11.5 Field Integral Homogeneity and Resolution 

Besides the eleeay of S(Q, t) as a consequence of the dynamical processes in thc sampie 

the measured echo ampli tude surfers a further reduction duc to resolution effects (different 

from the above mentioned depolarization effects) that must be accounted for in t he da ta 

evalllatiOJl. 

Up to this point we tacitly assumed that thc values of J1 amI J2 are the same for all 

neutrons in thc primary and seattered beams. This would howcvcr only he approximately 

true for very narrO\\, bcams whieh therefore would carry only very few neutrons. Useable 

beams l1111st have a width of several cm aJl(I contain neutrons of different elirection (diver­

gence). In particular the use of a largc area sensitive deteetor leads to rather divergent 

rays in the secondary arm . Note that a field of 1000 Gauss=O.l Tesla acting along a track 

of 2 m yields 3000 Hz/Gauss x 1000 Gauss x 2 m / 400 m/s = 15000 full precessions for 

neutrons with a velocity of 400 m/s (,\ = 1.0nm) . The conditioll that the precession angle 

accumulatcd along different rays in thc beam must be equal wi thin 0.1 precessions then 

translates into thc requirement that the fi eld integrals along thc different rays must be 

same within 1 105 . As SO on as thc preeession angles resulting from different rays differ 

by 1800 the signal ist lost completely. Simple cylindrical precession coils fall behind the 

requircd homogeneity by a factor 100. Only by usc of special eorrecting elements ("Fres-
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nein coils) thc rcquired homogenei ty may be achicved . The correction elements posi Lioned 

in the neutron bcam have to rea lize radial cUlTent distribu t ions arou nd thc magnetit axis. 

T hrcc radial elements per arm in principle allow for a full cO l'I'ection . However the making 

of such elements t hat a re transparent for neutrons a nel a re a ble to carry thc required high 

cunent densities wi th t he required accuracy is difficul t. CUl'l'ent ly t hc improvement by a 

facto r of 100, sufficicnt for operation with thc above parameters, is barely achievable. 

+ 

Figure 11.7: Correction element for the fie ld integra l hOl1logenization, material: alu­

m inum . 

F ig. 11.7 shows the shape of the rad ial corrcction elements whieh a re uscd in the Jülieh 

NSE. T he uncorrected inhomogeneity is proport iona l to t hc ma in precession fields ami 

t herefore proportional ta thc Fourier t ime t. In thc currcnt setup t he residual inhom o­

genei ty (after corrcction) sets thc li mit for thc maximum Fourier t imc. 

F igure 11.8 iIlustrates how t hc echo ampli tude decreases due to resolut ion effects even 

with corrcction elcments. \Vithou t correction t he ampli tude would drop to va lues helow 

0 .1 a bove Fourie r times of a few HS. T he resolution fUl1 ctions as show in figure 11.8 can 

bc d ctermined using t he scattcring from a reference sam pie wh ich is known to exhibi t 

elastic scattering only (> 99.9%), herc: microcrysta lline 1\'lg0 . T he expcrimental result.s 

(normalized echo ampli t udes) of all sampies have to be divided by t hc normalized echo 
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Figure 11.8: Resolution function of thc Jülich NSE far beams of different divergence. 

Solid lincs: configuration with thrcc correction cails, dashed liucs: only tWQ corrcction 

coils. 

ampli tude. from the referenee sam pie to yield S(Q, t)/S(Q). An example for the final 

result of a typical experiment is showll in figure 11.9. 

11.6 Practical Aspects, Peculiarities 

From the above descriptioll it follows that thc NSE spectrometer measurcs the Fourier 

transform S(Q, t) of the speetral part of S(Q,w) direetly. As a eonsequenee the average 

count rate at the detector corrcsponcls ta half of allllcutrons scattered from thc sam pie 

into the solid angle of thc dctector (FouricrintegraD. Therefore weak spectral features 

are buried nnder the naise duc ta countiug statistics. Howcvcr the method i5 perfectly 

adapted to relaxat ions that are performed by most of the scattering structure since thc 
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Figura 11.9: S(Q, t)jS(Q) of a 2.5 % polymer solution with a fit to the Zimm model that 

theoretically dcscribes S(Q! t) for a dilute polymer solution. Thc data havc been measured 

using the area detector at only two angular positions of the secondary spcctromcter arm 

within 8 h time. Thc hollo\\' symbols ha\'c been obtained at an arm setting of Ci = O.05Ä-
1 

and correspond to Qj A - 1 = 0.038,0.05,0.061,0.072. The filled symbols were measured 

at Q = 0.08A - 1 a11(1 correspond to QjA - 1 = 0.067, 0.08,0.09, 0.102. 

relaxation functions are measured in the time domaiIl directly and resolution correction 

consis t.s of a division instead a deconvolutiou in thc frequenc)' space. 

One ver)' important field for NSE invcstigations are !lsoft matter" problems. These COIll­

prise polymer melts and solulions ami other complex fluids. Thc NSE mcthods opens a 

dynamics window in thc SANS scattering vector regime. Since in that regime thc dy­

namics is determined by the balance between elastie (entropie) forees alld friction and 

in comparison inertial forces are ncgligible the obscrvcd fluctuations are pure relaxations 

and weil suited for investigation by NSE. 
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tvlany isotopcs- especially normal hydrogen {protolls)-scatter neutrons incoherently. 

This is often utilizcd in TOF investigations since the incoherent scattering from hydrogen 

is dominant and more easy to interpret than the eoherent. The spin ineoherent seatterillg 

is eaused by the dependence of the scattering lcngth on thc relative orielltation of BucJeat' 

a11(1 neutron spins. The fluctuating part of the scattcring lengtll due to random spin 

orientation eontains 110 interferencc of scatteri ng frollI different Iluclei, Le. the scattering 

intensity distributes evenly over 47r solid angle and is ctdiluted ll accordingly. The inten­

sity is very small compared to typical SANS intensitics. The dynamics of the incoherent 

scattering refleets the tagged particle motion (self correlation) . For the NSE method it 

is important to note t llat the spin-dependent scattering flips 2/3 of the neutron spins. 

This means that a cOllsidcrable loss of polarization is eneolllltered, only 1/3 of the neu­

trons contribute to the echo signal- the rest is background. T his 1/3 stems form the spin 

flipped neutrons, i.c. the echo ampli tude is also inverted (negative). It is evident that 

for t his reason NSE experiments with incoherent scattering are much more difficult to 

pet-form. If eoherent anel incoherent seattcring eontributions are simultaneously prescHt 

this may lead to peculiar efTccts since the amplitudes Illay ea neel each other depending 

on their- potentially clifferent- dynamies. 
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12.1 Ill tl'odllCtiOIl 

The analysis of erystal slrueture and magnetie ordering is usually based on diffraction 

phenomena eaused by the interaction of matter with X-rays, neutrons, or eleetrons. Even 

though eleetron mieroseopy ean aehieve atOlllie resolution, more detailed information on the 

3dim. atomie arrangement of erystals with its symmetry and ehemical bonding as weil as 

magnetie struetures and spin densities requires diflraetion methods. The basic theory of 

diffraetion is the same for all types of radiation. Complementary information is achieved duc 

to the different eharaeter of X-rays, neutrons and eleetrons, alld henee their different 

interaetions with matter and flIrther praetical aspcets. 

Considering only X-rays and thennal neutrons onc finds that their wavelellgths are similar 

(0.5 A < ), < 2.4 A). While thc electromagnetic X-ray radiation yields the total electron 

density distribution, the Buclear scattering of neutrons probes the density distribution of the 

nuclei and the magnetie neutron scattering the spin density of llnpaired electrons. 

X-ray diffraction using conventional laboratory equipment and/ar synchrotron installations is 

thc most important mcthod for structure analyses. The purpose of this paper is to discllss 

special cases, far which, in addition to this indispensable part, neutrons are required to solve 

stlllctural problems. Even though the huge intensity of modcrn synchrotron sources allows in 

principle Ihe study ofmagnetic X-ray scattcring the investigation ofmagnetie structures is still 

one ofthe 1110st important applicatiolls ofneutron diffraction. 

12.2 Stl"tlctUI"C factot" and ßragg intensitics 

The charaetcristie feature of the crystalline state consists of its periodic ardering, whieh may 

be represented by a (translational) lattice. In the 3dim. ease tluec basis vectors !b .h.. and .9 

deline a parallelepiped, called unit cell. The generallatticc vector 

! = lI!! + VQ+Wf (I) 

resllits from a linear combination of the basis veeters with eoefficients 11, v, and w being 

positive or negative integers (ine!. 0). Aecording to their point-symmetry propertics seven 

crystal systems are distinguished: 

Triclinie, M01l0C!illic, Ol'lhorhombic, Tetragonal, Trigonal, Hexagonal, and Cubic. 
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Besides of the related sevcn primitive lattices, with only one lattice point per unit cell, 

multiple lattices with centred unit cells are possible. In this way a total of 14 Bravais lattices is 

defincd. 

Thc position of atom j in the \lIlit cell is given by the vector 

rj = Xjil + YJQ + Zjf. (2) 

Thc coefficients Xj. Yj, and Zj are called atomic coordinates (O.:5Xj< !; O$;Yj< I ; O.:5zj<I). 

Lattice planes (lhat means a set of parallel planes containing lattice points) defined by three 

integers (hk!) called Miller indices have the characteristic interplanar spacing dhU. 

For scattering studies of crystals the concept of the rcciprocallattice with the basis vcctorS!!*, 

h*, and ~* was dcvelopcd. The lattice vector of the reciprocal latticc is defined in 

cryslallography by 

!::! = hfl*+kJ1*+/f*. 

In solid state physies instead ofH = IId/lkl there is normally used the scattering veetol' 

Q = 21tH. 

12.2.1 NucJcal' scattcring 

(3) 

(4) 

In kinematical approximation, assUlning timt the magnitude of the incident wave amplitude is 

the same at all points in the specimen (this implics a small sampIe size, weak scattering 

intensities, no multiple diffraction and ncgleeting of absorption), the diffracted intensity is 

proportional to thc square of the amplitude of the scattered wave for each individual 

reflection; it can be regarded as a weight ascribed to the reciprocallattice nodes 

I(!:D - !F(!::!)!'. (5) 

The structure factor F(J.:!), in terms of the Fourier tl'ansform, contains the complete 

information on the distribution of the scatterer density in the unit cell, including the atOlnic 

coordinates Xj, Yj, und Zj, 

F(!::!) = I bj exp[21ti(!::!Tj))-Tj(!::!) = !F(!::!)!·cxp[ÜI'(!::!)]. (6) 

In the case ofnuclear scattering ofneutrons the structure factor has the dimension ofa length, 

as has Ihe scatlering lenglh bj(!::!) = bj = const. of nucleus j . Tj(!::!) is Ihe Debye-Waller faclor 

which takes into account dynamical and static displacements ofthe nuclcus j from its average 

position fj (see Eq. 2) in the unil cell. \Vith the fractional coordinates Xj , Yj and Zj the seal ar 

product in the exponential function can be written as 
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H'rj = " Xj + kyj +/z;. (7) 

II11)10I't3I1t: The mcasurcd Bragg intcllsities 10:D from diffraction experiments yield ollly the 

modulus of the structure factors, W(H)I «,fl(H), and not their phases <p(H) 

(see Eq. 5), which would be rcquired for the inverse Fourier transform of the data (Fourier 

synthesis) 10 give dircclly the arrangement of the atoms in the unh cell. Tlte lack of Ihe phase 

information is known as lhe phase problem of crystallography. 

In a difTraction experiment normally only relative Bragg intensities are measurcd. A SCALE 

facter is assllmed to bc rigorously the same far 311 reflections of one data set. For merely 

Huc1eae neutron scattering and single crystals lhe integrated relative intensities are given by 

1(H) = SCALE-L.A·IF(H)I'. (8) 

The Lorentz factor L is instl11ment specific. The absorption correction A depends on the 

geometry und linear absorption eoefficient of the sumple. 

The geometrical difTraction conditions and hence the reciprocallattice yield the periodicity of 

a crystal. Information on the crystal system. the Bravais lattice type and the basis vectors il. Q, 

f of the unit cell (Jattice constants a, b, c, a, p, y) may be directly deduced from the reciprocal 

lattice. The !F(IDI2 va lues assoeiated as weights to the nodes of the reeiprocallattiee give the 

diffraetion symbol and henee valuable infonnation on the spaee~group symmetty. Here 

systematic absences (zero structure factors) ean be relatcd to the choice of a non~primitive 

Bravais lattiee, or to the presence of non-symmorphie symmetry operations (symmetry 

operations with translation components). 

12.2.2 Magnelie seattcl'iug 

The dipolar interaction betwecll the neutron magnetie moments and the magnetie moments of 

atoms/ions (and nuclei) illj leads to the magnetie neutron scattering in addition 10 the Buclear 

eontributioll. In the case of an ordering of the magnetie moments ovcr the whole crystal 

(periodic magnetie strueture) the magnetie strueture faetor is given by 

F,,(ll) = L bM;(H)'cxp[2niillTj)}Tj(H) 
J 

with the magnetie seattering amplitude 

b'u(H) = (e'yl2m,c').f"jill) ,o'ill.!.i(H). 

12·) 
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Ylcr is the neutron spin operator ,md !ll!iCtD the projcetion ofthe magnetie moment illj onto the 

scatlering plane (hkf). The magnetie form factor fM/ID is the fourier transfonn of the 

Ilormalised magnetisation density Mj{r) of the atom or ion j 

f'Ij(!:!) ~ Iv Mj(r)·exp[21ti(!:!'r)j·dr (11) 

This is a funetiOll of the reeiproeal lattiee veetor H. whercas the atOinie scattering faetor fj of 

X-ray diffraetion 

fj(IHIl ~ Iv pj(r)'exp[21tiili'r)]-dr, (12) 

for a spherical eleetron density pj(r), depends only on the length ofH. 

The intensity of magnetie and nuelear neutron seattering is of the same order of magnitude. 

For unpolarised neutrons the Bragg intellsity of l1uelear allel magnetie neutron diffraetion is 

simply an ineohcrent superposition 

For polarised neutrons on the other hand the eoherent superposition givcs 

[!F(H)I'ji ~ IFN(H) ± FM(IDI' 

(13) 

(14) 

with thc interferenee tenns ± 2· IFN(ID· FM(IDI aeeording to the two possible directions of 

polarisation (+ and -). In measuring the flipping ratio at supel'imposed Bragg refleetions, that 

means the ratio of the intensi ties for Ihe two polarisations 111' and down, even small magnetie 

structure faetors ean be determincd quite aecurately. 

The analysis of a magnetie strueture starts with thc determination of its periodicity witlt 

respeet to timt of the erystal strueture. The identifieation of magnetie reflectiolls is usually 

accomplished by a careful eomparison of powder diagrams reeorded below and above the 

magnetic phase transition temperatures. A more detailed study of the seattering vectors, e.g. 

for incommensurate structures, ma)' require also single-crystal experiments. The nuelear 

strueture faetors f'NCl..:!) ean be ealculated from thc knowll CJ1'stal stmchJre. In this wa)' the 

SCALE faetor of the data set can be obtained and the absolute va lues of the magnitudes of the 

magnetic strueture faetors 1F,.,1Cl:DI can bc determincd. The individual orientations of the 

magnetic moments illj with respect to the basis veetors of the crystal lattice and their 

magnitudes are then to be ealeulated. 

12.3 Contl'nsl vnrintiou 
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Neutron diffractioll can be uscd for an experimental distinction of atoms/ions with all110st 

equal X-ray scattering amplitudes. In the case of mixed systems it is furthennore possible to 

determine a fraetional site oceupation. Anothcr application of neutron diffraction is the 

determination of aeeuratc atOlnic parameters (positional and thermal parameters, site 

occupations) of lighter elements in the presence ofheavy Olles. 

The contrast in conventional X-ray diffraction is direetly relatcd to the ratio of the number of 

eleetrons Zj of the different atoms or ions j involved. The atOlllic seattering faetor fj in the 

strueture-factor formula, which represents the Fourier transform ofthe atmnie cleetron density 

dislribulion, is proporlionallo Zj (fj ~ Zj for sille/)o ~ 0). Slandard X-ray lec1Uliques eall hardly 

differentiate between aloms/ions of a similar number of eleetrons, and only an average 

structure - inciliding a total oeeupation probability of mixed occupied sites - may be obtained 

in such eases. 

For neutrons the atomie scattering faetor fj is replaeed by the nuclear scattering length (or 

eoherellt scattering amplitude) bj , which is of the same order of magnitude for all nuelei but 

varies from Illicleus 10 nucleus in a non-systematic way. bj values, which can be either positive 

or negative, depcnd on the isotopes alld nuelear spin states of the element j. A nucleus of an 

isotope with spin I may have two different neutron scattering lengths: one far the combined 

spin state J := I + Y2 and one with J = I - YS. An important and fundamental example is provided 

by Ihe simplest of all nuelei, Ihe proion wilh spin [~ y, . The Iwo spin slales, J ~ I (Iriplel) and 

J = 0 (singlet), with statistical weights ~ and v.. respcctively, have the scattering lengths for a 

[ree proton: 

bS
II = .23.7 fm, blH = +5.38 fm, bfrcc H = ~b$H + ~blll := ·1.89 fl11 (with IO. IS 

111 = 1 fl11). 

The value for the bOlmd proton in a crystal stmeture. whieh is to be used in the structurc factor 

calculations, amounts to bH = 2·bfrccH := -3.741 fm. 

The natural isotope mixture and a statistical spin·state distribution lead to the cammonly used 

general formula bj = a:bju+ß·bjl\+y·bjy+ ... witlt the sum of the different isotope fractions 

a +ß+y+ ... ~ I (bj", bjp, bj, being Ihe individual seatlering lenglhs of Ihe differenl isolopes of 

the element j). Tlte natural nickel isotopes, for instance, have extremely different collerent 

scattering amplitudes: 

b("Ni) ~ + 14.4 fm, b(60Ni) ~ +3.0 fm, b(61Ni) ~ +7.6 fm,b(62Ni) ~ -8.7 fm, b("Ni) ~ -0.37 fm 

resulting in an overall scattering length bNi = + 1 0.34 fm. 
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Neutron experiments frequently makc llse of cOIl1pounds containing single isotope elements, 

like fully deuterated sampIes. Incoherent scattcring due to a statistical distribution of isotopes 

and ll11c)ear spin states is not discussed here. It may illfluence the effective absorption and the 

background conditions of neutron diffraction studies. 

12.3.1 Examplc of contrast variation: 

Cl')'stal structul'C aud magnetic ordcring of (Mnl_xC"lI)I+~Sb 

A special possibility of contrast variation. the combinatioll of X-ray and neutron diffraction 

informatioll. is demonstrated fer the example of the illtermetallic compounds (MnloxCrx)I+,sSb. 

with 0 S x :s; I [I]. This mixed system is of special interest duc to its magnetic properties: 

competing magnetic interactions with isotropie ferromagnetic behaviour for M11l+sSb and an 

uniaxial antiferromagnetic structure fer Crl+sSb. It crystallises in the hexagonal NiAs-type 

struct",e (space group: P6,1mmc) with some additional partial occupation ('; 0.14) o[ the 

interstitial sitc 2(d) (see Fig. I): 

2(a) - 0,0,0; 0,0,1/2 and 2(d) - 2/3,1/3,1/4; 1/3,2/3,3/4. 

(a) je 

0111 0" 
Fig. 1 a. NiAs structure 

....---• 

(b) je 
~,r---_~ l~' 

I ••• ••• 

. -_ ....... . -.~ .. - ... ! , . , . 

ON, .N, 0" 

-. 
b 

Fig. I b. Ni,ln struct",c (filIed NiAs-type) 

Conventional X-ray diffraction cannot differentiate betwecn chromillll1 (ZCr= 24) and 

manganesc (ZMn= 25) 0 11 these sites but yiclds important infonnation on their overall 

occupation probabilities M = (Mn,Cr): M3MdSb, where M3 stands foe the oecupation 

probability of si te 2(a) and Md for that of site 2(d). rhe Sb position is assumed to be fully 

occupied. thus serving as an interna I standard. 
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The corresponding nuclcar scattering lcngths of neutron diffraction me extremei)' different 

with a negative sign for mangancse: ber = +3.52 fm and bMn = -3.73 fm . 

Remcmbcr: A positive valuc of bj mcans timt there is a phase shift of 1800 between the 

incident and scattered neutron waves as a cOllsequence of predominant potential scattering. 

The fcw negative bj values - 110 phase change - result from resonant scattering. 

The knowledge of the overall occupation probabilities M(I and Md - from conventional X-ray 

studies - allows the evaluation of the Cr : Mn ratios of the different sites 2(a) and 2(d) [rom 

the corresponding effcctive scattering lengths dctcrmined by neutron diffraction. In the 

structure analyscs based on the neutron data bä f = bMn'PP is obtaincd individually for the two 

sites 

(PPa = a and PPd = d stands for refined pseudo-occupation probabilities). According to 

b,n(2a) = a[(l -y)·b,," + y·bc,l and b,n{2d) = d[(I-z)·b,," + z·be.l 

we can calculate 

y = [b, n(2a)/a - b,,"l l [be. - b,,"l and z = [b,n(2d)/d - bM"l l [be. - bM"]. 

The detailed site occupations lead to the general formula 

(Mn,.,-Cry),(Mn,.,Cr' )dSb 

site 2(a) site 2(d) 

corresponding to a chemical composition of Mn(I_y)a + (J-Z)djCf[Y(l +zdjSb. It is evident, that the 

individual (Cr,Mn) distribntion on the two crystallographically different sites 2(a) and 2(d) is 

not accessible merely by a chcmieal analysis. For most of the sampies studied, the site 2(a) 

was found to be full)' occupied: a ~ 1.0. But the formula (Mnl_xCrx)l+sSb used normally is 

only eorrect for the special ease of equal Cr : Mn ratios on both sites: 

x = y = z and I+ö = a+d. 

12-1 



600-
.... 

500 T 
T 

:-t>--+ 
200 

'00 

, 
MnSb 0.1 

... .. 
" " 

. .. -:" 
.... 

.,~ -' . ....... . -.. -
.... .... :;~ ... - +--~ 

.~ . + ~ " 
.......... . .. :,;.;. ..... . 

< 
, 

0.4 0.6 
x 

r J • 
. ~ : 

0.1 

1 
1 

CrSb 

Pig. 2. Magnetic phase diagram of the system MnSb - CrSb. Thc vectors indicate Ihe spin 

orientations in the different magnetit structures. 

Thc detailcd information on lhe (Cr,Mn) distribution is needcd to explain Ihe magnetic 

properties of these intermetallic compounds, for which only the spins localised on the 2(a) 

sites are involved in lhe magnetic ordering leading to a complex magnetic phase diagram of 

the MnSb - CrSb system ( see Fig, 2). An overall Cr : Mn ratio from ehemieal analysis is not 

sufficient. The ferromagnetic Mnl+SSb changes its axis of easy magnetisation from parallel to 

the hexagonal c~axis at high temperatures to l.~ at low tCl1lperatures. The magnetic spins of 

the uni axial antiferromagnetic CCI+sSb are oriented parallel (or antiparallel) to Q. For mixed 

crystals (Mnl_xCrx)!.+öSb in between the pure end members there exist various ferro~ and 

antiferromagnetic stales with inclined spin orientations, with non~colinear magnetic 

8lTangements, and regions with co~existing magnetie ordering. 

In general, a mixed occupation of olle crys1allographic sile with three kinds of scatterers - e.g. 

Mn, Cr, and "vacancies" ~ requires a1 least two independent and sufficiently dißerent 

experimental data to determine the fraetional occupancics. 

12.4 Thc hydrogen problem in stl'lIctUI'C analysis 

The determination of the structure parameters of hydrogen atoms is a special problem 

involving different aspects ofX-ray and neutron diffraction. It is obvious lhat H/D atoms with 

Z = I give on I)' a small contribution to the electron density alld, therefore, they are hardly 
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visible in X~ray structure analyses. This holds especially when heavy atoms are present. But 

Ihere is a more general problem: the single electron of WD is engaged in the chemical 

bOllding und is not localised at the proton/deuteron position. This position, however, is of 

importance when hydrogen bonds - evcntually related 10 Ihe latlice dynamics or structural 

phase transitions - are discussed. 

X-ray studies of electron densities of simple molecular crystals, fer whieh theoret ical 

calculatiol1s for isolated moleeules are possible, are of special inleTest in order 10 compare 

experimental and theoretical results for a better understanding of chemical bonding in 

crystallinc solids. Molecular crystals consist normally oflight atoms often incJuding hydrogen. 

A combinatioll with neutron diffraction experiments is important to detemline the structure 

parameters of the H/O atoms propcrly. More generally, the structure analysis by neutron 

difTractioll yields separately and independently from the X-ray data the st ructure parameters of 

all atoms incillding Ihe mean square displacements due to static and dynamic (even 

anhamlonic) effects. This complete information can be lIsed in a so-called X-N synlhesis 10 

obtain experimental electron defomlation densities from the measured X-ray Bragg intensities. 

12.4.1 EX3mpie of the determination of H/D positions: 

Stud)' of hydrogeu bonds in Na,S·9D,O 

One of the most important fields of application of neutron diffraction is the determination of 

HID sites and of their Debye-Waller factors. As an example for a study of a variety of 

hydrogen bonds, where the structure model was established by conventional X-ray analysis 

and neutron diffraction senfcd especially to loealise the hydrogen atoms, the case of fully 

deuterated Na2S·9D20 was chosen [2]. Its crystal structure (non-centrosynunetric space group: 

P4,22 or P4,22) is dominated by diserete [Na(D,O),] and [Na(D,O),] spiral ehains of 

Na(O,O), oetahedra (see Fig. 3). There are five differenl water moleeules (see Fig. 4) wilh 

0-0 distauces between 0.949 A and 0.983 A, and 0·0-0 angles from 104.6° to 107.5°. These 

\Vater moleeules are furthcrmore involved in six different O-O ... S bridges to the S2. ions. 

Details of the various O-D ... O/S hydrogen bonds (given in Table I) were eombined with 

results frol11 Rrunan spectroscopy from which the uncoupled O-D(H) stretching frequencies 

eould be reasonably weil assigned to the nine different O·O(H) groups of lhe eryslal slr"el"re. 
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Fig. 3. Na,S'9D,O: A partial vicw orlhe cryslal slructure 
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Fig, 4. Coordinalion oflhe D,O molecules in Na,S·9D,O. 

A ß C A-B ß-C A-C LBAC LABC LBAB' LCAC L 

0(1) -00) . . 5 0.961(7) 2.359(5) 3.319(5) 1.4(4) 178.0(6) 106.3(7) 103.4(2) Na(1) 

-00') ... 5 0.961(7) 2359(5) 3.319(5) 1.4(4) 178.0(6) NaO') 
0(2) -0(21) ... 0(5) 0.964(7) 1.793(7) 2.752(7) 4.9(4) 172.4(6) 106.1(7) 11 1.5(2) Na(2) 

-0(22) ... 5 0.962(7) 2.5SO(6) 3.506(5) 5.2(4) 172.8(6) Na(2') 

0(3) -0(31) ... 5 0.977(7) 2.311(5) 3.284(5) 4.7(4) 173.3(5) 107.5(7) 116.9(2) Nam 

-0(32) ... 0(4) 0.953(7) 1.797(7) 2.730(7) 9.6(4) 165.3(6) 0(5) 

0(4) -0(41) ... 5 0.983(7) 2.294(5) 3.274(4) 3.4(4) 175.1(5) 104.6(6) 104.1(2) Na(2) 

-0(42) ... 5' 0.973(7) 2.359(5) 3.333(5) 0.3(4) 179.6(5) 0(3) 

0(5) -0(51) ... 0(3) 0.949(7) 1.83B(7) 2.768(7) 9.2(4) 166.1(6) 105.5(6) 103.4(2) NaO) 

-0(52) ... 5 0.967(7) 2.441(5) 3.401(5) 5.7(4) 172.1(5) 0(2) 

A-L LLAL' 

2.411(4) 116.1(2) 

2.411(4) 

2.588(5) 97.6(2) 

2.380(5) 

2.397(5) 10'.8(2) 

2.768(7) 

2.41B(5) 105.5(2) 

2.730(7) 

2.485(5) 101.7(2) 

2.752(7) 

me.1.n values 0.965 106.0 107.9 <Na-O> 2.447 

mean values 0-0 ... 0 0.955 1.809 2.750 167.9 

mean values 0-0 .. .5 0.970 2.386 3.353 175.2 

Table I. Interatomic distances (A) and angles (0) for the hydrogen bonds and the ligands to the 

water moleculcs in Na2S·9D20. 
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Ucmcmber: Thc scattering lengths of the proton and the deuteron are bu = -3.74 fm and bD = 

+6.67 fm, respcctively. Their magnitudes arc comparable to the average of all bj magnitudes 

alld, therefore, HID can be considercd as "normal" atoms for neutron diffraction. The different 

signs of bH alld bD may be of illterest in Fourier maps for contrast reasons. Experimental 

conditions like background and effective absorption are strengly affected by the huge alld 

exceptional incoherent neutron scattering cross-sectiOll of hydrogen (crinc(H) = 79.7 barns as 

compared 10 crinc(D) = 2.0 barns).Vcry oncn deuterated compounds arc preferrcd in order 10 

profit from the larger bD value, but mainly to reduce the background from incoherent 

scattering. This volulllc-dependent background may bccome crucial for neutron powder 

diffraction experiments, for which normally sampie volumes of more than I cm3 are required. 

12.4.2 Exoll1ple of 0 stud)' of HID ol'dcl'ing: 

Fel'l'oelectric phose tmnsitiou in KH,PO, (KDP) 

The hydrogen problem is of special illlportance for structural phase transitions driven by 

proton ordering. As a weil knowll example the ferroclectric transition in KI-I2PO<\ (KDP) is 

prcsented. A characteristic feature of its crystal structure consists of the P04 groups linked by 

strong hydrogen bonds (see Fig. 5). At roOllt temperature KDP crystallises in a tetragonal 

phase (space grollp: I 42d), where the protons in the O,,·H,,·O bonds ore dynamically 

disordered according to a double-weil potential. At Tc = 122 K, KDP transfonns to a 

,. .. 

Fig. 5. Cl)'sto' st ructure of KH,PO •. 
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ferroelectric phase of orthorhombic symmctry (space group: Fdd2) in which the protons order 

in shorl asymmetrie O-H ... O bonds [3). The canlour plots of Ihe proton distribution at 

different tcmperatures are showll in Fig. 6. 

(a) TC + 2K (b) TC - 1.3K 

(c) Tc - lOK (d) Tc - 20K 

Fig.6. Contour plots oflhe retined proton distributions in KH2P04 at: 

(a) Tc+2 K, (h) Tc -1.3 K, (c) Tc- 10 K, (d) Tc - 20 K. 

12.5 MoleculaI' disorder 

Disordered structures and pseudosynunetries related 10 dynamical reorientation and/or 

structural phase transitions are of great current intcrest. In principal, Ihe dymnnical disorder of 

malecules is due 10 Ihe fact that the intermolecular bonds are very much stranger than the 

externaiones between the molecular groups and lhe surrounding crystalline frame. It is 

obviolls that Ihe chemical bonding scJlCme predicts the symmetry of a crystal stmcture, and 

not the other way around. \Ve can state, however, that in the case of an incompatible point­

group symmetry of a molecule with respect to its site symmetry in the crystal structure, 

moleeular disorder is the nceessary consequence. In order to modellize the atomic density 

distributions correetly in a way to ohtain physically meallingful potentials, very aceurate 

Bragg intcnsitics over a large sin0/)~ range are required. X-ray experiments are generally more 

restrictcd thall neutron studies beeause of the sinG/)'" dependencc of the atOluie scatterillg 

factor fj. 

12.5.1 E.nmple of moleculaI' disorder: 

Almost r .. cc rotation ofNHJ groulls in the cl'ystal stl'ucture ofNi(NH])6h 

As an example, related to the HID problem, the dynamical disorder of the NJ.1) group in the 

cubic high temperature phase of the meta 1 he.amine halide Ni(NH')6I, (space group: Fm3m) 

is presented. The corresponding cryslal structure is shown in Fig. 7. With the NH3 tetrahedra 
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(3m synunetry) Oll crystallographic sites of 4mm synunctry it is obvious tllat they must bc 

orientationally disordered. At 19.7 K, Ni(NH3)6h undergoes a first order phase transition to a 

probably ordered rhombohedral low lemperalure modifiealion [4] . 

• 
0 0 

0 0 
• 

• • 
• 
0 0 

0 

• 

• Nickel 
o lodln e 
9 NH3 gtoUp with 

hydrogon dlaordet 

Fig. 7. High temperature structure of Ni(NH3)6I2 'fhe hexamine coordination is shown on I)' 

for the Ni atom at the origin. 

y 

t 

'0.14lj~~~~!~~~J 
·0.14 ...... l( 

(a) 
--. . 

(c) 
0.14 

o. 14rT------,.--~O.14r_-------~ 

y y 

t t 

·0. 14 '":-: __ --'-:=;-'--_-::--: 0. 1 :c-:-,---=.-----,:-' 
·0 . 14 ...... )11 0.14 .0.14 ...... " 0 . 14 

(b) (d) 

Fig. 8. Ni(NHJ),!,: ProIon densily in a [001] seCliOlt al z ~ 0.23 ; 

(a) and (b) experimenlal resnIts al 295 K and 35 K, 
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(c) and (d) calclilated densities at 295 K and 35 K. 

Single crystal neutron diffraction studies at 35 K alld 295 K [5] revealcd a planar proton 

density distribution perpendicular 10 the four~fold axes (see Fig. 8) . Hs Cour maxima are 

directcd towards Ihe neighbouring iodines according 10 the inf1uence erN-H .. .! bonding. This 

proton density can bc explained as a consequence of a coupled rotational-translational motion 

of the am mine grollp. 

12.6 Spin densities in mngnctic Illolecular compouuds 

Molecular magnetic compounds are of great actual interest due 10 both, applicational 

perspectives and fundamental research. The spin density distribution is an essential 

information for the undcrstanding of the magnetic properties of these materials; it yields the 

localisation of the magnetic electrons and give rise to lhe microseopie magnetic interacliolls. 

Polarised neutron diffraction on single crystals is presently the most powerful tool fer 

determining the spin densities in molecular compounds [6]. Resu1ts obtained from a data 

treatment by the maximulll-cntropy reconstructioll method are presented for the purely organic 

fe!"romagllet, Jl-4,4 ,5 ,S-tetramethyl-2-p-(llitro-phenyl)-3-oxido-4 ,5-dihydroimidazolium I-oxyl 

(PNPNN)[7]. 

U.cfcrcnces 

1. \V. Reimers, E. BeHner, \V. TreutmaIUl, anel G. Heger, 

J. Phys. C: Solid State Phys. 15,3597 (1982). 

2. A. Preisinger, K. Mereiter, O. Baumgartner, G. Heger, \V. Mikenda, and H. Steidl, 

Inorg. Chem. Acta 57, 237 (1982). 

3. R. J. Nclmes, W. F. Kuhs, C. J. Howard, J. E. Tibballs, and T. W. Ryan, 

J. Phys. C: Solid State Phys. 18, L71 1 (1985). 

4. J. Ecker! and W. Press, J. Chem. Phys. 73,451 (1980). 

5. P. Schiebei, A. I-loser, W. Prandl, G. Heger, and P. Schwciss, 

J. Phys. I France 3, 987 (1993). 

6. J. Schweizer, Physica B 234-236, 772 (1997). 

7. P. Schlege!", A. PlIig-Molina, E. Ressouche, O. Rutty and J. Schweizer, 

Acta Cryst. A53, 426 (1997). 

12-15 



Textboo!<, 

G. E. Bacon, Neutron Diffraction, Clarendon Press, Oxford (1975). 

HERCULES: Ncutron and Synchrotron Radiation for Condensed Matter Studies, 

Vol. I a",1 II (cdited by J. Banlchel, J. L. Hodeau, M. S. Lelunann, J. R. Regnard and 

C. Schlenker), Les Editions de I'hysique, Les Vlis & Springer-Verlag, Berlin (1993-1994). 

L. Dobrzynski and K. Blinowski, Neutrons and Solid State Physics, 

Ellis Horwood Series in Physics and its Applications, New York (1994) 

12-16 



13 
Inelastic Neutron Scattering: 

Phonons and Magnons 

Markus Braden 





13 Inelastic neutron scattering phonons anel 

magnons 

Markus Bmden 

Forschullgszelltrum Karlsruhe, IFP, Postfach 3640, D-76021 Karlsruhe 

Laboratoil'c Leon Brillouin, CE-Saclay, F-91191 Gif-S lll'-Yvette Cedex 

bradell@bali.sacJay.cea.fr 

13.1 Interaction and scattering law 

13.1.1 B asic concepts of scattering experiments 

Scattcring experiments are performcd with almost a11 types of radiation on variolls 

systems (solids, liquids, gases, atoms, nuclei, .. . ). The radiat ion with weil defined initial 

properties ( wavevector &; cHcrg)' E) hits the samplc, get.s scat tered and may be detected 

again with weil dcfined final properties (wavevector f{; energy E') in thc angular segment 

T
2dO, t he schematic picture of thc scattering arrangement is drawn in figure 1. Aim of 

any scattering experiment is to obtain information Oll the states of the sam pie by use of 

thc kllowledge of the interaction betwcen the radiation (for examplc neutrons) anel the 

particles forllling the samplc. In this chapter we deal with the inelastie neutron scattering 

in solids whieh is till today the most efficicnt way to study dispersion relations of lattice 

vibrations and magnetic excitations. 

The initial and final states of the neutron may be denoted by Uj ancl 0 ' , those of the 

sam pie by Ai and )..'. Gj is cha racterized by the wavevector k and the energy E = :,: k2, 0' 

respectively. T he momentum transferred to the sampIe crystal, 9., and the energy transfer , 

E = "w, have to fulfi)) thc cO llservation laws, 9. = k - !{ . nd w = n(,:,,)'(k' - k"). The 

probability to observe a scattered neu tron in the angular segment dH and in the energy 

illterval dE' is described by the partial differential cross sect iOll whieh mal' be obtained 

within the Born-approximation, which is aperturbation t heory of first order, i.e. one 

considcrs the interaction bctween radiation and sampie crystal to be small . 

. {. .. 
dOdE' 
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Figurel Schematical drawing of a general scaUcring experiment. 

I < ,,'XI J ,I',. exp(il{ . r)li(r)exp(ik' dl",", > I' 

.O(w + E' - E) 

The cross sectiOll in equation (13.1) is given by thc sum of the transition matrix 

elements between initial states Oj,\; and the final states 0' X weighted by the probabilities 

of the initial stateR. In order to calculatc the cross section and the observable intensity 

distribution, aue necds the interaction potential ,i (r) and detailed knowledge of the states 

in the sam pie ,V In the inverse way olle may use a measured intensity dist ribution in 

order to characterize the sam pie states, for example thc phonons. This is the usual way of 

the interpretation of any scattering experiment. The sumple states may be characterized 

by specific parameters, for example the frcquencies and the polarizaLion patterns in case 

of phonons, whieh with the aid of cquation (13.1) will be deeluced from the experimental 

intensity distribution. 

13.1.2 Nuclear interaction - phonons 

The nuclear interaction bctween the neutron and the eore of the atoms is characterizcd 

by an extension of 10-5 A, which is extremely small in camparison to the wavelength of 

thermailleutrons. Therefore, thc scattering is isotrope and may be described bl' onll' one 

parameter, the scattering length. The interaction with the hole crystal is given by the 

SUIll aver the atoms: 

" 21r 
V(r) = m L bjo([ - Bj) 

) 

(13.2), 

where bj and Bj are the scattering length and the positioll of the j-th atom. The 

mixing of different isotopes at the same atom si te in the crl'stallographic lattice yields a 

furth er complication, since different isotopes have different seattering lengths. This means 
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Rn,dl 

-
(0001 

Figure 2 Schematic drnwing cr the vectars determin ing the position cf an atom in the crystall attice. 

that the interaction potential (13.2) eloes not show thc full translat ion s)'mmetry of the 

crystal lattice. The IDeal variation of the scatterillg lcngth split s l.he differential cross 

seeLion into two contriblltions : 

(13.3). 

The cohercllt contribution is dctcrmined by thc Illean scattering lcngth j whereas thc 

incoherent contribution is given by the root mean square deviation to the averaged scat­

tering length. 

In order to calculatc the differential cross section in (13.1) it is necessary to know thc 

slates in thc sam pIe or at least to paramcter ize them. The slIm over the slates Ai in 

(13.1) may be transfol'mcd to thc correlation fUll ctioll, in whieh olle has to introduce the 

para meterized Eigen-states of the system. In order to achieve this transformation in ease 

of the phonons we consider the vibrations of a crystal in harmonie approximation . 

- Description oJ lattice dYllamies in harmonie appmx-imation - A crystal consists of N 

unit cells with 12 atoms within each of thern, the equilibrium position cf an)' atom is given 

by the position of the unit cell to wh ich it belongs, l, and by the position of the atOlnic 

site in the unit cell, d,. At a certain time the atom may be displaced from it.s equilibrium 

position by ll(1. d). Thc instantaneolls position is henec given by JJ., d = l + ß + ll(l, d) (see 

figllre 2). 

For simplification wc consider first a lattice with on I)' one atom in the unit cell , d. = Q; 

L describcs thcn the equilibrium position of thc atom. The interact ion potential between 

two atoms Land f, <I>(l, t), may bc expanded at thc equilibrium position in terms of 

ll(l) = y(f)=O. The constaut term does not give an)' contribution to the equations of 

movement, it is relevant on I)' for the total energ)' of the crystal structurc. Since at thc 
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equilibrium position the atom is in rest, terms of first order are lIot allowed. In harmonie 

approximation one assumes the expansion till the seeond order to bc sufficient. This 

assumption is essential for the following analysis, sinee already the presenec of third order 

terms prohibits to salve thc cquations of tllovament in tha general ease. In most solids 

anharmonie eontributions to the potential are, howevcr, small justifying lhc assumption. 

Ir thc anharmonic effeets have to be taken into eonsideration (for example elose to the 

mclting of the cJ'ys tallattice) , perturbation theory is the usual technique. 

Usillg the definition : 

D (I 1') <1"<1>(1. I') 
G,ß -, - = dU o (1) d"p(l'.) (13.4) 

olle obtains the equatiolls of movemcnt (a , ß = X, y , z) to: 

Mii o(1) = - L Do,p(U')u ß(l.'.) (13,5), 
ß,E 

The displaccment of the atom r.. in ß-direction yields a force on the atom L in a -direetion 

of strength Do,p(L, I')"p(r.), Dn,,8(L,I') are therefore called the forcc- constants, The real 

problem in treating lattice dynamics consist.s in the large numher of these equations, there 

are 3N equations to be soh'ed with N being of the order of 1023 . In order to avoid this 

complexity one makcs the Ansatz of plane wavcs : the movements of all atoms are given 

by the displacement in onc unit eell at time zero propagating in time and spaee as a plane 

wave: 

110 m = enAr'/2 , exp(iclL - wot) (13,6) , 

Figurc 3 shows the displacement pattern of a plane wave charaetcrized by the wavc 

veetor 9.., reAeetillg the propagation of the wave (planes perpendicular to 9. are always 

identically displaced) , the vibration frequeney Wo of each atom and the direetioll of the 

oscillation givcn by the polarization veetor~. In the single atom lat t iee there are only 

acollstic modes, they are called longitudinal (LA) ir q is parallel to g and transversal (TA) 

for 1 perpendicular to ~. 

The plane wave Ansatz (13.6) for the equations of movement yields a system of three 

equations for eaeh q-valuc : 
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q I Polarlzallon 

6 0 l' 0 6 0 l' 0 6 0 l' 6 0 l' 0 eh 0 l' 0 6 0 l' 6 0 l' 0 6 0 l' 0 6 0 l' 6 • 6 0 l' 0 Cl 0 l' 0 0 l' 6 0 l' 0 6 0 l' 0 eh 0 l' 6 0 l' 0 6 0 l' 0 6 0 l' 
Lambda la t tlce parameter 

Figure 3 Scheme of the displacements in a transversal plane wa\'e. 

w~eo = I/M ~ Da,. (L, O)cxp( - i9J)Cß (13.7). 
Lß 

Hefe wc usc timt the force constants depend only on thc distance in real space (l- t) 

ami not on the partien laI' valnes of Land 1'.. With (13.7) one gets an easily solvable system; 

thc original complexity of the problem is transferred to the nu mb er of t hese 3-dimensional 

problems. Für a complete solution of the crystal dynamics olle wDuld need to salve the 

problem (13.7) for eaeh of the N~I023 allowed q-valnes. In reality, however, one has to 

analyze only a fe\\' different q-values. In general it is sufficient to study on I)' q-values 

within the first Brillouin-zonc. 

We may define thc dynamical matrix as 

Do,ß('!) = 1/ M ~ Da,o(L O)exp( -iqL) (13.8), 
t,ß 

whielt allows to rewrite the equatiol1 s (13.7) in matrix form: 

(13.9). 

The system (13.9) is just a t.Iuee-dimensional Eigen-value problem. 

For fixed q Olle has to dcterminc the threc Eigen-vectors '-j, j=1,2,3, together with 

the three corresponding Eigen-values, Wj(q) . This may bc achieved with thc standard 

numerical techlliques. T he dependence of the Eigcn-frequencies Oll the wave-vector, Wj (q) 

with j = 1,2, 3, is called the dispersion rela tion . 
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Figut'e 4 Phonon dispersion of AI along the [1001 and [Ollj.direclions (from referencc (1]). 

The extension to a system with n Atoms in the primitive cell can be casily done, one 

gct.s for each 9.. an Eigen-value problem in 311 dimensions. Thc Eigen-vectors havc thc 

dimension 3n allel thc dynamical matrix is 3rt * 3n dimensional. Für each 9.. oue finds 

hence 3n Eigen-modes, therefore thc complete phonon dispersion cOllsists of 3n branches, 

three of wh ich have zero frequency for q ~ O. The latter branches are called acoustic 

since they are associated with thc propagation of sound. Thc figure 4 shows the typical 

presentation w against wave~vcctor 9.. for the phonon dispersion of aluminum. 

The planc waves according to the Eigcn-frequencies amI to the Eigen-vectors to each 

of the a llowed 9..-values form a completc set of fUllctions for the displacemellts of the N 

times n atoms in thc crystal. Any distortiOll ean be represenled as a linear combination 

of these plane wavcs. Obviously it is rather favorable to use this set for ealculating the 

differential cross sectioll . However, for this purpose it is necessarl' to convert the lattice 

vibrations into quantum meehanics, the corresponding quasi-particle bcing the phonon. A 

one-phonon process is showll in the sehcmatic figure 5. The ll1omentUI11 transfer Q.. = k- k:.. 

consists of the sum of a reciprocallattice veetor 'L and thc wave~vector 9.., which lies withill 

the first Brillouin-zonc. Onl)' 9.. determines the wavc veetor of the contributing phonons, 

howevcr 52 dctermincs the differential cross sectiol1, i.e. thc intensity. 

The exact scatterillg mal' be dcduced from the eorrclation functioll. In the following 

we only want to discuss the meaning of the different terms in thc cross SCCtiOIl : 
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Figure 5 Scattering triullgle corrcsponding to thc obsen'3tion of a phonon mode with wave vector 9. 

at the reciprocallatt.ice vector 'L. 

1 
'Wj (2) 

·(n{w;{q» + 1/2 ± 1/2) 

(13.1O.a) 

(13 .10.b) 

(13.10.c) 

·6{w 'F w;{q» . J{Q 'F ~ - L) (13.10.<I), 

with Vo the volume of the reciprocal unit cell. Equation (13.10) describing thc inlensity 

of a one-phonon measurcment at specific Q. e1osel)' resembles the elastic structure factor 

of t.he Bragg reflcction intensity, apart of expression (13.10) is called dynamic st ructure 

factor. Thc intensity is given by the 5um ove1' all reciprocal lattice and all wave vectors; 

howevcr only the combination ~+:r. = Q. may contribute duc to the o-function in (13.10.d) . 

The second o-function in (13.10.d) reftccts the Iaw of energ)' conservatioll, howevcr, olle 

has to take into acc0l1l1t that the scattering processes may lead to a creatiOll as weil as 

to an annihilation of a single phonon, corresponding to thc upper and the lowel' siglls 

respectively. 'fhere are two more general factors deterrnining the intensity of the phonon 

observation by neutron scattering. 'fhe term (13.10b) indicates, independenti)' of all 

other terms, that the intensity is inversely proportional to the frequency of the mode. 

High cllcrgy modes are always morc difficult to obscrve than the low Iying ones. Since 

neutron experiments suffcr from the low flux of the existing sources, this effect frequentl)' 

prohibits the study of the high cnergy part of the phonon dispersion. The term (13.10.b) 
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reslIlts from the quantUll1 meehanics of a single harmonie oscillntor : thc squnrc of the 

amplitude is proportional to Wj(!l)" 

The term (13.10.c) results from the Bose-st.atistics of the singular mode with frequenc)' 

Wj(q) 1 the occupation nu mb er is given by the Bose-fullction: 

1 
nh(q)) = h ( ) (13.11). 

- exp( 7/) - 1 

n(wj('l)) tends for 7' --> 0 lowards zero, the phonons are frozen . For 7' --> 00, n(wj('l)) 

approaehes (.w:~q\ i. e. the classicaJ relation. 'rhe term (13.1O.c) indicates timt the 

Bose-function is increased by +1 onll' in ease of phonon creation. At low temperature 

where n(wj(q)) is elose to zero, the phonon mal' be observcd only in thc creatioH mode, 

thc cross scctiOH for the annihilation proccss becomes vanishing since thc phonon states 

are no langer occupicd. At finite temperature the Bose-statistics further simplifies t he 

observation of phonons with low freqllencies. 

The complex term in (13.1O.a) is given by the dynamical structure factor: 

(13.12), 

where t he sum is extending to the atoms, numbered by thc scalar cl, in the primitive 

cell. They have the mass 7Hd scattering length bd and a three dimensional polarization 

vector ~(q), the eqllilibrium position in the unit cell is given by tLJ. \Vi thout the last 

part equation (13.12) corresponds to the elastic structure factor, in particular one find s 

the same Debye-Waller-faclor exp(-Wd(Q)). 'rhe whole term in the exponentiaJ function 

determines whether the interference between atoms is cOllstructive 01' destructive. In the 

dynamical structure factor there is in addition to the elastic onc the polarization term 

(last parenthesis); for instance only t hose atoms may contribute whose polarizatioll "eetDr, 

~(qJJ possesses a component parallel to Q. Since g enters this term clirectly, thc structure 

factor increases with IQl i the intensity is proportional to Q2. The interference and the 

polarization term in (13.12) cannot be separated in general, therefore one has to calcula te 

the structure factors precisely. 

In addition to thc interpretation of the frequen cy data thc prediction of the intensity 

is an important out-coming of model calculatiolls. Only with the help of these predictions 

a neutron scattering experiment aiming at the lattice dynamics of a complex material can 
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oe perfarmed in an efficient manner. 

Some easy examples may iIIustrate the significance of the terms in (13.12). Let HS 

consider a longitudinal acoust.ic mode polarized in the [100J-direction; for this mode all 

~ are parallel to [100]. The polarization term becomes maximum for Q=(h+~ 0 0) ami 

ean oe extracted from thc SlIlll. Thc remaining interference sum corresponds for small 

f. to the elastic structure-factor of (hOO), Thc dynamie structure becomes hellce strong 

far strong Bragg-reftee tions. In general aeoustie phonons have to be measured elose to 

thc strong Bragg-refteetions. Sinee for optieat modes the atoms ma)' be displaced in 

oppositc directions, the polarization term ean change sign yielding a rather disti nct sum 

of the interferellee term . In a simple two-atomic strueture t.he optical mode has onl~' a 

weak d)'namical structure faeto1' elose to thc strang Bragg-reftections (this argument is 

11 0 longer valid in ease of negative seattering lengths). 

,"Vhy eloes inelastie neutron scattcring play such a dominant role in the study of latticc 

dynamics? Thc central point is certainly due to similar masses of atoms and the neutron. 

This yields thc possibility of elastic as weil as that of inelastic scattering and renders 

the wave-vectars of thermal neutrons comparable to 1hc wavc-vectors of thc phonons. 

Inelastic neutron scattering allows to determine thc phonon dispersion over the whole 

Brillouin zone, whereas optical techniques (Raman ami Infra-Red-scattering) yiclds onl)' 

the analysis of modes at the zone center. 

Recently there are serious cfforts to perform lattice dynamical studies using syn­

chrotron radiation. In case of t.hermal neutrons the cnergies 8molln t to 1- 100 meV and 

correspond to the typical phonon encrgies. For comparisoll , CuKa-l'adiation has an ell­

erg)' of 8 · 106meV. In order to dctermine phonon frequencics, one needs a relative cllergy 

resolution of 10- 6 - 10-7 , whieh may bc achieved on I)' by extreme experimental effOl't. 

The eoneomitant loss of intcnsity pcrmits these ll1easurcments only at thc most powcrful 

synchrotron SOUl'ces, and even then the measurements remain sIo\\'. '''Te have seen that 

the olle-phonon process yiclds an intcnsity proportional to Q'2, this may be used in ease of 

ncutron scattering due 10 thc nuelea!' interaction . In case of the x-rays thc large Q-range 

is not at disposition si nce the form-factor strongly reduces t he interaction . In the eloser 

future olle may not cxpect, that inelastic x-ray scattering will slIpply results comparable 

to neutron studies eoncerning the effieiency. The x- ray measurcments, however, may be­

come valuablc in eases whcre thc neutron scattering is hampered either by s8mple size 0 1' 
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by absorption. 

13.1.3 l'vIagnetic intel'action - maglletic excitations 

The neutron has a spin 1/2 ",hielt yie lds a eoupling to the magnetie neids. The 

intcl'aetioll operator is givcll by : 

(13.13); 

hcre In=1.913 is the magnetie moment of the neutron, expresscd in f-lN, thc nuclear 

magneton, ä the Pauli-spin operator aJl(1 H the magnetie field indueed by thc clectrons in 

the sam pie. H may arise from the velocity of the eleetrons as weil as from t.heir magnetie 

moment. In the followillg we limit the diseussion to the latter eontribution. 

Furthermore we assume, tha t the orbital moment has vanished. This assumption is 

justificd in ease of quenehing by crys tal field s or for a half-filled shell (MnH , FeH, Ge!'+). 

The Fourier-eomponcnt of the interaction potential is : 

(13.14) 

with 

b "(Cl) = L:(1/2l'Yd Fd(Q)aS"(1, el)exp(i({ . ~d) (13.15), 
!,d 

here 'Yd is the gyro-magnetie faetor, Fd (({ ) the form-factor ofthe atom el and S"(l, d) = 
({ X (Sid X (() with S(iel) being the spin-operator of the atom. 

There are tWQ important difl'erenecs between thc magnetie and the nuclcar illteraction 

of the neutron with the atom. Duc to the extension of the clectron eloud, whieh eauses 

t hc magnetie moment, the interaction is non-Ioeal. Deseribed by the form-factor, F(Q) , 

the interaction gradually deereases towards large ({. The detailerl dependCllce of F (Q) is 

determined by the single atom. Rare earths show, due to the strong locali~ation of the 

4f-eleetrons, a less pronouneed dcercase when compared to the transi t ion meta I ions with 

more deloealized eleet l'olls. ]n the latter ease thc decrease may bc qui te strong limiting 

any measuremcnt to the first Brillouin-zones. T he dependenec of the magnetie interaction 

duc to the fonn-factor may be used to separate magnetie and nuclear eontributions. Fur­

thcnnorc, the magnetie interaction is mediatecl by vector-operators. Only those magnetic 
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Figure 6 Phonon dispersion cf Ne along the three maill symmetry directions (from Ref. (2]). 

moments may contribute ta the interactiol1, which have a component pcrpendicular ta 

Q. This yields the possibility ta determine not only the size hut also thc direction of 

magnetic moments. 

13.2 Ana lysis of latt ice vibrations 

13.2.1 Lattice dyn3lnics in simple structures 

For a simple crystal lattice olle may detennine the polarization patterns without de­

ta ilcd model calculations. The lattice dynamics of slIch a system may then be studied 

experimental I)' without particular effort. 

In figure 6 wc show the phonon dispersion of Ne in the three main symmetry directions, 

whieh aecording the common Ilse are labeled .6., E and A. Ne crystallizes in a fcc-Iattice 

with only olle atom in the primitive cell, therefore one expects only three acoustie branehcs 

per q-va lue. One observes the three distinct branches only in thc [xxO]-direction, whercas 

therc are only single trans"erse branches a lang [xOO] and [xxx]_ In the [xOO]-directian these 

acoustic polarization patterns may be easily understood. In the longitudinal mode atoms 

are vibrating in {lOO]-direetiol1 , i.e. parallel to t hc wave vcctor. The two transverse In.odes 

are eharaetcrized by displaecments in [010] or in {OOl]-directions, i.e. perpendicular to the 

wavc-vector. Sinee [100] reprcsents a four-fold axis in the fee lattiee, the latter two modes 

caunot be distinguished; thc)' are dcgenerate. The same situation is found along the 
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Figure 7 The plane in reciprocal space spanncd by the (100) and (Oll) vcctors for a fcc· lattice; thc 

scattering triangle indicates the observation of ~.modes. 

[llIl ~ direction whieh is a three-fold axis of lhc latt ice. This bchavior is a simple examplc 

of thc general relation between crystal symmetry and the phonon dispersion. The crystal 

symmctry yields constraints for the phonon modes which may be ncccssarily degeneratc 

at certaill points 01' - like in the Ne-structure - along a direction. In the ease of more 

complcx structures it is essential to profit from the predictions of the symmetry analysis. 

The [IlO)-direetion represents onl)' a two-fold axis sinee [1-10) and [001) are not identieal, 

as consequence the corresponding transverse acoustic branches are not equivalcnt. 

In addition figure 6 shows that at X=(IOO)=(OlI) t. and B-branehes are eoineiding, 

which may be explained due to the shape of the Brollouin-zonc. Figure 7 presents the 

plane of the reeipmeal space spanned b)' (100) and (Oll); one reeognir.es that starting 

at the zone-center) r ) in the fi gure (I33L in the (lOO]-direction one will reach thc zone­

boundar)' at (233)=(100)=X. Similar, one will reach this point when starting at the 

neighboring point (222) in [Oll)-direetion. However, in this path one find. the border of 

the Brillouin-zone earlier anel continues the last part on the zOlle boundary. (100) and 

(Oll) are equ ivalent points in reciprocal space; they are connected by a reciprocallattice 

vector) (-1 1 1). For the phonon branches we conc1ude that ß- und I>branches havc to 

coincide. The symmetry furtlter determines wh ich brunches coincide : for ex am pie the 

longitudinal ~>branch with the transversal .6.-branch. Again, similar considerations in 

more complex systems may decisivcly contribute to the identification of the branches. 
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Figure 8 Dispersion Cllr VCS and crystal structurc oe FeO (from refercnce [2]). 

Figure 7 further shows how ta measure thc 6.-branches. Olle may observc thc longitu­

dinal branch in the (400)-zone passing to (4+x 0 0) (the (400)-zone has to be prefmTed to 

(200) duc to thc targer "alue of Q2), whereas one may determinc lhe t rullsverse freql1cncies 

in the (022)-zone at (x 2 2). 

- NaCI-st1'ucture - Thc NaCI-structurc represcnts olle of thc most simple possible 

crystal structures with two atoms per primitive cell. It consists of tWQ fcc-Iattices shifted 

against each other by (0.50.50.5). Thc entire crystal structurc possesses fcc-symmctry 

toD. Figure 8 shows the dispersion curyCS of FeO. 

The six branches expected for the two-atomic structurc are observed only in {xxO]­

dircction. Like in case of the fec Ne-Iattice the trallsverse ß - ami A-branches are doubly 

degencrate. Also in other aspeets, there is same resemblance with t he Ne-phonon disper­

sion; in bath eases LA-ß anel TA-L bl'anehes eaineide at thc zone boundary. 

A mare detailed discussian is needed in order ta unclerstand the optical modes at r . 
The palarization pattern of an aptical mode corrcsponds to an anti-phase axialmovement 

of the ion pairs connected in [100J , [010J or [OOIJ direction. The three vibrations polarized 

in thc crystal directions should, however, be degenCl'ate duc to thc eubie symmetry; 

olle might expcet only olle optical frequency. The optical vibration in thc ionic lattiee 

possesses apolar eharaeter, Le. there is a loeal polarization duc ta thc oppositc sh ift.s 

of catians ancl anions. For largc wavc-length, i.e. elose ta thc zone-center, the IDeal 

polarization adds to a macl'Oscopic polarization only in ease of the longitudinal mode. 
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o 0. 5 

T his macroscopic polarization requires an additional energy, the longitudinal optic (LO) 

mode is always lligher in frequen cy than thc trnaversal optic (TO) mode (note, that 

these modes are only defined as the limit fOI" 9.. tending to zero. The spli tting betwecn 

LO all(l TO-mode frequcncics is ca lied Lydane-Sachs-Teller (LST) splitting and is related 

by thc LST-relation to thc dielcctrical COllstant. Polar mode freguencies may bc casily 

determined by Infra-Red techniqucs; due to the form of thc resolution ellipsoid neutron 

scattering on th is topic is frequently difficult. In metallic materials electric fields are 

screened duc to the free charge carriers at least for macroscopic distances. As consequencc 

the LST-split t ing disappears. The phollon dispersion may t hen give information Oll the 

effidency of the metallic screening. 

F igure 9 shows the phonon dispersion in NaCl, which is isostructural to FeO. Comparcd 

ta thc latter one recognizes thc perturbation of the Cl1rves aris ing mainly from the lower 

aptical frequ encies. \~'ithin thc Brillouin-zone it is no longer possiblc to separate optical 

and acollstic modes, the branches tcnd to cross each other but there is always a small gap 

between branches of thc same symmetry. T his rcpresents a general propcrty : branches 

of thc sallle symmetry may not cross. By mixing thc polarization patterns it is always 

possible ta yield a gap reducing the total energy of thc system. \~/hether this gap is small 

01' large depends on the similarity between the polarization patterns of the two branches. 
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Sim ilar branches may indllce la rger gaps, i hc)' a re called to strongl)' interaet. 

13,2.2 Model calculations 

The cxamples discllssed abovc are characterized through thcir simplicity, ",hich pcr­

mits ta analyze the polari:r.aUon patterns without detailed calculations. In actual topics 

Olle has ta deal with sys tems of more than 10 atoms per primitive cell , oue may idcn­

tify then the character of thc phonon müdes onl)' with the aid of predictions of model 

calculations. 

As discllssed above the lattice dynamics is described by the 3n-dimcnsional Eigen-value 

problem with thc dYl1amical matrix: 

(13.16) 

Da,ß{d,d') = ( 1 )1/2 L;q'a ,p{Qd,l'd')cxp{i'!.t) 
mdmd' r. 

(13.17). 

~n,ß (Od, Jld') dcnotc the force constants between the atoms cl allel d' in by Lshifted cells. 

T he determination of the force constants represents t.he real problem in latLice dynamics, 

in partieulaI' the qllcstion whieh constant.s arc relevant. 

Already by symmetry, thc nine parameters per atom-pair are significantly redueed. 

F'urthermorc, one may reduee thc aualys iR to the eloser neighbors, as rar as 110 long range 

force is involved . The next step consists in the development of potentials, from whieh Olle 

may obtain the force constants for man)' pairs inducing only a few free parameters. 

Frequentl)' it is sufficient to consider ax ial-symmetrie potentials with V(lcl,l!..d' ) = 
\/('1'), i.e. the potentia l depends on 1)' on the distance between thc two atoms. Such a 

potential yields only two force constants, a radial aJl(1 a transversal one : 

( " ) /,W
1 <I>'l' Ld, td = 1 l' -f) r=r" 

/' 

(13.18) , 

(13.19). 

In the most simple model one ma)' only introduce these radial and tl'anSVCl'se force 

cOJlstants for thc elose neighbOl's (Born-voll-Karman lvlodel ). Howevel', extending more 

and more shcllR will rapidi)' increase the number of parameters. In particlilar thc lattice 
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clynamics of ionic compounds with the long range Coulomb-interactioll , can only be poorly 

described by such a model. 

Evcn when parameterizillg the Coulomb-potentia l \1(1') cx: zd~d,el by the charges, 

Z d, Zd', in order to decluce the respcctive force constants, the problem of the lang range 

persist.s. It is not possible to cut the sum at a certain distance, si llce the SUIllS do not 

convcrge. Thc satisfying solution of this problem consist.s in the Ewalcl-met.hod [11. 

The Coulomb-potentia ls in an ionic crystal yields an attracth'e potential, whieh has 

to be cOlnpensated by a repulsive one. If the elec tron c10uds of two ions of opposite 

charge start to overlap upon decrease of their distancc, this repulsive potentia l wil l in­

crcuse rapidly. Olle may describe this interaction by a Born-i'vlayer-potcntial F(r) = 

B·exp( - 1'/1'0)' inducing only two parameters for one type of ionic pai r, B ami 1'0. Amongst 

the various extensions of th is type of model, ca lied ((rigid ion", "'c ment ioll only the shell 

model, where the polarizability of the ions is described by aseparat ion bctween an elec­

tran cloud (the sheH) alld the cores. There are many diffe rent ways to couple the cores 

and thc clouds by force constants. 

1n order to prepare an inelastic neutron scattering study on the lattice dynamics of 

a complex material , even a simple anel un-adapted model lIlay be hclpful , as long as the 

crystal structure and , therefore, the symmetry is conectly entered. By symmetry, degen­

erations are fixed for certain point.s 01' even for Iines in reciprocal space, anel frequently the 

structure factors follow some inclastic extinction rules. In principle these predictions mal' 

a lso be found bl' a careful analysis through group theory; howe\'er , the usc of a simple 

model whieh does not need to describe the frequcncies weil is much less time demanding. 

Some of these aspects have al ready been illustrated for the example of the NaCI struc­

turc. COllcerning t he dynamic structure factors one may add, that olle will observe the 

optieal modes elose to r best at the odd reciproeal lattiee veetors (for example (333) ) 

independently of the fot'ces involved. 

13.2.3 Stl'uctul'al phase transitions and soft Jllode behavior 

Structural phase transitions form sti ll a topic of actual interest, where informat ion 

about the underlyillg microscopic mechanism may frequently be achievcd 0111)' by inelastic 

neutron scattering. 

In fi gure 10 olle find s t he representation of a fictivc structural phase transition in a 

two-dimellsional crystal structure with two atoms in the primitive cell. In the high sym-
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Figllre 10 Schcmatic picturc of a displach'c phase transition occuring at the zone center atHl the 

corresponding dispersion CUfve. 

metry high temperature phase thc black ion in the middle occupies a site with inversion 

symmctry. This sYll1mclry is broken at thc phase transition duc to thc displacement of 

thc black ion. The right part of figure 10 shows thc correspollding dispersion curvc, here 

the polarization pattern of the r-mode correspollds Lo the staHe distortiOil belaw the 

transition temperaturc, Tc- The phonon frequenc)' of this mode sartens upon approaching 

thc phase transition ami is , thereforc, ca lIed a "soft-modell. The structllral instability, 

however, ean be also seen in the dispersion quitc above Tc : thc frequ ency of the relevant 

mode at r is lower than those of modes with 2.~values in the Brillouin-zone. 

In addition ta thc phonon softening olle expects a broadening of the line width in 

frequency ; finally thc width of thc phonon mode may surpass it.s frequency. Such aver~ 

damped modes may no longer be described in the harmonie approximation. 

The best studied example for a zone-center phase transition may be founel in the 

ferroeleetric transition in pcrovskites, for example PbTi03 see figure 11. In thc low 

temperature phase the anions are deplaccd against the cations, Pb, Ti, the corresponding 

phonon frequency vanishes almost complctely. This polarization pattern has a strong 

polar character and is connected to the dielectric constant through the LST-relation. 'fhc 

softening of the TO mode induces a divergence in the dielectric constant, which explains 

the interest of the phenol1lena for technical applieations. 

A structl1l'al phase transition mayaiso lead to an enlargement of the unit cell. Here, 

the equivalent atoms in neighboring cells are not displaced identically ; a schematic picture 

is given in figure 12, where neighboring black ions are shift ing in apposite direct ion. The 

phonon mode associated with such a displacement pattern neccssarily has a finite wave~ 
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Figure 11 Structure and displaccmcnL pattern of the fel'rroclectric transition in the pcroyskite PhTiOa 

(Icft) small black <lots in the center designate Ti the slllaU and thc large open spheres Pb and 

o respecLi"cly; square of thc corrcsponding phonon frequenc)' as (ullction of temperature from 

rcference [3J (fight). 

vector, since thc translation symmctry is broken . In ease of figure 12, Q is situatcd Oll the 

zone boundary. But like for the zone-center t ransition , one ma)' find a softening for the 

zonc-boundary mode tao. The best knowll example for such a transit ion call again bc 

found amongst the perovskites AllOa. The pel'ovskitc structure consists ofB06 oetahedra 

wi th par t ially covalellt and quite hard bonds; the octahedra a re eonnectcd only through 

their corners . Thereforc, all these systems are more 01' less unstable against a rotation of 

the octahedra around an arbitrary axis. 0nl)' thc strength of this instability and therefore 

the qucstioll whether a transition oceurs 0 1' not, dcpends on thc composit ion. For examplc 

the octahedron in SrTi03 below 105 K is rot. tcd around • IIOOJ-dircction. The coupling 

of rotations around different dircctiolls leads to a "adet)' of distinct low temperature 

symmetries. 

Recently the rotation phase t ransit ions in thc perovski tes have l'cgained in terest , since 

they seem to ue e1osel)' connected in the manganates to the electronic properties in partic­

ulal' their colossal-magneto-resistivit)'. Also the high-Tc-cupra tcs show similaI' transitions. 

13.2.4 Electron phonon interaction 

The study of the electron phonon interaction represents an important field in lattice 
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Figure 12 Schematic pict.ure of a displacivc phase t.ransition corresponding to a zOllc-boulldary mode. 

dynamies, wh ich is analyzcd almost cxclusively by inelastic neutron scattering since the 

Iat'gest cffects are expectcd in the ßrillollin-zone. 

Thc screening of the inter-atomic potentials throllgh frce charge carriers is detcrmined 

by the topology of the Fermi-surface. In particular there are singularitics in the elcctronic 

susceptibility when parts of the Fenni-surface are parallel alld may, hence, be connected 

by a single nesting vecLat'. Thc susceptibility at this "eetal' will be essentially increased 

alld may renormalize the phonon frequenc)' of a mode just at this wave veetar. In most 

eases this type of electron phonon coupling leads to a reduction of the phonon frequency, 

which shows up as a dip in the dispersion eurve, called a Kohn-anomaly. In particular the 

conventional superconduetors, for example TaC in Figure 13, exhibit such effccts. Thc 

phonon dispersion of Tae shows pronounced dips, whielt are not observed in thc phonon 

dispersion of normal metals. The st lldy and interpretation of similar anomalies in the 

high-Tc-cuprates is subject of prescnt research. Howcver, in this ease thc analysis gets 

rather complicated duc to the large !lumb er of atoms in these systems. 

13 .3 Magnetic excitations 

13.3.1 Spin waves in Cl ferro magnet 

Like the crystal strncture, magnetit order may oe disturbed at finite temperatllre 

with the perturbation propagating through the crystal. Analogous to thc phonons, the 

qllantisized excitatiolls are called magnolls. 

The ground statc of a ferromagnet reslilts from the interaction between spins of neigh­

horing atoms, wh ich favors a parallel alignmcnt. The energy of a neighboring pair, s..i,!2j l 

depending Oll the relative orientation of the spills is described within the Hcisenberg­

model by e = - J $.i . :2j , where J is the Heisenberg exchange constant. Far a chain of 
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Figure 13 Phonon dispersion of TaC, the dips, for eX3m pie at (0 0 0.7) amid at (0 .6 0.6 0), indicate 

modes rCllormalized t hrough the elect-ron phonon cou pling, from refcrcilce 12). 

coupled spins the energy of the magnetic interaction amounts ta : 

N 

U = - 2J L Sp , Sp+1 (13.20). 
p=l 

In t he ground state all spins are parallel and Uo = - 2N JS2 , t his corresponds ta figura 

14a. A possiblc cxcitation might consist in the fli p of just olle spin , like it is shown in 

fi gurc 14b. This perturbation yields a fini te increase in energy of 8JS2 . However, the tem­

perature depenclence of scveral macroscopie properties li ke specific heat or magnetization 

eloes not correspond to an exponentiallaw, as it has to be expectcd for a fini te excitat ion 

energy. Spin waves (magnons) must have a much smaller ellergy than the single spin flip , 

like phonons may have lo",er enel'gy than an ionic "aeane)' for inst.ance. 

The distortion of the magnetie order corresponds to a plane magnetic wave (wi th 

propagation veetar Q and frequency w) and is drawn in Figure 14e. Spins are preeessing 

a round t he direction of magnetic order (here z) with components ; 

s; = " . exp(i(pqa - wt)1 (13.21), 
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S% ~ v . expli(l'qa - wt)1 (13.22), 

where Cl designates thc latticc constant and b is Ilumbcl'illg thc spills. 

Likc in the ease of the phonon dispersion olle may deduee the magnon relation. In 

ease of a simple chain one yields : 

nw(q) = 4JS(1 - cos(qa)) (13.23), 

which mal' be approximated for small Q bl' nw(q) = 2JS(qa)' , i.e. a quadratic relatioll. 

In contrast an acoustic phonon dispersion is a lways linear in that ~-rallge. Equation 

(13.23) may be extendcd ta the threc-dimcnsional ease, in all cubic systems the relation 

',w(g) ~ 2JS(qa)' remains valid for small q. 

Figure 15 shows the magnon dispersion measured in Fe, from wh ich one may obtain 

thc exchange constant J; rar comparison the linear dispersion relation of the LA branch 

is added. Olle may note, that in thc ease of Fe thc magnon frequcncies cxtend ta higher 

energies than those of the phonons. Due to the special form of the resolution ellipsoid in 

thc tri pie axis speetrometer, it is fayorable to pcrform seans at eonst-ant energy revealing 

both thc phonon and thc magllOl1, whieh exhibit approximatcly the same intensities, see 

right part of figure 15. 

Sinee magnons are bosons, thcir oeeupation is given by Bose-statistics Ii ke that of 

thc phonons, equation (13.11). Also fOI" the differential cross seetiOil Olle may dcduce a 

fonnula similar ta equatioll (13.10) valid for phonons: 

(k'/k)· S· COllst.· exp(-2W(Q))F' (Q)(1 + Z;)· 
L:I~(n(w~) + 1/2 ± 1/2) . o(w 'f Wj('l)) . o(Q 'f 'l -:z:) (13.24). 

One rceognizes the terms for momentum and energy conservation as weIl as the Bose­

factor, which is inereased by olle in ease of magnon creatioll. Furthcrmore thc intensity is 

modulated by the same Dcbye-\·Vallcr-factor as the phonons. However, there is no term 

cquivalent to thc dynamic structure factor, the illtensity is detcrmined just by thc spin 

Ei, lhc form factor F( Q) and the direction of thc momentum transfer. 
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Fcrromagnetic materia ls are still of cOllsiderablc intcrest duc ta their CllormQUS tcch­

nieal potential in the contcxt of data storage media. Attempts ta optimizc the technical 

propcrtics lead LO binar)' 01' lemary compounds, where the complexity of the magnetie 

order is considcrably increascd. In all cases thc study of the magnon dispersion gives an 

a1ln08t unique insight to the microscopic coupling terms. 

13.3.2 AntiferrOInagnetic Excitations 

Antiferromagnetic order results from a negative exchange canstant J in U = -2J Lp s..,,' 
,s:P+l. The anti-parallel alignment of neighboring spins (HHHtH), howc"er, leads to a 

magnetie cell whieh is targer t han the !luclesr one. A c1assical examplc is given by the 

anti ferromagnetic order observed in fvlnO at 120 I< (Shull ct a1. 1951). Again one mal' 

find excitations in an antifcrromagnet , whieh have lower cnergy than the simple flip of a 

single spin. Again each spin deviates from the ordered position by a eomponent given by 

a plane wave. The calculatioll of the ant iferromagnetic dispersion more elosely resembles 

that of the phonon ease : 

w'('[) = (4~S )'(1 - cos'(q . a)) w(q = - 4~Slsin('[. a)1 (13.25). 

In eontrast to the ferromagnetically ordered structure a lld in elose similaritl' to the 

acoustic phonons I the frequency becomes linear in 9.. for sufficiently small 9.: Figure 16 

shows the magnon dispersion observed in Rb~vInF3. 

In general both dispersion relations (13.23) ami (13.25) are not gaped, the magnon 

encrgy vanishes for CL approaching the zonc center, likc in case of an acoustic phonon. For 

the acoustic phonon thc 'Zone-center limit corresponds to an infinitely small translation of 

the entire crystal which does not cost any cnergy, sillce no force constant is st retched. In 

ease of thc magnons the limit corresponds to a rotation of the ordered moment, which in 

thc Hciscllbcrg-model does not involve any energy shift (thc interaction depends only Oll 

the relative oricntation). However, in general this model is not sufficient , there arc always 

interactions favoring t he orientation of a certain spin direction. These interactions yield 

a finite gap in the excitation spcctrum , howcver much smaller than the spin flip energy. 

Antiferromagnetic materials have much less technical importance compared to fer­

romagnetism. Howcvcr, anliferromagnetic correlations in metallic systems are often es­

sential for the understanding of thc clectronic propcrties. For instance thc phj'sics of 

high-temperature cuprate superconductors seems to be detcrmined by the closelyness of 
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F ig ure 16 ivIagnon d ispersion in Rbl"lnF3 (from refercnce [4)) . 

the antiferromagnctic order in thc insulat ing parent compounds. 

13.3.3 Crystal field excitations for ra re ea rth ions 

In the rare eal' t h serics olle fin ds unpaired electrous in thc 4f-shell , which a re strongl)' 

localized and therefore screened from the sur roullding ions . In consequence the total 

momentum J remains a gooel quantum number. For a free ion the the ground state 

would be (2J + 1) t imes degenerate. In a crysta l this degenerac)' is partiall)' Iifted due to 

thc - weak - Coulomb-fields of thc sur rounding ionic charges. T he transitions betwccn 

the single levels may be observcd by inelastic neutron scattering. (This i5 valid for the 

crystal field spli ttings in transition meta ls too, but due to the larger overlap of thc d­

orbita ls thc excited levels in these emnpounds are usuaUy to high in encrgy.) lf thc ra re 

car th ions are sufficient ly diluted, interaetions amongst t hem may be negleeted . T hc level 

frequencies show then 110 dispersion amI may ue studied with time of fl ight mcthods on a 

polycristalline s8mple. 

In figure 17 we show t.he observcd spectrum comparcd to the erysta l field schcmc for 

PrB3 . T he levels of Pr3+ wi th a J of 4 mal' spli t into not more than 9 levels. The local 

symmetry of thc site oecupicd by t hc ion in t.he lattiee determines whielt levels may exist 

wi th whielt multiplicity. Howevcl' , the symmet ry eannot predic t the seqllcnec of thc levels, 

for this plirpose one needs a quant itative information for t he surrounding fields. T hc single 

levels are dcsignatcd aeeording to the irreduciblc representations of the loeal symmetry 
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Figurc 17 Crystal field scheme and IIlcasured energy senns in PrB3 ('1'= 1.5 1<), from reference [6J . 

graul' by rio In close resemblance to equations (13.10) ami (13.24) the differential cross 

sectiOll arises from thc slim of transition probabilities r j ----+ r j ; these matrix elements 

may be calculated within point charge models. 

13.4 Conclusions 

Inelastic neutron scattering is almost the unique techniquc to observc latticc vibrations 

and magnetic cxcitations throughout the whole Brillouin-zonc. The main part of Dur 

knowledge on these topics has indeed been achicved by neutron studies. 

Also thc subjects of prescnt inlerest, likc high-Tc-supercond uclors, heav)' fermions, 

quasi-crystals, eGO and cOIllpounds with co1055a1 magnelo-resistivilY dcmtlnrl a detail cd 

analysis of t.heir lattice dynamics as weil as of thair magnetism. Frequent))' the materials 

of current interest exhibi t a large complexity; therefore thei r study requires a cont inuous 

dcvelopment of thc experiment.al faciliti es as weil as of the analysis melhods. 
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14.1. Intl'oduclioJl 

The methods of small angle seallering (SAS) with neutrons and X·rays are broadly used for 

investigations of mesoscopic stmctures in condensed materials. Whenever, atOillic dcnsity Of 

chel11ical composition inhomogcncities of mesoscopic length seale exist in a sampie, this 

method can in principle be applied. SAS is a complimcntary method 10 transmission electfOn 

microscopy (TEM); TEM makes visible the microstructure in real space while thc SAS 

methods mcasure in reciprocal space and give quantitative data averaged QVef macroscopic 

large volumcs. 

In this lecture the theoretical basis of small angle scattering with neutrons (SANS) 

should be developed for the topie of the physies of polymers or, as it is said today, of "soft" 

matter und should be clarified with simple experimental examplcs. Since the end of 1939 the 

method of SAS was main!y developed by Guinier and Kratky and applied for questions in 

meta! physics. In OIlC of Guinier's first experiments scattering from copper precipitates in 

aluminull1 was corrcctly interpreted and the precipitates were identified as the origin of 

hardclling in so-called Duralumin. This type of precipitation are so-ca lied Guinier-Prestoll 

zOlles; they are still subject of active research. Today, neutron sm all angle scattering 

technique is maillly used for soft matter; the main reason nught be the relative!y simple 

possibilities of cant rast variation using hydrogen and deuterium, wh ich scatter neutrons quite 

difrerently but do not change the chemistry ofthe polymer. 

14.2. Diffrnction of Ncuh'olls nt 3-Dimensiolla! Pnrlicles 

In Ihis part the basic equations of sl11all angle scattering are discussed. For qualitatively 

understanding in Figure 14.1 two neutron pencils of rays are depictcd in two spheres of 

diftbrent size. From this figure it becomes elear that diffractioll from the )arger sphere occurs 

iuto sm aller angles and therefore sm aller scattcring vectors Q. The basic equation of small 

angle seallering is given in Eq.(14.1). 
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with the macroscopic scattering cross-seclioll dL/dO in unils of [cnf'], the sampIe vohlllle 

V, the number N of atoms in the sampie and the coherenl scallering lenglh bi orthe atol11 i a( 

the position t.;. Olle can considcr the resultant difll'action pattern as a coherent superposition 

of spherical waves, emanating from single atoms with an amplitude determined by the 

28 

JA 

(0 ) (b) 

Fig. 14 .1: Two pel1cils o/rays o/Ihe scafleril1g probe il1111'0 partie/es 0/ d(Uerel11 size 

colleren! scattering length. In the region of sIllall angle scattering the relation Q <2nl a is 

always fillfilled with the lattice constant a. Then thc surn in Eq.(14.1) can be approximated 

according to 

by an integral of the eoherent seatlering length density p(r)~ b i / Q (atomie vollllne Q) and 

the phase factar. In this approximation one get the basic relatiol1ship/or SANS: 

(14.2) 

In a firsl example we consider an hOlllogeneous sampIe with the constant coherent scattering 

length density P(d~p and vollllnc V. From Eq.(14.2) one gets 
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be approximated by aDelta functioll . Diflraction caused by Ihe mean coherent scattering 

Jength density of a sampie against vaClilIlll aceurs in thc I/cm Q region and is usually 

slIbtractcd n"om thc cross-sectiOll. So, olle gets the expression for thc cross-section according 

to: 

:~ (g)= ~ILd'I~(d -p)e9!J' (14 .3) 

This form of the scatterillg cross-section f.i. is the starting equation far Ihe analysis of 

mieellar stmctures, wh ich we will not discuss in Ihis leelure. 

14.3. Thcory or 8111 all Angle Senttering from lineal' Polymers 

We 1l0W consider the maill features of diffraction fromlinear polymer chains. 

14.3.1 DifTraction fl'om n lineal' homo polymer 

As a model of a linear chain OIlC considers a polygon of z vectors [, . whose directions are 

statistically independent. Such a polygon ofa freely joint chain is depicted in Figure 14.2. 

Figure 14.2: At/odel ojajl'eelyjoin/lilleal' chain 

Each vector L rcpresents a monomer, which the chcmical uni! of a polymer of segment lengtll 

b. Such a chain can also be represented by allOther polygon with larger vectors !; representillg 

several monomers. Both polygons correclly represcnt the global properties oflhe chain as the 

end-ta-end vector ß. wh ich is evaluated from thc sum of all vectors accordillg 10 
, , 

R="r. ="r * . . - ~-, ~- , 

1~·3 

(14.4) 



The probability that a freely joint chain with z monomers takes a conformation with thc elld~ 

towend vector ß, is determined by the Gaussian distribution according to 

W(R,Z) ~ (_3 , ) '" exp(-~) . 
21tzb " 2zb 

(14.5) 

On the statistical average thc Illean end-towend distance is zero alld its meall square deviation 

is linear proportional to the nurnber ofmonomcrs z. 

<ß>~ 0 < R 2 >= R~ = b2 
Z 

The radius of gyratioll is givcn as R! = R ~ 16. A linear " real" chain is different from a freely 

joint chain in so far as neighboring monomers are correlated. This effeet is eonsidered by the 

parameter Cz in R! = C z b
2z/ 6 Of expressed by the statistical segment lellgth according to 

0' = bFz alld the radius of gyration R! = 0' 2 z /6 or respectively the mean square end-Io-

end distance R ~ = 0'2 Z determined from seattering experiments. So, a statistical segment 

length of polystyrene is determined as aps = 6.8Ä. As in Figure 14.2 a realistic chains can 

therefore be rcprescnted by a polygon with vectors of segment length a . 

Thc form ractor of a linear chain measurcd in a SANS experimcnt is determined from the 

SUI11 of the phase faetors from the monomers and an averaging over aU possible chain 

conftguratiol1s aecording to 

(14.6) 

The meanillg of the vectors R.i becomes elear from Figure 14.2. In a macroscopically large 

sampie the nUl11ber of polymers is sufticicntly large, in order to describe the polymer 

conformation with the probability distribution of Eq.(i4.5). The average value of the phase 

factors between the positions i and j within the chain is caleulated according to 

< expiQß;j > ~ f d,ß;jw(Ruli - jilexp(iQßJ~ W;j (Q) 

W·· (Q) (I· 'I b' Q' ) W h l IJ = exp - I - J (5 = 12 . 

For the form factor one gets 

144 



P(Q) ~ -', t exp( - li _ jl~Q 2 ) 
Z ij 6 

alld after so me calculation one gets the weil known Debye formula 

2 
P"'~« IJb)(Q) ~ -, [x - I +exp(- x)] 

x 

(14 .7) 

(14 .8) 

with x :=: Rg
1

Q 2. In Figurel4.3 the form f..,ctor according 10 Debye' s fonnula has been plotted. 

1.0 
Debyesehe Fonllfhklor 

0.8 

~ 
0.6 P

Ob 
G' 
~ 

Cl. 
0.4 

0.2 

0.0 
0 2 4 6 8 10 

2 
X = (R Q) , 

Figure 14.3: Debye/arm/actD}, 0/ a linear chail1 

The symbol beside Eq.( 14.6) rcpresents the form factor of a linear chain determincd 

exclusively by illlramolecular phase factors. Such symbols should help to make transparent 

the meaning ofscattering laws ofmore complex polymers. 

There are expressions rar the form factor in Eq.(14.6) being approximately valid in thc 

regions ofsmall and large scattering vector ifcompared with the inverse size of tlte polymer~ 

they have a l11uch simpler form and can easily be used far the analysis af the scattering data. 

So in the region of small Q. e.g. Q « IIR. one finds 

P",,= I _~R : Q2 or theZimm approximation: P;;: = I +~R : Q' (14.9) 

as depictcd in Figure 14 .4a. From tlus plot one gets the radius ofgyration alld the scattcring in 

forward direction according to Eq.( 14.9), delivering the polymer molar volume and voltnne 
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fmetion . ]n the region of large Q olle gcts the cxpression for Q» I/Jl g 

PDb " 2/(Q· R, ) ' (14.10) 

and according to the representation in Figure14.4b apower law er scaling !aw with a slope of 

- 2. rhe scaling law in Eq .(l4.10) shows a so-ca lled fractal dimensionality D~2. 

14.3.2. Polymel' metts 

We !lOW consid e!" a melt cO!lsistillg of n linear polymers within a sampie volume Vs. The 

polymers are of the same type and consist of z monomers with the coherent scattering length 

b. In the samp!e there are in total N = n . z monomers. The scattering cross section is derived 

from Eq. (14.1) and averaged aver all confannations according to 

dL b' I~ iQ'I' _ b' ~ iQ,ij 
- ~-< L.J e - > --L.J < c - > 
dn Ys i Ys ij ( 14.11) 

Now. Eq.(14 . 11) can be splitted into an il1lrmnoleclIlar and il1lermoleclI lar interference terms 

P(Q) und W(Q) according to 

and 

dL ' - (Q) ~ y L [p(Q) + nW(Q)] 
dn N A 

with the coherent scattering Icngth density p = bIn , molar volume V, the Avogadro !lumber 

N/\ and the molar vohllue n of the monomers. rhe corresponding symbol for inter molecular 

interference is the following 

H 
t4-7 

( 14. 12) 

(14 .13) 



Eqllations (14.12) and (14.13) are deterlllined by intra- und intermolecular interferences as 

also made visible by the accompanying symbol. 

14.3.3. ßnbinet PrincilJal 

lncol11pressible melt s show no thermal densi ty fluctllations and thereforc 110 diffraction can 

occur in such a single type polymer melt . The scattering cross sectioll must be zero (md 

following Eq. (14.13 ) one therefore gets the following relationship 

p(Q)~- nW(Q) (14 . 14) 

p H 
representing the Babinet principal. 

14.3.4. !VIeh of dcutel'ated ami Jll'otonated polymers with chemically idcnticalmonomcrs 

of snme segmcnt length. 

We IlOW discuss ablend of chemically identical polymers whose components are cither 

protonated cr deuterated . For further theoretical cons ideration we int rodllce an occupation 

operator O' j with the following meaning 

o . ~ {I , 0 
b; ~ bo 

b; = b" . 
(14 . 15) 

The operator is O' j = land O' j ==0, if the monomer at the position i is deuterated and pro tollated, 

respectively. The coherent scattering lengtll of a monomer at the position i is then described 

as 

b; ~ o; (b o - b H )+b H ~o; ·,.,b +b" 

This expression inserted into Eq.(14.1) gives 

and finally 

N . N . 
d'L (Q) 1 Ab'" 'Qr. b '" 'Q"12 - = - < Ll~Uie- + H~c- > 
dn Vs ;=1 ; :::1 
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(14.16) 

(14 .17) 



(14 . 18) 

\Vith the partial stl1lcturc factar SDD. The symbol for Soo has the following form 

and describes the intra- and intermolecular interferences betwecll the deuterated monomers. 

Quite generally, the scatterins cross section can be described as a SUI11 of the partial sfruclure 

/aclol's according to 

with Ihe corresponding symbols 

D D H D H H 

~ H 
In ease Dran incompl'essible mell lhe partial stmcture raetors are relcHed according to 

Snn ::: SHH ;::; - S[)!! 

8m1 thus olle gels in correspondence with Eq.(14.18) 

(14 .19) 

(14.20) 

(14.21) 

The definition of lhe occupatioll operators in Eq.(I 4. 1S) implicitly contaills Ihe condition of 

incompressibility, as 110 free VOllllllC is included . The partial stmcture factar of the dcuterated 

monomers is givcn 

Soo ~ <!> n z' p(Q) + (1) ' n' z' W(Q) (14 .22) 

with volume fraction <J> of the polymer componcnt D. Because of the Babinet principal one 

has z P(Q) ~ - nW 3nd one gels 
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dL(Q)=C.
p 2 

<I>(I - «»)V p(Q) 
dfl N ' . 

-----"-' S (Q) 

(14.23) 

K 

with the stmcture factor 

S(Q) = <l>(I - <l»V P"" (Q) (14.24) 

So, thc variation of contras! of chcmically idcntical polymers enables thc experimental 

detenninatioll of the form factor of a single chain in a melt of chemically identical polymers. 

Jn Figure 14 .5 an e.\perimcllfal example is shoWIl rar a polystyrene melt. 

•••• d- PS /PS $ =0.48 

V", =0.91-106 cm3/mol 

102 
10~-~3~~LJ~~~10L-"2~--LJ-LLUD1~-1~ 

Q IÄ- l J 

Figure14 .S: Slruclure factor 0/ a 50% mix/ure 0/ polyslyrene in double logarithmic 
represelllatiol1. Tlle power km' bel1Cl vior al/arge is described by slaf;slical chaill 

14.4. H-D Polymer blend in solution 

Next we derive the scattering law of an isotopic polymer blend in solution. Again we 

introduce occupation operators with the meaning 

b i = bD 

b i = b" oderbo 

(14.25) 
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and which lead to the scattering cross section 

which after same calculation leads to the form 

(14.26) 

and, fmally, to a Sllm of partial structure factors weighted with corresponding contrast factors 

according to. 

The partial structure factors are given as; 

D(H) D(H) 

SnD = <l>n z 2p(Q) + <l> ' n ' z ' W(Q) 

SHH = (1-<!l)nz 2P(Q)+<l> ' n ' z 2W(Q) 

H SnH = <1>(1 - <l»n 2Z' W(Q) 

H D 

and fillally one deli vers the followillg scattering law 

(14.27) 

(14.28) 

(14.29) 

(14.30) 

(14.31) 

For this systems the Babinet principal is not valid as it contains polymers and solvent 

molecllies. If one matches the scattering length of the solvents and the averaged olle of the 

polymers (bp,,/y :::<I>b D + (1 - cP )b H ) according to bp,,1y ::: b o ("zero" contrast), the second term 

in Eq .(l4.31) does not cOlltribute to the scattering and, consequently, Olle again detennilles 

the form fact or of a single chain according to 

(14.32) 
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with e the voltl1lle fracti on of polymers in solution ami the contrast factor K. This again is a 

demonstration of the possibilities of cant rast variation with neutrons allowing to mcasure the 

form faetor P(Q) of a polymer ehain in solution. 

14.5 Scnttcl'ing front n Block Copolymer 

Figure 14.6: PresenlatiOI1 ola Diblock Copolymer 

We 1l0W derive the scattering law of a linear polymer, consisling of the Iwo blocks " A" and 

"B" of different polymers and which are symmetrie wi th respect 10 the Ilumber of the 

monomers z = 2zo = 2zH . The scallering cross sectiOll is given as 

~=_l IIb ' S 
dO V, DD 

(1433) 

wit h the relalionship Soo = SHH = -SOli because of assUlning an incompressible melt . The 

various partial structure factors are givcll as: 

( 14 .34) 

(1435) 

(14 .36) 

The symbolic representation of the stmcture fact or of diblock copolymers has the form 

D D ... ~---.. , 
141 2 



For thc intramolecular and intennolecular tenns of interference one has PDD :::: PI ßt and 

v.,'T = WOD ::::\VHH = \VDH " ßecauseof Z 2PT ::::2(z/2)2 PDD +2(z/2YPrm the form factorof 

the total chain is given as 

(14.37) 

which with 11 WT ;:::; - PT (Babinct principal) finally leads 10 the partial structure factor 

(14.38) 

,md the scattering cross sectiOil 

(1439) 

described as the difference of the intramolecular form factor of a single block (PDD~PDH) and 

the total chain (Pr). These form faclors of a symmetrical diblock copolymer are plotted in 

FigureI4.7. An interference peak is observed whose position is according 10 Q*.R, ;:: 1.9 

related to the radius of gyration and Q* therefore has to be observed at 1.9 , 10-2 k' , The 

observation of an interference peak in diblock co polymers becontes plausible from the 

consideratioll , that composilion fluchlatiolls of the blocks A and B can only occur on the 

length scnle of the polymer. As an experimental example we show the sln/clure fact or cf a 

melt. 

0.20 

0.8 Poo I Diblockoopol)mer I I Diblockcopol)llIcr I 
0,15 

OA R,- IOO'\ 

Q' 

g 0.0 p CI 0.10 
P- o:; 

·OA -Pr R, .. \OoA 0.05 

·0.8 
0.00 

0.00 0.02 0.0; 0.06 0.08 0.10 0.00 0.02 0.ü4 0.06 0.08 0.1 0 

Q[Ä" J Q[A'] 

Figure 14.7: Form fac/or of a symmetrienl diblock co polymer 
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Figure 14.8: Strllctllrfactor q( {[ PEP-l'DMS diblock copolymer 

14.6. Binary 1\'lclt with diffel'cnt Polymers 

PEP-rOMS 

T=170cC;P=1J65 bar 

'fhe slmcture faclor of an ideal binary melt 1$ evaluated wit hin the "random phase" 

approximation (RPA) according to 

(14.40) 

The inverse stmellirc faelor is obtained from the Slllll of the inverse form faelors of bOllt 

"ideal" chains weighted with their molar volumes and volul11e fraetions. Eq. (14 .40) 

eorresponds 10 All ideal so lution of Iwo eomponents with mixing encrgy being zero anel 

therefore 110 phase transition phenomena. Those ideal solut ion are usuaJly not fOllnd in reality; 

as demonstrated in Figurel4.9 cvell isotopie mixtures of ehcmieally identieal polymers show 

phase deeomposition at low temperatures beeausc of a smaJl but finite mixing interaction 

energy. For polymer blends such interaction is described by the Flory-Huggins (F-H) 

parameter 

r = rh - r T O' 
(14.41 ) 

The FH-parametcr has Ihe meaning of a ffee enthalpy of mixing with the enthalpie and 

entropie tenns rh anel f o ' respectively. In the RPA approximation the interact ion parameter 

addecl according to 

(14.42) 
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FigureI4.9: Phase diagram (md FI01y-Hllggills interoctioJl parameter Cl/ Oll iSOlopic d-PSIPS 
blel/d 

the structure factor of an ideal mixt lire. Für small Q Eq. ( 14.42) can be approximated in Ziml1l 

approximation according to 

(14.43) 

with the inverse structure factor S-1 (0) = 2[rs - r] at Q=O and the FH-parameter at the 

spinodal temperature, 2 rs = _ 1_ + ( I) ,being inversely proportional 10 büllt chain 
<1>VD 1- <1> V" 

molar volumes and being related to the translatorial entropy of mixing. 1n experimental 

reality OIlC tries to measure at suft1ciently small Q in order to be able 10 use Eq.(14.43) far 

analysis of the scattering data. As shown in Figure 14.9, the spinodal temperature represents 

the phase houndary between the metastahle und unstable two-phase regions and the ullstable 

region touches the stahle olle-phase region at the critical point. In the single homogeneous 

phase at high temperatures the FH-parameter is sm aller than f c = 2/ V in accordance with 

l11e Gibbs condiJion of slabilily of a positive S(O); S(O) represents a sllsceplibility which 

according to the fluctualion-dissipatioll theorem is related with the free cnthalpy of mixing 

ö G according to 

(14.44) 

In ca se of r > f c the system decomposes with the mechanism of spinodal decomposition in 

two macroscopically large phases which one polymer component domillating. Thc free 

enthalpy of mixing of polymer blends was originally formulated within the mean fjeld 

approximation by Flory and Huggins, it gives the same result as the random-phase 
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approximation being a meau field approximation as weil. According to RPA the slope A in 

Eq.( 14.43) is related to the square of the radius of gyration of both c1Iains assumed as being 

undisturbed. 

Next wc discuss an experimental example of abina!)' blend of a deuterated polystyrene (d­

PS) und polyvinylmethylether (PVME). This mixt ure shows the specialty being miscible at 

low temperatures and decomposes in two macroscopic phases at high temperatures. The 

reasans are a preferred interaction between PS und PVME (rh < 0) and an increase of the 

total ffee volume during decomposition (ro < 0). The ffee vohnne is related with the entropy 

r o 811(\ in ease of f o > f c becomes dominant and the driving force for the process of 

decompositioll at high tcmperatures. The SANS experiments were exclusively performed 

within the homogeneous oue-phase region. In Figure 14.10 S(Q) is plotted in Zimm 

representation (a) and I/S(O) versliS IIT in (b). One c1early realizes the inereasing seattering at 

higher temperatures (Ihe inverse S(Q) is of course decreasing), from which one can conclude 

to stronger thermal composition fluctuations. The inverse susceptibility is Iinearly 

proportional to IIT, it is zero at the spinodal respectively at the critical point, alld its slope 

direetly gives rh • The observcd linear shape of S" (0) \Vith I/T is representative for the 
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scaling belmvior of the Slisceptibility within the universality dass of mean field 

approximation (the corresponding critical exponent is y :=: I). 

This experiment follows the menn field approximation quite weil and can be sufliciently 

weil interpreted with the theoretienl approach presented hefe. The feasen is the relatively 

Jarge molar vallllne of scvcral IO j cm J I mol, which allows observations of deviation from the 

mean field approximation only very near (about lK) the critical telllperature, whell the 

thermal composition flucluations are suft1ciently large. 
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15 Polymer DYllamics 

D. Richter 

15.1 Intl'ochlctioll 

In aur evcry day life plastics or polymers playaver)' important roJe. Polymerie materials afe 

lIsed, because they are durable, cheaply 10 produce, casily 10 process and bccause Ihe)' exhibit 

vcry versatile and favorable mechanical properties, e.g. depending Oll tcmpcraturc er time Ihe 

same polymer may be viscose, l1Ibber elastic, very lough with high impact strcnglh or cven 

brittle. In the simples! ease polymers are lang linear chain molecules, build from olle 

rcpealing uni!, Ihe mOl1omer; such polymers are called linear homopolymers. 

Since in general rotational isomers may be casily fonned at each bond of Ihe chain backbaue, 

lang chain polymers possess a very large number of internal degrees of freedom wh ich 

contribute imporlantly 10 the entropic part of the lllo1eeules free cnergy. At length seales 

somewhat larger than the size of the monomer, the detailed ehemical structure of the chain 

building blocks ceases 10 be of importanee and very general properties determined by the 

statistical meehanies of the chains prevail, e.g. the eonformational entropy follows from the 

!lumb er ofpossible arrangements ofa ehain sequence in spacc. Aeeording 10 the centrallimit 

theorem the most probable arrangement is that of a Ga/lssian coil, e.g. the polymer ehain 

performs a random walk in space. If pieces of the ehain are I10W stretchcd an entropie force 

arises and acts on these stretched segments endeavouring to restore them 10 the most probable 

contorted state. Such forces are the basis ofl1lbber elasticity. 

This lecture aims to identify general principles of chain motion on a Illolecular seale which 

underlie the maeroscopic meehanieal properties, and presents concepts and experimental 

results on these motional mechanisll1s in spaee and time. Thereby, we restrict ourselves to 

melts of homopolymers. 

Neutron seattering with its spaee time sensitivity on a l110leeular and atOillic seale unravels the 

details of the moleeular motiolls in question. Commeneing at the seale of the single bond, 

where 1110vements take plaee at a pace as in Honnal Iiquids, quasielastie neutron scattering 

(QENS) provides insight into local relaxation processes. At longer Icngth seales first the 

cntropy driven Rouse motion and at even larger distanees the effeet of cntanglement 
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COllstraints due to the mutual interpenetration of chains comcs into the obsclvation range. The 

most powerful technique suitable for these investigations, the neutron spin ccho spectroscopy 

(NSE) operates in the time domain and uncovers a time range from about 2ps to 200J/S and 

accesscs momcnhllll transrcrs between o.oIA-\ and 3A- I
. Thc second important high 

resolution tcchnique is neutron baekseattering providing an encrgy resolution of about lpeV 

and covering a Q-rangc 0.1 5Q 5 2It'. 

This lechu'c naturally is not able to review exhaustively the contribution of high resolution 

neutron seattering to the field of polymer melt dynamies, hut rathcr wants in an exemplary 

way to display imp0I1ant contrihutions by example. First in Chapter 2 wc will disCliSS neutron 

results on the local chain dynamics, addressing self and pair correlation funetions. These 

experiments are of importance in connection with the glass transition in polymer melts. Then 

in Chapter 3 we deal with the entropy driven dynamics, the Rouse motion, Chapter 4 

discusses the large scale chain motion ehlding to the reptatioll process and Chapter 5 finally 

concludcs this lecture. 

15.2 Loeal dyn "mies 

Thc c1assical relaxation processcs in polymers, thc a· alld 'prelaxations, have becn shldied 

sinec more than 50 years by spectroscopic teehniques, like dielectric spectroseopy, 

mechanical spectroscopy and NMR. Fig,15,1 displays a typical outcome ofsuch experiments 

for the case of polybutadiene (PB) [-e, H6-l •. The dominant relaxation process, the a­

relaxation, is related to the maeroscopic flow and freezes at a finite temperature, the glass 

transition temperahire Tg, Aside from this proeess a seeondary relaxation, !lslo\I', departs from 

the a ·relaxation at a tcmperaturc ab out 20% above Tg, This relaxation displays an Anhenius 

behaviour and passes unchanged through the glass transi tion, 

As al ready mentioned, the a·relaxation is behind the viseous flow of polymers, Its relaxa tion 

runction may bc phenomenologieally dcscrihed by a stretehed cxponential 

iP"(I) ~ exp{-(_1 )P} 
TKu1r 

(15.1) 
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T J;U11' is the Kohlrausch-William-Watts relaxation time and jJ< I thc stretching exponent. 

r Klf1j ' in good approximation follows a Vogcl-Fulchcr tcmperature dependence. 

(15.2) 

Thc temperature offsct in the denominator of the exponent leads to a divergencc of r KUli' at 

To• a temperature below Tg wh ich, howcvcr, may never be reached in equiJibriulll. 
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Figure 15.1: Relaxation landscape of PB. a and Alo\\' COlTcspond to the c1assical relaxation 
processes and are treatcd here. 

The dielectric ß-relaxation is cOllsidered to be a result of a partial rcorientation of the 

molecular dipoles in the substance. It is intcrpreted as a local activated process, where the 

dipole hops betwecn two positions separated by an activation encrgy E. The relaxation time 

follows an AIThenius behaviour 
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(IS.3) 

due to the disorder in Ihe material the aClivation energies E are distributed around an average 

value Eoo For the distribution funeti0l1 in general a Gallssian is asslIl11ed, 

(1S.4) 

Empirically it is faund that the width ofT) dccreases with increasing temperature. Though 

slIch processes have been investigatcd weil by spcctroscopic techniqucs. thcir molccular 

origin is still ullclear. Here QENS with its ability to provide space time resolution 011 Ihe 

proper seales contributes to a furt her exploration of the molccular mechanisms behind these 

relaxations. 

15.2.1 Dynnmic stl'llcturc factors 

We commence with thc derivation of Ihe dynamic stmchlre factor for the ,ß-proccss which \Va 

considcr as a hopping process between two adjaccnt siles. For such a process the self 

correlation function has been derivcd in the Iccture on quasielastic scattering, il is given by a 

sum oftwo contributiolls. 

I 
S,(Q,I) =-

2 [
1+ sin(Qd)]+J. 

Qd 2 
S~I 

[ 
sin (Qd)] (21) 1- exp ---

Qd T(E) 
(IS.5) 

Here d is the distance betwecn the two sites and r(E) is the jump time corresponding to an 

activation encrgy E. The complcte scattering fllBction is obtained in avcraging Eq.(l5.5] with 

the barrier distribution funetion g(E) obtained e.g. by diclectrie spectroscopy. The Q­

dependence of the two contributions to Eq.[IS.S] is displayed in Fig.IS.2 as a function of 

Q (d = l.SA). From the oscillation of both contributions with Q the jump distancc may be 

obtained. The associated time scale may be found [rom the time decay of lhe inclastic part. 
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Figurc 15.2: Elas tie and inelastic contribution to lhe incohcrent scattering function for jump 
motion bctwccn two silc. The Figure assumes a jump distancc of l.5A. 

The associated pair cOITelation fllnction is more difficult 10 oblain, since IlOW we have to deal 

with a change of configuratiolls of atoms rat her thau with single atom jumps. The conccptual 

difference bctwccn lhe pair and the self correlation fu nction for jump processes may be 

visualized most easily considcring rotational jumps. Let us rega rd e.g. the 1200 rotatiOllal 

jumps of a methyl group afaund its symmelry axis. An incoherent stl1dy would reveal the 

atomic jumps of Ihe associated hydrogens. The pair correlatioll function reflects the change of 

atOlnic configurations bcfore and after the jump. Sincc a 1200 jump does not change the 

configuratioll, a cohercnt scattering experimcnt would not reveal anything. 

Back to the pai r correlation function for the ,ß-process, where we will introducc a simple 

approximation. We know that for I = 0 the pair correlation fUllction is reflected by the static 

structurc factor S(Q) . Therefore for I = 0 the corresponding pair corrclation fUllction for the ,ß­

process mus! reveal S(Q). We !lOW aSSUllle that the inelastic scattcring is related to 

uncorrelated jumps of the different atoms. Then all interferences for the inelastic process are 

destmctive and the inelastic fonn factor should be identical to that of the self correlation 

fUllction. For the Ilormalized dynamic slmcture factor for the ,ß-process we arrive at 

S(Q,t)p 
S(Q) 

/ S(Q) -S/'" (Q) + s',,' (Q) e-''''I')) 
\ S(Q) S(Q) , I') 

15-5 

(15 .6) 



This incoherent approximation does not revcnl e.g. synunetry rclated cancellations) but 

displays a major fcature of the corresponding dynamic stlllcture factor, namely the relative 

suppression of the illclastic contributions from loeal jump processes at the maximum of thc 

stl1lcturc factor. Fig.15.3 displays the situation for polyblltadienc. There a ,ß-process 

corresponding 10 a jump lengtll of d = l.SA has been found. The corresponding inclastic 

dynamic struchlre factor is strongly reduccd at thc position of the first peak) while it 

cOlltriblltes strollgly at higher Q. Fig.15.3 slIggests a Q selectivity for the different relaxation 

processes: al Ihe structure factor maximum loeal jump processes shou ld not eontribute and the 

relaxation due to flow should dominate. On the other hand at larger Q, in particular in the 

minimum ofthe stmeture faetor, lhe sccondary re laxation should reveal itself. 

2 
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er, er, 
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0 0 
0 2 3 
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Figure 15.3: Static strueture factor S(Q) and nOll11alized inelastic eontribution SI~tI 10 
S(Q) 

S(Q,{())/S(Q) for PB. 

We tlOW assume Ihat the a- and the ßrelaxation are slatistically independent. Tlten) in real 

space the joint eorrelation fUl1etion is given by a cOl1volution of the corresponding functions 

for bülh separated processes. In Q-spaee this COllvollition becomes a prodllct and we may 

write the total scattering function as a prodnct of the structure faetor duc to the a- and ß-
pl'Ocesses. 
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S}~;) = S" (Q,t)Sp(Q,t) 1 S(Q) (15.7) 

The approximation behind Eq.[lS.?] is called Vinyard approximation and approximates thc 

proper pair correlation fUllction by ils self counter part. Thc self corrclation function for a 

diffusive process relates directly 10 the menn square displaccmcnt. 

S"V (Q,t)=exp {_~2 (/2 (t))} (15.8) 

whcrc (,.2(t)) is the mean square displacement of the flowing particle. According to 

Eq.[15.1] this should be described by a stretchcd exponcntial with the consequence 

and 'KWII' 
= Q2IPD~ -1 1ft (15.9) 

the combination of Eq.[15.8] and [15.9] invokcs sublincar diffusion of the polymer segments 

as the underlying reason for the stretched exponcntial behaviour. Hs signature is apower law 

dependencc orlhe Kohlrausch-William-Watts relaxation limes 'KII11' with an exponent 2/jJ. 

15.2.2 Experimental resu lts 

15.2.2.1 Self cOl'l'elatioll fllnction 

We commcnce with the secolldary relaxation taking polyisobutylcnc as an cxample. Fig. lS.4 

presents the relaxation mal' of PIB. The solid line eorrcsponds to the dielcctrie ,ß-relaxation, 

the dashed linc named öreprescnts NMR rcsults interpreted as a methyl group rotation. rand 

r' are theoretically predicted relaxation mechanisms. In the dynamic regime, where the 0.­

relaxation is too slow to eontribute, neutron backscattcring has bcen cmployed, in order to 

unravel details of the ßprocess in this polymer. Fig.15.S prcscnts as an examplc a spectrul11 

laken at T = 270K and Q = 1.7A·1
• The spectrum is characterized by a narrow peak, wh ich 

nearly eoincides with the instrumental resolution function (dashed line) and a braad foot 

revealing the relaxational behaviour. Such a spectral shape is typical for broad distributions of 

relaxation times, where only apart of it is resolved in thc spcctmm. 
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Figure 15.4: Relaxalion map for PIß. 
T marks the a-tracc, • relnles 10 
dieleclric relaxation experiments on 
the ßrelaxalion, • results from 
QENS-experiments. 

Figure 15.5: Backscattering spectlUlll 
from PIß al 270K at a Q-value 
Q = 1.7Ä. The dashed linc gives the 
resolution functioll, while the solid 
line displays the fit with Ihe model 
(see text). 

Figure 15 .6: EISF for PIß (Ä: 250K, 
.: 270K). Solid lines: EISF for 
melhylgroup rotation, dashed Iines: 
fit result for a jump distancc 
d= 2.7Ä. 



Fig.15.6 displays the elastic intensity observcd for PIS as a fllIlction of Q. The data wcrc 

corrected for multiple scattering and fitted with Eq.[ 15.5]. This clastic incoherent structurc 

faetor (EISF) (sec leeture Quasielastie Scattering) reveals a jump distanee d ~ 2.7Ä. For 

compllrison the solid lincs display Ihe prediction for methyl group rotation, wh ich was 

invoked by NMR spectroscopy. Obviously the neutron data point into the direction of a larger 

motional amplitude. 

The squares in Fig. 15.4 display the neutron results far the ,8timc scatc. Withill a factor of 2 

(hey agree with the dielectric spectroscopy results. Since the underlying process has an 

amplitude of 2.7A and is also dielectrically active, it cannot be understood as due 10 a 

methylgroup rotation alane. A possible interpretation is a combined backbone and methyl 

motion wh ich is also supported by simulation results. 

We now turn to the a·relaxation and ask, whcthcr the sub linear diffusion argument is 

supported by quasielastie neutron seatlering. Fig.15.7 displays Kohlrauseh-William-Watls 

relaxation rates obtained for four different polymers, polyvinylether (PYE) at 340K, 

polyisobutylene (PIß) at 365K, polybutadienc (PB) at 280K and polyisoprene (PI) at 340K . 

Figure 15.7: 

.. .. 
lO • .. 

0::>. 
.-, 

---- 0 
Vl 
i=: • '-"" PVE 340K 
p;!: 

• ~ 

PIB 365K 
• PB 280K 

0.2 0.4 0.6 0.8 1 PI 340K 

(rKw"f for 4 different polymers as a funetion of Q. Thc solid lines displaya 
Q2 power law. 
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In order to test Eq.[1 5.9] the relaxation rates have becn exponentiated with the cxponent ß, 

obtained from the strctching of the relaxation fllnctiolls in these polymers in dielectrie 

speetTOseopy. Aeeording to Eq.[ 15.9]. I' shollid be proportional to Q'. The solid lines in 

Fig.15.7 display this power law relation. As may be seen, in all eases within experimental 

error the experimental relaxation times again obtained by backseattering spech'oscOPY follow 

the predicted power law behaviour. Tilus, the experimental evidence supports a sub linear 

diffusion process as underlying the a-relaxation. We remark that this result is in disagrecment 

with assertions timt lhe stretched exponential relaxation function of the a-process originates 

from heterogencous lllotional proccsses, wltere polymer segments in different parts of the 

sampie would relax at different relaxation rates. 

15.2.3 Pair cOl'l'clation fllnctioll 

The dynamic pair correlatian funetion far polymer relaxation has been studied thoraughly on 

polybutadiene as a function oftemperatllre and momentum transfer. Fig.15.8 gives a synopsis 

of these reslilts. The dynamie data prescnted have been taken at the positions of the first and 

seeond peaks in the statie slmeture faetor of this polymcr. As may be seen from the middle 

part of Fig.15 .8 the first peak of the static stl1lchll'C faetor movcs slrongly with temperahlre. 

This peak originates from interchain correlations, where weak v. d. \Vaals interaetions lead to 

thermal expansion. The second peak relates mainly to intrachain correlations as may be seen 

from the temperature independence of its position indicative for covalent bonds. The 

temperature dependent relaxation spcctra were rescaled in their time dependence \Vith the 

characteristic time for viscosity relaxation r" (actually the time dependent monomeric friction 

coeffleient was used, see Ilext paragraph). Sy this procedure the time correlation funetiol1s at 

the first peak assemble to a master CllrvC, sho\Ving that the dynamics at the interchain distance 

follows the same relaxational behaviour as the macroscopic flow. On the other hand as 

evideneed by the lower part of Fig.15.8 at the seeond stmeture peak. such a sealing doos not 

reassemble the dala points to a master cUlve. Obviously the dynamics at the second peak at 

ltigher Q follows different dynamies. 
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Fignre 15.8: NSE spectra from PB taken ut Ihe first und second stmcture faetor peak. The 
time is rescalcd with the tcmperahlrc dependence from flow relaxation. Center: 
S(Q) for different temperatures. 

Fig.15.9 displays thc temperature dependcnce ofthe cOl'responding rclaxation rates. While the 

data at thc first peak nicely ogree with the temperature dependcnce of thc a-relaxatioll , os 

already evidenced by the scaling, thc rclaxation rates taken at the secolld peak follow an 
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Arrhenius tCl11peraturc depcndenec with a same activation energy as that of thc corresponding 

dielectric ,ß-process. 
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Figure 15 .9: Relaxation rates at the first and second stmcture factor peak of PB in an 
Arrhenius rcpresentation. Solid Hnes: a- and ßtraces for this polymers. 

An evalualion of the struellire faetor following Eq. [15.6) and [15.7) ceveals a jump distance 

for the ,ß-proeess of d ~ l.SÄ. It also shows that the ",Sl""ption of statistically independent a­

and prelaxatiol1s is supported by (he temperalure and momcnhllll transfer dependent speetra. 

15.3 Euh'OllY driven dynamics - thc Rousc regime 

As outlined in the introduetiollJ the eonfonnational entropy of a ehain acts as a resouree for 

restoring forees for chain eonformatiollsJ dcviating from thermal equilibriulll. In this Chapter 

wc deal with these entropy driven dynamics in tcnns of the Rousc model and present NSE 

results on the space-time evolution of the Rouse relaxation and finaJly discuss recent 

molecular dynamie simulations wh ich have been performed in parallel 10 NSE experiments, 

in order 10 cxplore thc limits of the Rouse picture. 
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15.3.1 Entl'opie fOl'ces - thc Rouse model 

As the simplest model fer chain relaxation, the Rouse model considers a Gaussian chain in a 

heat hath. The building blocks of such a Gaussiall chain are segments consisting of several 

monomers, so that their end to end distance follows a Gaussian distribution. Their 

cOllformations are describcd by vcctors !LI = [,/ - [,, + / along the chain. Thereby fJ/ is thc 

position vector of the segment "11 " , Thc chain is described by a succession of frcely 

conllcctcd segments oflength C, We are interested in the motion ofthese segments Oll a lenglh 

scale 

e < l' < Re, whcre R/ = n e is the end to end distance of the chain. The motion is described by 

a Langevin equation 

dr 
(o---=-'- =V.F(r.)+ f (I) , dt _ n 

(15.10) 

whcrc (0 is thc monomeric friction coefficient. For the stochastic force .[,,(1) we have 

([,(1))=0 alld a, and ß denote the 

Cartesian components of [. F(!jJ is the free energy of the polymer chain. Thc force tenn in 

Eq.[15.tO] is dominated by the confom,ational entropy ofthe ehain 

wllere W (k,, }) is thc probability for a chain conformation k"} of a Gaussian chain of 11-

segments. 

N 

w({r.}) =[\ 
{ }

J/1 

__ 3_, exp 
2/r C 

(15.11) 

With the boundary conditions offorce free ends Eq.[15.1O] is readily solved by eosine Fourier 

transformation, resulting in a spectmm of normal modes. These solutions are similar to e.g. 

the transverse vibrational modes of a linear chain except timt relaxational motions are 

involved instead of periodie vibrations. Thc dispersion of the relaxation rates lIrp is quadratic 

in the Ilumber of knots p alollg the chain. 
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(15.12) 

where TR is Ihe Rouse time - lhc langest time in Ihe relaxations SPCCtrLlIl1 - and IV is Ihe 

elcmcntary Rouse rate . Thc mode conelation fllllCtiOiI for Ihe Rouse müdes is obtained as 

(15 .13) 

( .a() .P (0))-" 2kBT '\0 t .lO - vaP--1 
NSo 

Thercby x; is Ihe a-component of Ihe Ilumber p normal mode and x; is the centrc of mass 

coordinatc. In order 10 study Browniall motion, Ihe segment correlation fUIl CtiOI1 S in lhe real 

space LlI;:' (I) = ((I~ (I) - I; (0))') are required. Thcy are obtained by retransformation of thc 

1101111a l coordinates leading 10 

4NC' N +-,-1:: 
Ir p .. J 

I 
-cos 
p' (Pff 11/ ) (Pff 11/) (I (P'I)) -- cos - - -cxp--

N N rR 

(15.14) 

in Eq.[15.14] we use Ihe fac t timt Ihe mean square displacement of Ihe centrc of mass 

proYides tlle diffusion COllstant. For Ihe special case of thc self correlation function (11 = 111) 

LlJ'nn (I) revcals Ihe mean square displacement of a polymer segment. We obtain 

(15.15) 

In contrast to normal diffusion 6/~~ does not grow lincarly, but with the square route oftimc. 

For the translational diffusion coefficient DR =knT/Nso is obtained. DR is inversely 

proportional to the Ilumber of ffietion perfonning segments. 
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By mcans of neutron scattering two different con'elation fUllctions may bc acccsscd. In thc 

ease of eoherent scattering, all partial waves emanating [rom different scattering centres are 

capable of interfercnce - the Fourier transform of the pair correlation funetion of a single 

chain is measured. In contrast incohercnt scattering, where the interfercnces from partial 

waves of different scatterers are destruclive, measures the self correlation fllBction. Thc self 

cOlTelation function leads directly 10 the mcan square displacement of Ihe diffusillg segments. 

In Gaussian approximation for t < (R we have 

(15.16) 

in thc ease of coherent scatteril1g, which obscrvcs the pair correlation fUBction, intcrferenccs 

from scattering waves emanating for various segments eomplieate thc scattering function. 

With Eq.[15.14] we obtain 

S(Q,t)=~exp [-Q'D,IJ Iexp {--'-III-mi Q2f2} 
N nm 6 

(15.17) 

'" I { (ptr m) (p trll) ( ( Ip' J)} ~7 cos ~ eos ~ l-exp --;; 

for sm all Q (QRE < 1) the seeond and third leIms are negligible and S(Q,I) describes Ihe 

ccntre of mass diffusion of the chain. 

S(Q,t)=N exp (-D,I) ( 15.18) 

For QRE > 1 and' < TR the internal relaxations dominate. Converting the sums in Eq.[15.17] 

to integrals and after some algebra de GeiUles has derived an expression for the dynamic 

structure faetor. 
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S(Q,I)= \2,1dll exp ( -11-(0,1)"' " (II(O,Ir' I2 )) 
Q C 0 

2 ~ cos( ry) 
"(y)=- f <Ix ; (I-exp(-x')) 

Ir 0 .\ 

(15.19) 

We observe that in spite of the eomplieated functional form S(Q, I), Iike the self cOlTelation 

funclion, only dcpcnds on olle variable, Ihe Rouse variable. 

(15.20) 

Sincc there is 110 lenglh scale in the problem, for different momcntull1 transfers Ihe dynamic 

structure raetors are predicted 10 collapse 10 OIlC master curve, if thcy are represented as a 

function of Ihe ROllse variable. 

15.3.2 Neutl'on spin ceho l'CSllItS 

The self correlation fUllction of a Rouse chnin was first observed Oll polydimcthylsiloxane 

(PDMS). Sillee a straight forward study ofthe ineoherent scattering by NSE is very diffieult ­

duc 10 spin flip scattcring a severe lass of polarization Dccurs leading 10 very weak signals -

Ihe mcasurcmcnts of Ihe self cOITclatioll function were performcd on high malecular weight 

deutcrated PDMS chains which contailled short protonated labels at random positions. In such 

a sampie the scattering essentially originates from the contrast between the protonated 

sequence and a deuterated environment and therefore is coherent. On the other hand the 

sequences are randomly distributed, so that there is no consl11lctive interference of partial 

waves arising from different sequellces. Under these conditions the scattering experiments 

measures the self correlation function. 

In Fig.I5.10 the corresponding NSE speetra are plotted against the scaling variable of the 

Rause model. The results far the different momclltum transfers fallow a cammon straight 

line. In Gaussiall approximation far the case of the self correlatioll functiOil the scaUering 

fUBction dircctly mcasures the mean square segment displacemellt, which according to 

Eq.[15.15] obeys a square root law in time. This behaviour may be direetly read off from 

Fig.15.\O. 
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The pair eorrclation functiOil arising fl'Ol11 the segmcnt motion within one given ehain is 

obscrved, if some protonated cl13ins are dissolvcd in a dcuterated matrix . Fig.15.11 displays 

Ihe observed speelra from polyelhylelhylene (90% dPEE, 10% hPEE) al a moleeular weighl 

of MlI' = 20.000. The solid lincs give (he prediclioll of the dynamic structure ractor of 

Eq.[ 15. 19]. Obviously very good agreemenl is aehieved. 
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Figure 15.10: Self eorrelalion for a PDMS mell T = looe. The dala al differenl momennnll 

lransfers are plolled us Ihe sealing variable of Ihe Rouse model (a " C). 

Figure 15.11 : Single ehain slruen"e faelor from a PEE mell al 473K. The solid Iines 
represent a joint fit with the Rouse model. 
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\Vc now use these data, in order to investigale the scaling prcdiction inherent in Eq.[ 15.19]. 

Fig.15.12 presents a plot of the data of Fig.15.11, now as a funelion of the Rouse sealing 

variable (Eq.[ 15.20]). 
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Rouse + Diffusion 
Rouse (N = oo) ----

o~---------,,---------~ 
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Figure 15.12: Single chain stmcture factor from PEE melts as a funetiOll ofllte Rouse scaling 
variable. 

Thc data follow with satisfying precision Ihe scaling prediction. The small deviations are 

related 10 the translational diffusion of Ihe chains. This becomes evident from Fig.15.13, 

where Ihe obtained relaxation rates ETQJ are plotted versus Q in a double logaritlunic fashion. 
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1. Cumulant (PEE) 

T=533K 

T=473K 

0.1 

0/ Ä-1 

Figure 15.13: Relaxation rates from PEE melts vs. Q for two different temperatures. 
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The dashcd line gives lhe Rouse prediction loc WeQ4. \Vhile at larger 1l10mcntulll transfers 

the experimental results follow VCIY weil this prediction, towards lower Q, a systematic 

relative increase ofthe relaxation rate is ObSCfycd. Including the diffusion, wc havc 

(15.21) 

the solid lines in Fig.15.13 represents the predietion of Eq.[15.21]. Perfeet agreement is 

obtained. 

15.3.3 Computer simulation 

In order to team abont thc limits of the Rouse model, recently a dctailed quantitative 

comparison of molecular dynamics (MD) computer simulations on a 100 C-atom 

polyethylene chain (PE) with NSE experiments on PE chains of similar molecular weight has 

been perfonned. BOlh, thc experiment alld the simulation werc carried out at T = 509K. 

Simulations were undcrtakcll, both for an explicit (ea) as weil as for an uni ted (Ila) atom 

model. In the latter the H-atollls are not explicitly taken into accOllllt but reinscrtcd when 

calculating the dynamic structure factor. The potential parameters for the MD-simulation 

were either based Oll quanhll11 chemical calculations or taken from literalure. No adjusting 

parameter was introduced. Fig.15.14 compares the results from the MD-simulation (solid and 

broken lines) with the NSE-spectra. The time axis thereby is scaled with the centre of mass 

diffusion coefficient, in order to correct for the slightly different overall time seal es of 

experimcnt and simulation. From Fig.15 .14 quantitative agreement betwcen both results is 

evident. Fig.15.15 compares the same experimcntal data, which agreed quantitatively with the 

simulations with a best fit 10 the Rouse model (Eq.[15.17]. Here a good deseription is 

observed for small Q-values (Q SO. 14A"'), while at lligher Q important deviations appeal". 

Similarly also the simulations cannot be fit in detail with a Rouse structure factor. 
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Figure 15.14: NSE dala from PE melis vs. compuler simulalions (see lexI). 
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Figure 15.15: NSE dala from PE melis in comparison 10 a best fit wilh Ihe Rouse model 
(see lext). 
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Having obtaincd vcry good agreement bctween experiment and simulation, thc simulations 

which contain complete infonnation ab out Ihe atomic trajcctorics may be furlhe!' exploited, in 

order 10 rationalize the origin for Ihe discrepancies with Ihe Rouse model. A number cf 

deviations evolve. 

I. According to the Rouse model the mode correlators (Eq.(l5.13] should deeay in a single 

exponential fashion. A dircct evaluation from the atomic trajectorics shows tllat the 3 

contributing Rouse müdes decay with stretchcd cxponentials displaying stretching 

exponents ß of (J:ß~ 0.96 alld 2,3:ß ~ 0.86) 

2. A detailed serutiny ofthe GallSsiall ass\nnption (see e.g. (Eq.[15.16] and [15.17]) reveals 

11131 for t < IR deviations Deeur. 

3. While the Rouse model predicts a linear time evolution of the mean squared centre of 

mass coordinate (Eq.(l5.17]), within the time window of the simulation (I < 911s) a 

sub linear diffusion in form of a slretched exponential wilh Ihe stretching exponent of 

ß = 0.83 is found. A dctailed inspection of the lime dependent mean squarcd amplitudes 

revcals Ihat Ihc sublinear diffusion mainly originales from motians al shart timcs t < TR = 

2ns. 

The predietion of a time dependent eentre of mass diffusion eoeffieient has reeently been 

earroborated by NSE-experiments on short ehain polybutadienes. Fig.15.16 displays the mean 

square eentre of mass displaeemcnt from simulation compared 10 the same quantity obtained 

from the dynamie stmcture factor at various Q~values. Both the simulation as weil as the 

experimental data consistently lead to a weaker than linear time dependence of the mean 

square eentre of mass displaeement. 

The overall pieture emerging from Ihis eombined simulational and experimental cffort is, that 

for ehains, whieh should be ideal Rouse ehains, the model is eapable of quantitatively 

deseribing the behaviour only on time seales of the order of the Rouse time or larger and 

therefare on length seales of the order of the radius of gyration of the chains or larger and in 

the regime, where the chains aehmlly show Fickian diffusion. Tbe self diffusion behaviour far 

times smaller than the Rouse time and Ihe relaxation oflhe interna I modes oflhe ehains show 
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small hut systematie deviations from the Rouse prediction. The origin of these discrepancies 

are traced to interchain interactions. 
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Figure 15.16: Mean square center ofmass displacement for PB chaills in lhe melt obtained 

from (I" (t)) = - ~, CII S (Q,t). Solid line: simulation resull; dashed line 

(r'(t)) =D,t, 

15.4 Topologieal inter.clions - Reptalion 

The rcptation model of de Gennes, Doi and Edwards proeceds from the intuitive concept tllat 

the motions of a ehain in a melt are heavily impeded in directions lateral 10 Iheir own profile 

by the other chains encircling them. rhe dominant diffusive motion proceeds along Ihe chain 

profile. A chain twists and turns Ihrough a melt like a snake. rhe lateral restrictions are 

mode lied by a tube with a diameter d, parallel to the ehain profile, whereby d relates to the 

plateau modulus of the melt. The restrictions of the motion through other ehains are not 

effective on a monomer sc ale, hut rather permits lateral excursiolls on intcnnediate Icngth 

seales (d E! 50 .... 1). The experimental observations for viseosity and diffusion ean be made 

direct1y comprehensible in this simple intuitive model. 

As it cOllcerns the motion of an individual polymer, large scale lateral diffusion is qucnched 

du ring the life time Td of the tube constrains. Initially for short times the chain relaxes 

according to the Rouse picture until the mean square displacement reaches ab out the tube 
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diameter d. At timt time (r..J thc chain has explored the lateral confinement TI' == N{ IV; with 
Jr 

(d] = Ne( 2). Far longer limes t S'R the Rouse müdes relax along the tube (loeal reptation). 

Thereafler longitudinal ereep govcrned by the Rouse diffusion coefficient DR along the hlbe 

dominates. This process takes place until the chain has Icft its original confincmcnt at a time 

Td = ~ N J 
• Bcyond timt time namlal diffusion takes aver. 

IV 

Far the mcall square segment dis placement thc rcptation mcchanism invokcs a sequcnce of 

power laws in the time variable. Für sho!"t times I < Te Rouse motion prevails and I1r2 er.. [112 

holds. Then in the regime of loeal rcptation we deal with Rouse modes occurring along a 

contorted Gaussian tube. Thc segment displaeement along the tube follows a (Ill law, in real 

space considering the random walk nature of thc tube, this transfonns to a t
l 14 law. After a11 

Rouse modes have relaxed, Rouse diffusion along the contortcd tube takes place. A similar 

argument as before leads to apower law /j,r
2 oc 11

/
2 and only for times longer than Td, the 

Iifetime of the tube eonstraints, /j,/,2 oc t holds. 

The tube constraints also provoke a strong retardation for the single chain relaxations causing 

a ne ar plateau regime in the time dependen! single chain correlation function. Neglecting thc 

initial free Rouse process de Genues has formulated a tractable expression for the dynamic 

structure factor which is valid for t > Te, Le. onee eonfinement effects become important. In 

the large Q limit the dynamic slllleture faetor assumes the form 

:~g:~~ = {I-CXP [-(~dn} exp(tlr, ) elfe (,ß;) (15.22) 

+ ~, exp [_(Qd)'J L~ exp (-I/'tlfd ) 

" 6 fI,J1 11 

For shorl times S(Q,t) deeays mainly duc to local reptation (first term), while for Jonger times 

(and low Q) the seeond term reslllting from the creep motion dominates. The two time seal es 

are given by 
36 

~ =---
, JVt'Q' 

Sinee the ratio of these time seal es is 

proportional to N3 for long chains at intennediate times Te < t < Td a pronoullced plateau in 
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S(Q,tJ is prcdictcd. Such a plateau is a signature for confined motion and rclates not only to 

the reptation concept. Besides thc reptation model also other cntanglemcnt models have beeil 

broad forward . We discllss them briefly by catcgories. 

I. In generalized Rouse modcls, the effect of topological hindrance is described by a 

memory function. In the border liue case of long chains the dynamic structure factor cau 

be explicitly calculated in the time domain of the NSE experiment. In this class fall 

entanglement models by Ronca, Hess, Chaterjee anel Loring. 

2. Rubber like models take entanglements literally as temporary cross links. Such an 

approach has been brought forward recently by des Cloiseaux. He assumes that the 

entanglement points bctween chains are fixed as in a rubber anel that tlllder lhe boundary 

condilion of fixed entanglcments Ihe chaills perform Rouse motion. This rubber like 

model is conceptually closest 10 thc idea of a tcmporary network. 

3. Recently in a mode coupling approach a microseopie theory describing the polymer 

motion in cntangled melts has been devcloped. While these theories describe weil thc 

different time regimes for segmental motion, unfortunatcly as a consequence of the 

neccssary approximations up to now a dynamic structure factor could not yct been 

derived, 

15,4.1 Expcrimcntalobservations 

Fig.15 .17 presents measurements on aitemating polyethylene propylene copolymer melts at 

496K, The dynamie stmetllre faetors are ploued linearly against time and qualitatively obey 

the expectation set by the reptation or other confinemellt models. For short times S(Q,t) shows 

fast relaxation wh ich is transformed into a slightly sloping plateau above ab out 15ns. The 

broken line demoI1strates the expected relaxation in the Rouse model. 
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Figure 15.17: Dyn.mic stl1lcture factor of a PEP melt for different Q-values. Solid lines: 
Ronea model; dashcd line: Rouse model at the lat'gest Q-value. 

In Fig.15.18 the same data are plotted versus the scaling variable of the Rouse model 

(Eq.[15.20)). In contrast to Fig.15.12 the sealed data da not follow a eommon enrve but arc 

ratiler split into Q dcpendent branches after an initial COinmon course. This splitting is a 

consequence of thc existcIlcC of a dynamic length scale which invalidatcs the Rouse scaling 

properties. \Ve note, that this Icngth is of purely dynamical character and cannat bc obscrvcd 

in static experiments. In order to distinguish between different models measurements up to 

Fourier times 3 cr 4 times large!" than Te are not enough. Here, the recent development of an 

ultra high resolution NSE spcctrometer (IN 15 at the ILL in Grenoble opened new ground in 

pushing the time limit ofNSE up to about 200ns). 

Fig.15.19 displays recent experimental results on a polyethylene melt (Mw ~ 36.000) whieh 

were earried over a time regime of 17011s. The data are eompared with the dynamie stmeture 

faetors of the reptation model as weil as the models of de Cloizeaux and Ronea. It is apparent 

that these data clearly favour the reptation model which appears to be the only so far existing 

model yielding a dynamic stmcture factor wh ich is in quantitative agreement with this NSE 

data. The model of Ronea produees a plateau which is too flat. From Fig.15.19 it is also 

apparent that the Rubber like model of de Cloizeaux leads to an inconsistent Q dependellce 

wh ich is most apparent at the leuger Q va lues. We note that the fits were preformed varying 
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only one single parameter, the tube diameter d, while Ihe ROllse rale was delcrmined from 

carlicr NSE data taken at short times. \Vilh this one parameter il is possible 10 aehieve 

quantitat ive agreement both with respcct to the Q and the timc dependencc of the dYllamic 

stnlCture fuctor. 
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Figure 15.18: Data from Fig.15 .17 in a scaling represelltation as a fact oflhe ROllse variable 
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Figure 15.19: NSE da ta from PE mells al 509K compared 10 various models. 
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Finally, OIlC may test whcthcr only loeal rcptation 01' also Ihe creep motion along Ihe tube is 

important on Ihis experimental time scale. Local reptatioll corresponds 10 1i.f = co and indeed 

(Fig.15.19) at low Q a diffcrcncc between loeal reptation only and the global rcptation 

Illcchanism appears 10 bccomc distinguishablc indicating Ihe prescnce of Til. Here fulure 

experimental work will havc 10 set in. As it stands NSE spcctroscopy accessing quantitatively 

Ihe dynamic sll1Icture factor has by naw seen clear and unambiguolls signature of replation in 

a flexible linear polymer chain. The data cover a region of the time domai11 where replation is 

in principlc applicable. Comparcd with other phcnomenological approaches reptation is by 

!lOW Ihe only approach providing a eonsistcnl deseription of all NSE data. It implies that 

reptation mus! emerge from any sueeessful mieroseopie thcory ofpolYl1lcr relaxation. 

15.5 Summar)' 

High rcsolution ncutron spcetroscopy pcrl1lils to acccss thc molccular Illotions simultancously 

in spaec and time. Reslrieting itself to the dyn ami es of hOlllopolymcrs melts this lechire 

attempted to transmit a flavour of wltat can be achieved in partielliar by NSE. Choosing 

diffcrcnt timc and length scales, wc eovcred the range of molecular motions, eommcllcing al 

thc sealc ofa fcw bonds to large sealc motions reaehing thc scale ofthe eIltire chain. 

In the regime of the 'elassieal relaxations' of polymers ncutron spcetroseopy infol111S on the 

gcometrieal evolution of the motions in question. We have seen, that the a-relaxation may bc 

understood as a sub linear diffusion proeess whilc the P.relaxation is in good agreement with a 

IDeal jump proeess of a fcw angstrom distances. Both proccsses may bc considcrcd with good 

approximation as statistieally indcpendent. At seales where the dctailed ehcmieal structure of 

thc monomcrs eeases 10 bc of importanee, NSE mensurelllents have by and large eonfirmed 

the predietions of the entrapy govemed Rouse dynamics both far the self and the pair 

cOlTelation function. Rcccntly, an in depth eomparison of specially dcsigned NSE 

experiments with computer simulation also pointcd out the limits of this approach. 

The dynamies of polymer melts under thc influenee of (opologieal interactions whieh rcsult 

frol11 the mutually inlerpenetrating ehains poses high dClllands both concephmlly and also 

experimentally. NSE experiments on the single chain dynamic stmctmc faetor of long ehain 

metts, established cxperimentally the essential prcdietion of loeal reptation namely the hlbc 
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confinemcnt of Ihe relaxation of large senle Rouse modes. Prescntly there exists uo other 

theOl·y providing adynamie struehlrc faelor, wh ich is in agreemcnt with this data. 
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16.1 Intl'ocluction 

Magnctism. is a very active and eh allen ging subject of solid statc seicnee since it represents a 

typical many-body problem und a complex application cf quantum-mechanics, statistical 

physics and electromagnetislll. During the last decades, new discoveries have emerged in this 

fjeld duc 10 the synthesis of oew c1asses of magnetic materials, duc 10 improved or new 

powclful techniqucs or duc 10 advanccmcnts in solid state theory. Let lIS mention a fe\\' 

examples of materials of current interest: the high temperature superconductors and the co los­

sal magncto-resistance manganite compounds, both of wh ich have structures derived from lhe 

perovskite stmcture, thc rare-earth nickel-bont carbide cOlnpounds with a coexistence of 

magnetism and superconductivity, the large cl ass of Kondo systems and heavy fermion corn· 

pounds, spin g lasses and spin liquids er new and rather complex hard magnetic matCl;als, just 

to mention a few. Besides bulk materials, magnetism of thin films and surfaces became a 

lapic of great cutTent intcrest, mainly duc 10 the improved preparation techniques. Dtiven by 

pure curiasity, scientists have discovcrcd many fundamental effects of thin film devices, such 

as the oscillating interlaycr coupling or the giant magneto·resistanee effects. Within less than 

ten years from their initial discovery, these effccts found their applications for example in 

read hcads of computer hard disks. A promising new fjeld of application emerges, so-ca lied 

magneto-electronies with spin transistors 01' magnetie random access memories MROM. This 

should serve us as an excellent example, how cmiosity driven fundamental research can find 

new applications of an effect known since 2500 years (lhe discovery of the magnetism of 

magnetite) wh ich are able to change our modern life. This progress is largely due to new 

experimental methods and again we just want to rnention a few: developmcnts in thc field of 

polarised neutron seatteting, such as the 3He-polarisation filter 01' zero-field neutron pola· 

rimetry, lhe developmenl of the spin resonance techniques, resonant nuclear scattering of syn­

chrotron radiation er magnetic x~ray diffraction. Finally, all this cxpetimental progress would 

be in vain without the improvements of the theory, which providc lIS with a deeper under­

standing of correlated electron systems. Probably the most powerful tcchnique that has 

emerged duting the last years is the density fUllctional theory which allows olle to calculate 
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Ihe ground state of metallic magnets. Numerieal methods such as Monte-earlo simulation 

allows us to test models of eomplex disordercd magnetic systems. 

After having motivated the interest in solid state magnetism, let lIS come back to the basic 

magnetic properties. Quite generally, a magnetic system ean be descIibed by its magnetisa­

tion, whieh denotes the total magnetic moment per unit volume. Thc magnetisation of a 

sampie call vary in space and time: MCr,t). The magnetisation is coupled 10 the eonjugate 

magnetie field lHr.t) . If the excitation H is very smalI, the response will, to a good approxi­

mation, be linear. In the framework of this linear response theory, we can define a magnetic 

susceptibility X by: 

Here, X is written as a tensor to desctibe anisotropie magnetie response. In isotropic 

systems, M will align parallel to Hand X reduces 10 a senlar quantity. More generally, for a 

spatially and temporally varying magnetie neid, \Ve can write: 

Mk,I) = ffd 3 r'dt'X~ - (,I - I) H~',I') (16.2) 

Every material shows a magnetie response. Most materials are diamagnetic with a negative 

susceptibility X, which expresses Lenz's rule that the induced magnetisation M is anti-parallel 

10 Ihe magnetic fjeld H. Of greater interest are materials, in which X is positive. Here, two 

c1asses of materials have to be distinguished: localised electron systems (e. g. ionic com­

pounds) and itinerant electron systems (metals). Localised electron systcms with X> 0 have 

open shells with unpaired elec trons. Spin- S, orbital- L, and total- angular momentum J for (he 

frce ion arc determined by Hund's mies. These values can be modified by solid state effects 

such as the crystalline fjeld or spin transfer into covalent bonds. In itinerant electron systems, 

the conduction electrons carry the magnetic moment. Within a simple band picture, 

magnetism ar;ses from an unequal population of spin-up and spin-down bands. At elevated 

temperatures, systems with X > 0 show paramagnetic behaviolll' with strongly fluctu 8ting 

magnetic moments. As the lemperatlll'e is lowcred interaction between the moments becornes 

more and more important. In general magnetic dipole-dipole interactions play only a minor 
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roJe, compared 10 the strenger exchange inleractions, which rcsult from Coulomb illtcractioll 

and the Puuli principle. In ionic compounds, we observe dirccl exchange. jf the orbitals of (wo 

magnetic ions overlap 01' super-exchange and double exchange, if the interaction is mediated 

via an intervening anion. In itinerant electron systems, Ihe interaction is mediated by the 

conduclion electrons and has an oscillating character. This indirect coupling of magnetic 

moments by conduction clectrons is referred 10 (he Rudctmann-Kittcl-Kasaya-Yosida 

(RKKY) interaction. If the energy equivalenl kT is in the order of the interaction cnergy, a 

phase transition from the paramagnctic high temperature state 10 a magnetically lang-range 

ordered low temperature state call eventually take pi ace. Systems with spontaneous 

macroscopic magnetisations such as ferromagnets (FM) and ferrimagnets have to be 

distinguished from antiferromagnets (AF), for which the zero-fjeld magnetisation vanishes. 

The microscopic arrangement of spin- and orbital- magnetic moments, the so-called magnetic 

structure, can be rather complex, especially in the ease of antifeo·omagnets. 

Neutron scattering is a most powerful technique far the investigation of magnetism duc to the 

magnetic dipole interaetion between the magnetic moments of the electrons in the sam pie and 

the nuclear magnetie moment of the neutron. \Ve have seen in chapter 3 that for elastic 

events, the neutron seattedng eross section is directly relatcd 10 the Fourier transfollll of the 

magnetic moment density distribution. For the inelastic case, one can show that the double 

differential cross section far magnetic neutron scattering is connected with the most 

fundamental quantity, the Fouder transform of the linear response function 01' susceptibility 

(16.2) X(r,t) in microscopic space and time variables rand I, respectively. In contrast to 

macroscopic methods it allows one 10 study magnetic structures, fluctuations and excitations 

with a spatial and energy resolution weIl adapted 10 alomic dimensions. Traditionally neutron 

scattering is the method to study magnetism on an atomic level, only recently complemcnted 

by the new technique of magnetic x-ray scattering. 

In what folIows, we will give a fcw examples for applications of neutron scattering in 

magnetism. Obviously it is completely impossible to give an representative overview within 

the limited time, nor is it possible to reproduce the full fonnalism. Therefore we will just 

quote a few results and concentrate on the most simple examplcs. Even so polarisation 

analysis expclimcnts are ext remely impol1ant in the field, we will not discuss these rather 

complex expeliments and refer to chapter 4. 
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Fig. 16.1: Same examples of magnetic structures: (I) The collillear Gntijerromaglletic struc­

lure 0/ MIIF2. The spill momellfs al ,he corners 0/ file tetragonal unit cell point alollg tiie c­

directioll, the spill momellf i" file celllre of fhe imit cell is Glltiparallel 10 fhe moments at fhe 

corners. b) The MuO-type magnetic strltc/ure Oll a fee falliee. Spins withill 1 J 1 planes are 

parallel, adjacellt planes are cOllp/ed alll/jerromaglletically. c) The spill dellsity wave 0/ 

chromilll1l, whie/! eall be described by (In amplitude variation alollg Olle o/rlle c/lbic 001 axis. 

The spill densi!y wave can be IOllgilll(/illal 0" transversally polarised. d) Schematic represell­

tation 01 fhe magnetic structures 01 fhe hexagonal rare-ear/h metals. SpillS ill fhe hexagonal 

basal plane are always parallel. The figure shows, hoU' sllccessive planes along file c-direc­

!ions are cOllpled. Olle can dis/inguish a simple lerromagnetic phase, a c-axis modulated 

phase, helix and cone phases. bl reality, tlle magnelic structures are much more complex wifll 

Spill slip or 11l11lti-k slructures. Arecent review is give1/ by {1}. 
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16.2 lVlagnetic Structure Determination 

As mentioned in the introduetioll , the magnetie st rueture of a substanee exhibiting magnetie 

long range order ean bc very complex. In general a magnetic stmcture ean be deseribed by its 

Fourier-components in the [Olm 

~I .J ;;; L~!j .exp(- iQ' EI) 
~ 

(16.3) 

where !1!1 . j denotes the moment of atom j in cell land 9 is the so called magnetic propagation 

veetor. Some examples for magnetic structures are given in figure 16.1. 

Magnetic neutron scattering is the c1assical methad to determine magnetie structures. As 

neutral particles, neutrons penetrate deep inta most materials and allow 10 study bulk proper­

ties. Thermal neut rons have wavelenglhs in thc vicinity of 1 A, which is weH adapled to 

studies with atomic resolution. Neutrons carry a magnetic dipole moment 

t!..fI ;::; -YJ.l,v . Q. (16.4) 

with the gyromaglletic ratio y;::; -1.913 of the neutron and the Buclear magneton 

~lN ;;; 5.051.10-27 J /T. This magnetic moment of the neutron can interact with lhe magnetic 

fi eld ereated by the spin 01' orbital angular momcntmn of llnpaired elec trons within the solid, 

see chapter 3. If we restriet ourselves to elastic scattering of llnpolarised neutrons, the purely 

magnetic scattering cross section is given by 

(I 6.5) 

with yro = 2.696 fm . M.l (g) is the component of the Fourier trans fenn of the sampie mag-
2 

netisation perpendicular to the scatteIing vector. s'(Q) and ,k(Q) are the Fourier trallsform of 

the spin~ and orbital- angular momentum density, respectively. Thc index .1 denotes the 

cornpollent of the con'csponding quantity perpendicular to the scattering vecter. Neutrons 
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only "see" this component and not the component of the magnetisation along the scattering 

vector Q (compare chapter 3). This directional dependence allows one to determine the spin 

direetion, while the magnetie propagation veetor ean be detcrnlincd from the position of the 

magnetie Bragg reflections. Finally, the magnitude of the magnelie moment ean be 

detetmined by eomparing the intensities of the magnetie Bragg refleetions with the intensities 

of nuclear rcflections. The scattering amplitude of neutrons by a single fixed nueleus is given 

by the scattcring lengths tabu la ted in [2]. As an example, the scattering length for cobalt 

amounts to 2.49 fm, which is eomparable to the equivalent magnetie scattering amplitude for 

spin;::; 1/2 of 2.696 fm. The formalism far magnetie neutron scattering is detailed by Squires 

[3] and Lovesey [4], the determination of magnetie struetures is deseribed by Rossat-Mignod 

[5]. 

Here we want to disellss lhe most simple example, the determination of the magnetie strueture 

of MnF2. For simplieity, we will neglect the scattering of thc fluorine atoms completely. 

Then our problem redllces to magnetie Bragg diffraction from a tetragonal bady centred 

antiferromagnet. In the so called antiferromagnetic order of type I, shown in figure 16.2, all 

spins at the corners of the unit cell are parallel, while the spin in the cent re is anti-parallel to 

the spins at the corners. \Ve assume that due to same anisotropy, e.g. Ihe crystal field effeets, 

all moments are aligned along ±c. 

s 

Fig. 16.2: Maglletic struClllre 01 a type / alltiferromagnet Oll a body~celltred tetragonal 

lattice. /11 the jig/lre is assllmed that c is the easy axis, i.e. al! spills are aligned 

alollg c. 
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The scaltering power density cao bc calculated as a convolution of an infinite threc 

dimensional lauiee, which descIibes the position of the origin of all unit cells, with Ihe 

senttering power density of a pair of atoms located at the origin ,md at the cent re of the unH 

eell. Therefore, whcn calculating the scattered intensity as the Fourier transform of the 

scatteIing power densilY, it i8 given as a product of the Fourier transfOfm of thc lattice and the 

FOluier transfonn of the scattetillg power density of a pair of atol11s. Thc Fourier transform of 

Ihe lattice is the weil known Laue function (compare chapter 3). It gives lise to the Bragg 

reflections at integer h, k, I. The intensity of these Bragg reflcctions is being modulated by the 

Fomler transfonn of the scattering power density within the unit cell (hefe of the atom pair), 

the so called elastic struclUre factar. The stl1lcture factor for the pure nuclear scattering is 

givcn by: 

h + k +1 

h + k+1 

/ll/even 

even 

(16.6) 

The body centring givcs lise to an extinction of all feflections with index h+k+1 uncven, while 

all rcflections wilh h+k+1 even have Ihe same intensity. In complete analogy to (16.6), the 

magnetic structure faetor ean be ca1culated. We only have to take into accOtnlt that the spin 

direction in the cent re is oppositc to the spin directions at the COl11crs , which can bc described 

by a different sign for the two spins: 

21Q"(Jt . .!..A:..!... '.!) 
S",(h,k,l) =r, l~fm S(l - e 2 2 2) 

{
2Y r f S 

=Y"r
o
f",S(l-( - 1)htHI) = 0" (} m 

h + k + I //1/evell. 

h + k + J even 

(16.7) 

The magnetic stmcture is "anti body centred": all renechons with indcx h+k+l cven vanish, 

while reflections with h+k+1 uncven are present. In the diffraction pattern, a magnetic Bragg 

reflection appears right between two nuclear ones. The intensity of the magnetic reflections 

decreases with increasing moment um transfer duc to the magnetic form factor (see chapter 3), 

while the Huclear refleclions have constant intensity, if we neglect the temperature factor - see 

figure 16.3. 
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Fie. 16.3: Schematic plot 0/ a neutron diffraclioll diagram Jo,. 'he fllltiferromagll et 0/ fig. 
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representative Jor the scattered imensit)'. 

We can determinc the direction of the magnetie moments with the help of the dircctional 

facter in eq. (L6.5). If Olle measures along the tetragonal a or b directions, olle oblnins Ihe 

magnetie Bragg reflcctions of figllre 16.3 a. Howcver, if olle measures along c, ~ 11 Q IlOlds, 

i.e. all magnetie refleclions of type 0 0 I are extinct and one oblains the diffraction pattem 

depicted in figure 16.3 b. In this simple case, olle can directly deduce the spin direction along 

c [rom the ext inction of the 001 refl ections. Finally olle can obtain the magnitude of the spin 

moment by comparing the intensities of the magnetic Bragg reflections with the intensities of 

the nuclear ones. 

16.3 Magnetic Form Factors; Magnetisation Densities 

Für the magnetic structure determination we used a predetermined form factor, e.g. from 

Hartrec-Fock calculalions of electronic wave functions for the free atom [6]. Each atOlnic si te 

was charactetised by just one integral vmiable , the atOlnic magnetic moment. A scattering 

experiment can, however, give much more information, if sufficicnt Fourier components can 

be measured. We can then oblain the magnetisation density within each atom. which will 

show deviations from the density of the ffee atom duc to solid state effects. Magnetisation 

density can be transfen-ed 10 neighbouring atoms by covalent bonds. In metallic magnetic 

systems, the "magnetic" electrons are itinerant and the magncti sation density is strongly de­

localised. We leamed in chapter 3 tImt the magnetic fonn factor is the Fourier transfOlm of 
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Ihe magnetisation density of OIlC atom. Thercfore magnetic r0I111 faelOf Illcasurements give lIS 

allthe important information abau! such solid state effects. 

Ta iIIustrate the kind of information we can oblnin from slich measuremcnts let us quote some 

recent studies of high temperature superconductors cr molecular magncts. There are theories 

of high temperature superconductivity, whieh propose a magnetic coupling mcchanism for Ihe 

Cooper-pairs. While no long range ordercd magnetic structure is observed in lhe super­

conducting state, dynamic magnetic fluctuations have been searched for with neutron 

scatteIing [7,8]. If ane wnnls 10 deteet, which atomic sites are slIsceptible 10 magnetism, OIlC 

can study the magnclisation dcnsity induccd in the material by an extemal magnetic field [9). 

Molecular magnels are another active field of current interest, due to their very high potential 

far applications, but also due 10 fundamental intercst. These are organic compounds, where 

the magnetism is not due to intra-atOlnic exchange ("Hund's rules"), as in the case of 3d or 4f 

meta I ions, but duc 10 the specific arrangement of bonds. The rnagnetisation density is 

distributed over many atomic sites. A neutron study of it's distribution can give us insight to 

the mechanism giving rise to the magnetic coupling and thus guidc us in the search for new, 

optimised materials [10]. 

The most efficient way to measure weak magnetic signals is to lIse the interference between 

magnetic and nuclear scatlering. Using this intefference effect, we can even detennine the 

phase of the magnetic structure factors, in addition to their magnitude. In this special case \VC 

have then solved the phase problem of crystallography. 

We have lcull1ed in chapter 4 timt this interfefence term can only be measured with polarised 

neutrons and cancels for unpolarised neutron diffraction . An interfcrence between nuclenr 

and magnetic scattering can only occur, if both types of scattering are allowed, Le. the 

interference cun only appear in the "non-spin f1ip" channel, if the nuclear as weil as the 

magnetic structure factor are 11011- vanishing. To maxi mise the magnetic signal, one chooses a 

diffraction geometry as in figure 16.4, for which the magnetisation is perpendicular to the 

diffraction plane. This condition can be enforced by applying a strong magnetic field along 

this direction. 
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Fig. 16.4: Scatterillg geometl)' for measllrillg fhe imel!erellce term benveell lIuclear- and 

maglletic scaltel'ing wifll polarised neutrons, but witho/l( polarisation analysis. 

The relevant cross sections 10 measure Ihe interference tenn in this geometry are: 

(da) =lb(Q)- r"'~ M(Qf =b' -2 r,l~ bM +(r"'~) ' M' 
dQ H 2118 1 t 21l a 21l s 

(16.8) 

b,M real 

(16.9) 

Besides lhe magnitude square of the amplitude for nuclcar- and magnctic- scattcling, 

respectively, these cross sections contain olle tenn, in which a producI of the magnetic- and 

nuclear- amplitudes appears. This intcrference term is espccially useful, if the amplitude of 

magnetic scattering is much smaller than the amplitude of nuclear scatteling: 

(16.10) 

This is for example the case, if an extcmal magnetic field induces a weak magnetisation in the 

paramagnetie state, wlten the ration between magnetic- and nllclear- amplitude is often below 

10.3
. This implies that the contribution from magnetie seattering to the total signal is in the 

order of 10.6 or less. and thus no longer measurable. However. if we take data in two 

measurements, ollee with the neutron polarisation parallel and onee anti-parallel to the 

magnetic field, we ean detennine the so-ealledjlippillg ratio: 
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(16.11) 

Note thai the polarisation of the scattered beam is known apriori (only non-spin flip 

processes can occur), so thai thc experiment is being done with a polarised bcam, hut without 

polarisation analysis . The flipping ration (16.11) depends linearly on thc magnetie structure 

facto!", instcad of quadratic as the scattered intensity. Therefore much sm aller values of the 

magnelie structure factor call be determincd. ]f rhe nuclenr structure faClor is known (e.g. 

from a prior neutron diffraclion experiment), these mcasurements of thc flipping ratio give 

access 10 a highly preeise detclmination of Ihc phase and magnitude of the magnetie siruclure 

factor. 

An example is given by the measurement of the form factor of chromium. CI' is thc 

archetypal itinerant antiferromagnet. Therefore the magnetisation density is very dc­

localised. As a consequence, Ihe magnetic form faetor drops extremely rapidly with 

increasing moment um transfer. In arecent synchrotron x-ray experiment, we could 

demonstrate that this form factor is spin only [li). However, in a polariscd neutron 

diffraction experiment we could show [12], timt a magnetisation induced in the paramagnetic 

state by an external magnetic field is much more localised arollnd lhe individual atoms. 

Therefore, the field-induced form faetar deereases much slower, eompare figure 16.6. It has a 

large contribution (60 %) of orbital angular momentum, quite in contrast to lhe form factor in 

the ordered state. Sy means of a Fourier transform or with the so-called Maximulll Elltropy 

Method a magnetisation density disttibution within the unit eell ean be reconstructed 

(compare figure 16.7). Such data are of utmost importance 10 lest and improve modem band 

theories, such as the fuHy relativistic density ftmctiollal theOI)' and thus to obtain a beUer 

understanding of the metallic state. 
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16.4 Magnetie Phase Transitions 

Fig. 16.7: Projecrioll o/rlle 

ind/lced magnet;satioll :/ensit)' 

distribution onlo '"e <110> plane. 

above: Fourier trans/arm 

Befaw: Maximum entropy 

recollstructioll 

Phase transitions can occur bctwecn different magnetic phases as a funetion of various 

thermodynaJnic parameters, slich as magnetic ficld, temperature Of pressure. Hefe we will 

restriet ourselvcs to the most simple ease of a transition from a low temperature ferromagnetic 

(FM) or antifenomagnetic (AF) phase to a high temperature pammagnetic (PM) phase. First, 

we will discuss this phenomenon qualitatively, then introduce the quantitative descriptiol1 and 

finally show just olle example of a neutron diffraction study. 

The magnetic lang range order discussed in section 16.2 ean only be stable, as long as lhe 

thermal energy kilT is sm all enough compared to the exchange interactions giving rise to 

magnetie order. At sufficiently high temperatures, cntropy wins and the magnelie moments 
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nuetuate in spaee and time, A phase transition has occun·ed at a critical tcmperature, ca lied 

Curie lemperature Tc for ferromagnets 01" Nül remperature T,... for antifelTomagnets, from a 

long range ordered state at low temperatures to a paramagnetie high tClllperature phase. The 

two phases are eharaeterised by an order parameter, sueh as the magnctisation for 

fClTomagnets or Ihc sublattice magnetisation for antifelTomagnets. In the paramagnetie phase 

Ihis order parameter vanishes, while in the low temperature phase it inereases towards a 

saturation value, wlten Ihe lemperature is lowcred. Depending on whcther the order 

parameter ehanges discontinuously or eontiIluously ut the eritieal tempcraturc, the phase 

transition is of first· 01' secolld- order, respeel ively. At least far loeal moment systems, the 

magnetie interaetions and moments are st ill present in the paramagnetie phase. Therefore 

above the eritiea) temperalurc, magnetie eorrelations persist. This magnetie shon range order 

nuetuales in time und exlends over regions with eharaeteristie linear dimensions, ealled thc 

correlation lellg/h . When we decrease the temperalure in Ihe paramagnetie phase towards the 

transition temperature, the correlation length inereases. Larger and larger regions develop 

whieh show Sh0l1 range order charaetcristie for the low temperature phase. The larger these 

eOlTelated regions, the sJower lhe fluctuati on-dynamies. At the eritieal tempcrature of a 

seeond order phase transition, the eorrclution length and lhe magnetie suseeptibility diverges, 

while the dynamics exhibilS a critical slowing down. 

Besides the magnetic phase transitions, there exist also structural phase transitions. However, 

experiments on magnetie model systems provided Ihe basis for Dur modem understanding of 

this complex co-operative effeet. Th reason is that magnetie model systems can often be 

described by some very simple Hamiltonian, such as (he Heisenberg (16.12), (he x-y (16.13) 

or the Ising model (16.14), depending whether the system is isotropie, has a strong planar- or 

astrang uniaxial anisotropy, respectively: 

Heisenberg: 

x-y: 

Ising: 

H = ~J;j~; .~ J 
;,J 

H = ~Jij(S"SJ' +S;, Sb. ) 
i,J 

H = LJfjS,~ S j : 
ij 

16-13 

(16.12) 

(16.13) 

(16.14) 



Here, )ij dellotes the exchrmge constant between atoms i and j, Si« is the component a. (=x, y 

or z) of the spin operator ~i of atom i. If the Hamiltonian depends on three- (Heisenberg­

model , 16.12), Iwo- (x-y-model, 16.13) or one- (Ising-model, 16.14) componenls of Ihe spin 

operator, one can define a three-, two- 01' olle dimensional order parameter. Moreover, there 

are crystal st ructures, where the magnet ic atoms are aligned along weil separated chains or 

planes, so that besides the usual thrce dimensional lattice, Ihere exist magnet ic model systems 

in one and two space dimensions. Finally, depcnding on whether the system shows covalent 

or metallic bonding, the exchange interactions can be short- or long ranged, respectively. 

The experimental investigation of continuous (second order) phase transitions in rnany 

magnetic model systems revealed a quite surprising behaviour in a critical region (a 

temperature range around the ordering temperature with a width of by and large 10 % of the 

ordering temperature) elose to the phase transition: independent of the precise nature of the 

system under investigation, the phase transition shows universal behaviour. These 

experimental results laid the foundatiolls for the formulation of a modem theory of second 

order phase transitions, the rellonlutlisalioll grollfJ theOI)'. 

If we define a redllced temperalure as 

T - 1' -r= ___ c 

Tc 
(16.15) 

thell alt relevant thell110dynamical parameters show a powcr-Iaw behaviour elose to the 

second order phase transition: 

specific heat : Clloc T - a (16.16) 

order parameIer (T<T cl: 1Il~(- -r)P (16.17) 

susccptibility: X oc -r -r (16.18) 

correlation length : e oe: T - v (16.19) 

The surprising discovery was that all systems can be elassified into wz;versality c1asses. 

Within a given universality elass, the values or the critical e.\ponents a, ß, y and v are the 
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same and da not depend on the dctniled nature of the system. MOl'cover, the critical 

exponents for a given system are not independent, but fulfil cCI1ain scalillg relations, see e.g. 

[13]. Ta which universalityc)ass a system belangs is detcrmined by three criteria: 

Dimensionality of the order parameter Tl 

Space dimensionality d 

Range of the interactions (long- or Sh0l1 ranged) 

Table 16.1 li sts values of the colieal exponents for same univcrsality classes. 

n I I 2 3 

d 2 3 3 3 

CI. 0 0.106 -0.01 -0.121 

ß 0.125 0.326 0.345 0.367 

Y 1.75 1.238 1.316 1.388 

v I 0.631 0.669 0.707 

Tab. 16.1: Va/ues 01 ,he critieal e.\pOlieIlfS Jor a few 1Illiversalil)' classes accordillg to ( 13 J. 

As an cxmllplc we have selected a rather unusual magnetic phase transition, which tums out 

to be of first order (discol1tinuous) and thus cannot be classified by the above criteria. Let us 

b,iefly discuss 'he AF-PM phase transition of MnS, [14] . 

The magnetic scmiconductor MnS2 orders with the type-lU antiferromagnetic structure Oll the 

fee lattiee with the wave veetor g~(I,1I2,0) (eompare (16.3)). The antiferromagnetie phase 

transition at T N = 48.2 K is found 10 be of first order, quite in contrast to the c1assical 

bchaviour for such a compound. We performed a neutron scattenng study in a search for the 

driving mechanism. Figure 16.8 shows a conlour plot of the magnetic diffuse scattering in the 

(001) plane in the paramagnetic phase abollt 17K above TN. One can c learly sec, how the 

magnetie diffuse seatte,ing is eoneentrated at the positions (1,112,0), (1,312,0), (3/2,1,0) ete, 

where in Ihe long range ordered phase Ihe magnetic Bragg reflections appear. However, a 

eloser examination shows that the positions at which the diffuse scattering is centred, are not 

the rational positions listed above. 
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Figures 16.10 aod 16.11 show Ihe magnetie diffuse neutron scattering of MnS2 al different 

temperatures above TN and thc magnetie Bragg peak al 4.9 K (topmosl figure). \Ve can 

clcarly observe, haw with dccreasing temperature lhe diffuse scatterillg becomes sharper in 

reciprocal space und how Ihe peak intensity increases strongly. I-Iowever, for seans along 

(1 ,k,O) thc diffuse scattcIing is not centred at lhe low temperature Bragg position. while it is 

centred for Ihe perpendicular seans in Ihe (h,k,O) plane. The magnelie short range order is 

"jllcommellsllrtlte" with Ihe lattice. This means that Ihe periodicity obscrved in Ihe diffuse 

magnetie scattering is not juS! a simple rational multiple of Ihe chemical unit cell periodicity. 

Figurc 16.9 shows the temperature variation of the incommensuratc component of the vector 

at which the diffuse scattering is centred. Note the jump characteristi c for a first order 

transition. Figllre 16.9 demonstrates that we can understand the paramagnetic-

antiferromagnetic phase transition in MnS2 as a transition from incommensurate short range 

order to commensurate long range order. Now it is weil established timt such "lock-in­

Iralisitiol1S" are of first order, which explains the unusual behaviour of MnS2. The problem 

remains which interactioll leads to the shift of Ihe diffuse peak as compared to the Bragg 

rcflection. This queslion can be solved with model calculations. such as the ones depicted in 

figure 16.8 [14]. It turns out that an anisotropy tenn in the Hamiltonian can give risc to the 

observed effect. 

Finally we want to show an example for a true "classical" second order transition. the PM-AF 

transition in MnF2. In this case, we have pcrfolllled the measuremcnts with high energy 

synchrotron x-rays duc to the better reciprocal space resolution as compal'ed to neutrons [15]. 

Figurc 16.12 shows., double logarithrnic plot ofthe reduced sllblatticc magnetisatiOIl m (m;;;: 

MlMs• where Ms is the saturation value of the magnetisation) versus the reduces temperature 

t, defined in eg. (16.15). In this plot, the data points nicely line IIp along a straight linc, 

conesponding to apower law behaviour as expected from (16.7). The critical exponent ß of 

the sub~ lattice magnetisation can be obtained to great precision: ß;;;: 0.333 (3), corresponding 

roughly to the exponent expected for an Ising system (n=l, d=3) aeeording to table 16. l. 

However, the calculated and measured value do not qllite coincide, at least to within two 

standard deviations, which demonstrates that the pl'ccise values of the cIitical exponents are 

still not very weil established. 
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16.5 Summary 

We have given a fcw examples of the applications of neutron scattcring in magnetism. \Ve 

have seen how neutrons can be used to investigate the magnetisation dcnsily distribution on 

an atOInic level. Besides the father new technique of magnetic x-my scattering, no other 

method can providc the same infonTIation on magnetic structure and magnetisatiOll density. 

Neutrons are ideally sllited to study magnetie phase transi tions, which are model examples of 

co-operat ive phenomena in many body systems. Unfor1unatcly, we were not able to cover 

other subjects, such as the important field s of magnct ic excitations or thin film magnetisl11. 

Neutron scattering is the tcchnique 10 measure spin wave dispersion relations used to 

detelmine magnetic interaction parameters (exchange interaction, anisotropy) - see chapter on 

exci tations. In itinerant systems, the transition from collective spin wave like excitations to 

single particle Iike "Stoner" excitations could be observed wilh neutrons. Currently, more 

"exolic" cxci tations Me in the centrc of attention, sllch as the "resonance peak" in high 
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tcmperature superconductors, or cxcitations in law dimensional magncis. Finally. thin film 

magnctism is of high cun'enl intcrest duc to il's applications in "magneloelectronics". In Ihis 

field, neutrons provide thc cmeial information aballt the magnetie slructurc and morphology 

of thin film devices, compare chapter Oll rcncclometry. \Vhile we cDuld not give a 

comprehensive review, the JUlich group is activc in all these fjelds .. nd wc refer 10 Dur web 

page [16] for fUl1her information. 
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i'vl. P rager 

17.1 Introduction 

Al Olnic ami lIlolecular motiolls in liquids ami solids are driven by t hc thermal energy of 

t he sam pIe. F luctuatio lls lil a.)' COllcentrale kinetic energy on olle atom, which then is able 

Lo cross a potentia l bal'l'ier illto a new sile. Such transport 01' or ientat ionul jumps acem 

randoml)' anel give ri sc to quasielast ic scattering. 

At lo\\' temperature t hc classical motion dies ou t. on thc t imcscalc of neut ron spec­

trometcrs. Thc (c1assical) potentials are still prcscnt, howcver. T hc)' llO\\' characterise thc 

quantulllmechanical cxcitations of thc lattice objcct: librations and tunnelling. Theories 

tl sed a re mostly single pa rticle or Illean fi eld theories. 

Sy s tudying both, c1nssical quasiclastic scattcr ing aJ1(1 quantu m excita tions a dctailcel 

informa t ion on t he shapc anel t he strcnglh of potent ial barriers ean be obtained sinec neu­

tro n propertics a llow a resolu t ion in spaee anel t.imc. If t he erysta l structurc of a materia l 

is known one ean caleulate t he potentia ls fro m fu ndamental intermoleeular interae lions. 

The cOllecpt of Utrallsferable pai r in teraetions" may fin a Lly allow to prcdie t potent.ials of 

Ilew m aterials. 

Stochastic motions oeem in many mate rials same of which att ract tcchnical interest. 

Hydrogen in metals is used for encrgy storage, microporolls framework strnctures as zc­

oli t hes offer eatalytically active surfaecs , polymers eau aggregate to seeondary structures 

Iike micelIes with someti lllcs teehnically interesting propcrt ics. Ther mix or phase sepa­

rate hy diffusion. Adsorbates, intercalatcs, lIloleeular and liquid crystals, matrix isolated 

species ami liquids may be studicd t his wa)'. 1t was especially t he invent ion of high res­

olution neutron scattering inst ruments (sillCe "-'1972) which gave an impact to this topic 

whieh sti ll holds. 

17.1 .1 Gaussia n a pp roxinlation 

The scattcring fu nction of a rare gas can be calculated exact ly on t he basis of plane W<lVC 

fUllctions and transition matr ix element.s. It happens t.o have thc shape of a Gaussian. 

\ 'V it h ß = -'- alld t hc rccoil energl' E = ~ k BT r 2M 

ß, ß , 
S(Q,w) = (41fH),exP(- 'IE, (hw - E, ) ) (17. 1) 
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Fouriert.ransformat.ion in space and time yields the correlation funetiOlI (Chapt.er 5): 

J 1'2 
Gel

(,. 1.) = (21ro'(t.))-'exp(---) , , . 2,,2(1.) (17.2) 

with 

0'(1.) = t.(t. - iIi ß )fMß (173) 

a 2 is related to the meau square displacemeut. The lheory yiclds the generally va lid 

relation 

(17.4) 

In the gaussian approximation olle uses this relation also für any other translational 01' 

rotational motion dcspitc they have time dependences a(t) different to that of a rare gas. 

The problem is thus l'edueed LO det.el'mine thc Illean seplarc displacement of a dynamieal 

proecss. The justifieatioll of thc gaussian approximation is that it works. 

17.2 Translation 

The simplest translation is that of a rare gas. Hydrogen on illterstitial sites in a metal is 

often treated as a latt.iee gas. Self diffusion elose to t.he mclt.ing point via vaeancies has 

a similar charaetcr. AtOinic liquids represent the simplest examplc für diffusion. But the 

most COlllmon liquids are made up by molecules which show additional rotatiOital dcgrccs 

of freedom. 

17 .2.1 IVlacroscopic diffusion 

Diffusion of a monoatomic liquid obeys macroscopically Fick 's law 

Bn(1:, t.) Dn ' ( ) - -- = vnri Bt -, (17.5) 

with the Ilumbcr dCllsity 11.(1:., t) rv Gs(-r, t) aud thc diffusion const.ant D. For isotropie 

diffusion 

'\7'= ~+ ~~ 
81'2 I' ur 

in spherical coordinates. Gs(l' f L) from (17.2) is a solution of 17.5 if 

d '() - 0 t 
dt 

,,'(t) 

2D 

2Dltl+c 

(17.6) 

(17.7) 

FOt' long times (small cnergy transfer iJ.fiw) c ean bc ncglected ancl Fourier-transformation 

(FT) in spaee and time yields the scatt.ering function 

, 1 DQ' 
S(Q ,w) = 1r{,w' + (DQ')' (17.8) 
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Balll , half widt,h and scattering intensity of this Lorentzian allow adetermination of tbc 

diffusion coeffici cllt D via 

r = 2hDQ' 
1 

S(Q,O) 
7rnDQ'. 

17.2.2 Diffusion, microscopic approach: Langevin equation 

(17.9) 

Far alOlnic distanccs ami short Limes thc aboyc continuum thcory has to bc modified. A 

microseopie model leads to the Langevin equation . A particle of mass lvi in a thermal 

bath is exposed Lo stochastic kicks E(t). After thc kick it is slowcd down by internnJ 

frictioH proportional to its velocity with thc viscosity 1] as proportionality factor. 

M
dJL 

--Bl! + E(t) 
dt 
du 
dt = -IIJL + [(tl (17.10) 

Ta keep thc cnergy of thc system cOllslant thc t\\'o terms Oll the right hand siele are relatcd 

by thc fluctuaiion-dissipation theorem 
2k T 

(I(t)J(O» = i'~ 116(t) (17.11) 

which meaus in woreIs, thai thc stachastic force takes its energy from fl'ictian lasses. 

IllLeg raLion of (17.10) J' ields 

Q(t) = exp( -llt) [ 00 exp(llt')J(t.' )dt' (J 7.12) 

This result is tl sed to calculate the vclocit.y-velocity corrclation funct.ioll. For OllC campo­

nent it is 

(v(t)v(O)) = exp( - llt)([oo dt' 1'00 dtnexp(llt')J (t')e.~p(lll.n)J(I.n» 

= exp(- llt) [ 00 dt' 1'00 dtn(l(t.')J(t.n» e.~p(II(t' - tn) 

amlusing (17.11) (factor 3 for veeLors) 

3kB T 
(Q(t)JL(O» = ----;;Iexp( -llt) (17.13) 

Intcgrating the vclocit.y-vclocity corrclation function yields the mean square displacement 

[11 

(17.14) 
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Figure 17.1: ?\'Icall square displacement ')'(t) of a Gallssian self correlation function far 

thc ideal gas, Fick's (ascil!. ) diffusion, Langevin dynam ics. ror comparison thc ease of 

an atom in asolid is prescnted too. 

Thc fig . 17.1 summarizes the mean square displacements of "ariaus t ranslatiOila l 

ll1otions in Gaussian approximation. \Vc consider the limi ts: 

t » Tr : T hc exponent.ial term can bc neglected. Compared to Fick's la\\' the Langcvin 

equatioJl yields a reta rdat ion of the d iffusion proccss. 

t « T r : having cxpandcd the exponential funct ion olle gets , (tl = ~e. T he mean 

square displacement is proportional ta e (free flighL) likc in thc ideal gas. 

As an cxample we take water [2] . T he fi g.17.2 shows the broadening of the Lorentzian 

with Q 2. From the ini t ial slope one gets the di ffusion cOllstant D = 1.9 . 10~5~;':. 

17.2.3 Jmnp diffus io n on a Bl'ava is lattice 

Difl'usioll in the solid state oceurs in many eases by jumps on interstit ial sites. T haVs 

wh.\' the mobile species can and is called a lattice gas. T he simples t system is hydrogen 

in fee palladium. Hydrogen oceupies octaheclral sites. All sites are equivalent alld form a 

cnbic Bravais latt ice \\' ith Z=6 neighbour sites (fi g. 17.3) . 

At lo\\' concent rat ion a ll neighbour sitcs are empt)'. We call P(r, t) the probabili t)' of 

fi nd.ing a proton at time t on site [. T he change of population is thc d ifl'erence between 
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Figure 17.2: Full width aL ha lf maximulll of thc Lorentzian for water at T=300K. Thc 

diffus ions coefficicnt follows from thc in itia l slope. The best description at large Q is gh'en 

by a jumJ) model witl! a continuous distribution of jump length::;, 

a ll jumps into and out off t hc si te ami is deterlllined by the rate equation 

a 1 z 1 
-a P(r., t.) = -Z L - (P([ + ~k ' t) - P(r., t)) 

t k= l TI.: 
(17.15) 

~k alld TI.: represent.s possiblc jump vecto rs alld residence times connecting the actual 

hydrogen sitc with poss ible Il cighbolll' sites. If a ll sites are equivalcllt there is a unique 

characteristic res idence time T = TI.:. P(r, t) rcpl'esents dircclly t hc cOl'I'elation funcLion 

GAr, t). \Vith t he initial condition 

P(r., 0) = o(r) (17.16) 

the infinite systcln of couplcd d ifferential equations (17.15) is solved by Fourier transfor­

Ill f\tion. FT of with rcspect to space leads to the intermecli f\te scat tering function 

a 1 z 
a/(I1,t) = Zr L (exp(-iQ~d1 (I1,t) - 1(Q, t) ) 

1.- = 1 

(17. 17) 

Thc initial conditions I (Q.. , 0) = 1mcans that the proton cx ists sOlllcwhere in the sampie. 

\ lI/e make the exponent ial ansatz 

with 

t 
1(Q, t) = exp(- f(Q)-) 

- - r 
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Figure 17.3: Left: Ulli t ce ll of fee-Pd (0) with oetahedra l hyd rogen interstit ial siLes (e ). 

Right: octahedral sites in a bcc latticc for comparisoll . 

F T in time yields as scatte ring funct.iolJ a pure Lorentz ian 

1 !J2l 
S(Q w) - T 

- ' - TI' W' + ( f~Q}) , 
(17.20) 

Thc lack of an clast.ic term means\ Lha t t he proton never returns La it.s s tar t ing point. 

The scattcring fun ction of a polyr.;rys ta l is obtained by avcraging over all crys tal ori­

enta t iollS 
1 r 

S(Q , w) = -,-----r' 
- 1f W + 

For SIll f\ 1I momentulll t.ransfers Q~k « 1 OIlC can expand / (9J and obta ins 

, 
r = 2Q'~ = 2Q'D 

6T 

(17.2 1) 

(17.22) 

Thc second relat ion a llows an in terpreta tion of thc macroscopic diffusion cocfficient D of 

(17.5) by thc microscopic jump rate. \Vhilc for 5mall Q the macroscopic behaviour wi l h 

thc Q2 dcpendencc of the Iinewidth is observed the data a t large Q show thc elementa ry 

step of a diffusion process. T he fi g. 17.4 shows rcsults for H ill Pd. 

Transport jum ps a re thermall~t activated and folio\\' an Arrhenil1s law 

(17.23) 

From this relation t.he harrier height betwecH ncighbour sites is obtained from thc tem­

perature dcpendcnce of the linewidth r 'V "* . 
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F'igurc 17.4: Q-dependence of t he quasielast ic linewidth in a PdIJx single cl'ystal in (100) 

lind (110) dircctioll. The data confirm a diffwiion on octahedral interstitia l sites. 

17.2.4 l'vlore cOlllplex eases 

More than olle sublattice 

For bec me Lais (fig. 17.3) , intermetallic compounds er met.all ic glasses OIlC finds non 

equivalent hydrogen sites with different coordinatioll numbers aJl(1 jump rates. In ease 

of bcc lattices protons may occupy octahcdl'al 01' different types of t etrahedral sites. 

The scattering fllllction requires the integration aver thc Illall)' possible diffcrent starting 

configurations. S(Q, w) cOllsists HO\\' of a number of Lorentz ians with different wid t hs 

a lld partl)' rate dependent in tensities [3}. The fonnalisme is more complex hut basically 

idcntical. 

Blocking 

\Vith increasing hydrogen concentration the diffusion changes sinte same jllmp directions 

may be blocked by a hydrogen J1eighbour. ußlocking" leads also to an increased probability 

of back jumps, since the s t.arting s i te is with ccrtainty empty after the jump. 

Phonon-assis ted Thnnelling 

In same eases Ii ke Nb Ho.02 the temperature dependencc of thc diffusion coefficient dcviatcs 

from c1assical behaviour . T he observation of an increased jump rate at low temperature 

lead to thc idea of "phonon-assistccl tunnellingu
: phonons of sui tcd symmetry can in­

crease temporarily the distanc:e betweell thc atoms of the has t lattice which determinc 

the jump balTier. T hc decreased balTier increases t hc probability for quantum mechanical 

tunnelling of t he proton a lld t hus accelera tcs t he d iffusion proccss. 
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Diffusion in the presence of tra ps 

H~'drogcn t raps in a metal la ttiee ean be created by chcmical impuritics. In Cl laltiee 

with traps thc proton dynamics splits in to n IDeal motion around the trap ami a diffusion 

bctween traps. A eorresponding two state model [3] yiclds a seattering fu nebon consisting 

of 2 Lorcnt.zians. At small Q diffusioll 1 at large Q jumps around the trap dominate 

scattering. Sinee jUll1ps around a trap are qualitativei)' ve r~' similar to rota t ions of a 

moleeule arolllld its center of mass the same theOl"Y ean be applicd to get classical j ump 

rates and loeal li brations. 

17.2.5 Librations 

Usually the 3-dimensional potentia l of a proton at. cquilibriulll si te is cxpanded harmon­

icall)' and eompleled by anharmonic terms eonsistent wit h symmet.ry requirclllcnts. It 

det.ennincs its eigcncnergies. Viee versa t.he librat ions allow to deduec thc potcntia l. T his 

information refincs thc potential beyond the purc knowledge of the barrier height obtaincd 

from QNS. 

17.2.6 Tl'anslat ional tunnelling 

At. low tempcratures the proton localises in a pocket of the potential. Ir the barrier 

bctwcen such pocket.s is weak, the proton wavefun cUons of neighbouring pockets overlap 

amI the degeneratc libration al states SpliL into Lunnelling substates. This translation al 

tun nel ling is fOl"mnlly almost equivalent to the rotational tunnclling to be dcscribcd belo\\' . 

NbOo.o(JI Ho.OOI (Fig. 17.5) represents an espccially c1ear casc. Thc oxygen defecl 

distorts the lattice loeally and makes exaetly two hydrogen sites - almost - equivalellt . 

Almost: the presence of the part.icle it.self in one minimum illt.roduces an asymmetry. Thus 

olle has to ealcll late t he scattcring fUIl CtiOIl of an atom in an asymmet.ric double minimum 

[3]. \Vave fun ctions Ware set up from basis functions 101 > aud 110 > wh ich deseribe 

the two possible proton sites. The two configurations ean t ransrorm into each other 

by tunnelling due to a finite tunnel matri x elcmcnt t . The corresponding Schrödinger 

equation HIJI = E \V in matrix form leads to the eigenvalues problem (symmetrie ease 

assumed for simplicit.y!) 

The characteristie polynom yields eigenvalues ~\1 , 2 = ±f .. T hcy are eOllllected with the 

tota lly symmetrie p.igcllvcctorr ~(l) = ~(I 11 0 > + I Ol l » anel the antisymmetric 

cigenvector .!'i(2) ,"~ (I 1, 0 > - I 0, 1 », rcspectivcly. Under the assmnpt.ion of a special 
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shape of the double minimum potential, c.g. [11], 

V(x) = X·I - ax' (17.24) 

olle can relatc the phcnomcllological tunnel mat rix element t. with thc parameters of thc 

potentiaL The obscl' vecl tunnel transition is hw = 2t. T he rull calcula tion yields for a 

polycl'ysta llinc sampie a scattcl'ing functioll 

1 1 r 
Sin, (Q,W) = 2(1 - io(Qd)W; (w _ 2/)' + f' (17.25) 

Hcre F is a complex expression of thc order 1, wh ich takes iuto account the different allel 

tempcrature c1cpcndent. populations of thc tWQ minima in thc asymmet rie potential. T his 

a) 

2 

1 
"§ 
.0 
~o ., 

b) ci 
;;, 

.?'.':4-<C':.;;O~'i--=";O:--'~02:"""""'O~A 
EllffQY (meV ] 

Figurc 17.5: Left : Tunnel spcctwm of 1I trapped b)' 0 in Nb(OH)o.002. T=O. I I<. Inst ru­

ment: IN6, ILL. Top: superconducting) uottom: normal conducting state. 

Right : Possiblc hydrogcn-sitcs araund an oxygcn-defect (. ). Tunnelling can occur betwcen 

each cquivalent sitcs, e.g. o. 

scattering fun ctiOll is almost. identical with that of an 0 - H group which can aSSlllll C tWQ 

equilibriulll orientations. It is more 01' less a semant ic queslion to call a tunnel proccss 

translational or rotat.ional. 

\Vith the outlincd matrix technique it is also possible to ge t t he tun llelling sublevel 

structure of libralional states of more complex potential geometries. 
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17.3 Rotation 

l'dolccules represcnt - in first approximation rigid - ensembles of atoms ami allew rotation 

as new degrce of freedom . In thc simplest approach thc environment is representcd as a 

potential whieh determincs t.he single par t icle excitations. T he potential must show 8t 

least thc symmetry of thc moleeule. - A c1assical motion is rull)' characleri 'lcd by t.he 

motion of a single proton. 

17.3.1 Jump rotation: methyl group in a 3-fold potential 

Often thc rotation al potentia l is rather strong aud forees thc moleeule to 5ta)' most time 

in all cquilibrium oricnlatioll s. The dynamics consists in this ease of jumps betwccn 

cquiva lent orientat.ions. \·Vc ca ll thc atomic positions Lj, the average time between two 

jumps T and neglect thc jump time itself. T hc self corrclatioll fllllct iOll G .s (r., t) is the 

condi tional probability of finding an atom a1. time t at si te r if it was at t.ime t= O at si tc 

[=0. 

G,(r, t) = I: Npj( I)J([ - 1:;) (17.26) 
j = 1 

Pj(t) is lhc occupation probability of sitc j at t imc t . T hc SUIll averages o\'er all possible 

starting condi t iolls = sites of the atom. For uncorrclated jumps thc occupation probabil­

ities obcl' a fini te sys tem of couplcd differential equations, thc so-called rate cqua tiolls 

- p(l.) = - - " 1',(1.) - 1'(t) cl 1(1 ,v ) 
(U' TN,ti ) 

(17.27) 

T he l1rst tenn dcscribes the all possible jumps in to a site, l hc secoll(l the jumps out of 

this sitc. For simplici ty it is assulllcd that all sites sho\\' thc same population and that 

jUIllP times bctwecII any t\\'o sites are idclltical. Thc cO llsidered atom is in thc sam pie: 

(17.28) 

A simple examplc is the methyl grollp. Here N=3 and proton position are.LI ::::; (O,OIO)d , 

r2 =(I ,O,O)d, r:, = (&,:/f, O)d \Vilh the pro tOll protOll <listallec d= 1.76A. \Vilh v = ~ thc 

ra te equation for site ] is 
cl V 11 
- PI = -IIPI + - P'l + -])3 ,/I. 2 2 

(17.29) 

amlll1 .lI1 . with cyclic pcrmutation. The ansatz ([!. = (PI,P'l,]J3)) 

l' = 'lexp(At) (17.30) 
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leads to t.he eigenva luc problem 

T he cigenvalues anel cigcnvectors of t his 3x3 matrix a re 

2 
~\ l = 0; '\2/3 = -3"/1 

ql = ~ (1, 1, 1); ", = ~(1 , (, ,'), q, = ~ (1, ,', c) 
- 3 - 3 ~ 3 

(17.31) 

with phascfactors f = exp(~) and f. ' complex conjugatcd. Initial concl it. ions are cqual 

popul<ttion. Including norma lization yiclds 

1 2 3 
1'1 (I) = :3 + 3cXP( - 2vt ) 

1 
1',(1) = p3(t) = 2(1 - PI (t)) 

(17.32) 

(17.33) 

Far 1. = 00 all sites are indeed cqually populated. The corresponding average proton densit.y 

distribution represents the jump geometry. T hc density distribution is also dynamically 

stahle, since j umps iuto ami out off thc si te are in equ ilibrium. 

Omitting the index at p t hc first term of the self correlation fun ction is for 1:1 

1 
G,(r, t) = J(dp(t.) + 2 (J([ - LI') + J(L - [\3)) (1 - p(t)) (17.34) 

The FT of GsC!:, t) with respcct ta space yields the intermediate scattcring functioll 

1 
[,(Q, t) = 1'(1.) + 3(1 - p(t))A(Q) (17.35) 

Using abbreviations L l 2 = [2 - LI the struclurc faetal' is 

A(Q) = cos(Qrl') + cos(Qr"J + cos(Q1::n) (17.36) 

FT wiLh respccl ta time yields the scaUering fUIl Ct.ioll of a single crystal. It dcpcnds on 

t.he oricntation of thc methyl group, tij, with rcspect ta the scatter ing vecter 9.. 

(17.37) 

In general sampIes are polycrystals. Powder averaging yields 

(17.38) 

with t he Bessel fun ction io{Qd) = .sÜ~qd). 
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1\) = 0 rcprescnts thc totally symllletrie st.ationary solu tion. Thc prefactor of this 

purei)' elastic tenn is called elast.ic incoherent. structurc factol' (EISF). It onl}' dcpends on 

thc jump gcometry and alJows to d iscern between different jump models. T he presence of 

a purely elastic term shows t.hat the jumping atOH! rcmains localized aroulld the molecule 

- in contrast. to translational processes. QU3sieiastic scattering is relat.cd to thc degellcrate 

cigcnvaltlcs A2,3' The two phasc factors l'cpresent c10ckwise aud anticlockwise jumps. Thc 

prcfactor is HOW the inelast.ic incoherent. st.ructure faetor (IISF). It. has its maximum at 

Qd 1"0.1 ~ and t.hus gi\'cs aecess to thc jump distance. The Lorentzian width yields the 

jump rate. 

NIore cOInplex motions 

A transition ta potentials of llighcr multiplicity, e.g. VG, int.roduces different. jump dis-

~ z 
11' 
w 

'" S 
~ 0.1 

U 

~ 
W 

-0.1 0.0 GI 0.. Q4 M 
.t-.,.., (meV] 

Figure 17.6: QNS-spektra (right) and EIS I' (left) of adamantan . Spektrometer: lN5, ILL. 

Inset. , right. : T he lllo1ecule and its rotation axes. 

Solid line: 900 jumps about all G' .. axes. Dashcd: 1200 jumps about all C3 axcs. 

tances and jump times. Correspondingly thc scattering function contains more than one 

Lorent"ian with dinerent IISl's 15, 6). The unhindered motion (multiplicity=oo) allows 

for any orientation. This I'Otationa l diffusion and is charactcrized like in the case of 

translat.ion by a rotat ional diffusion coefficicnt [8]. 

Fig. 17.6 shows quasiclastic spectra of adamantan. Thc large dimensions of thc 
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moleeule allaw a gooel determination of thc EISF in thc accessible Q range. Thus precisc 

conclusiolls on Lhc possible rotations can be drawll. 

Rotational jumps are thcrmally acti\'atcd and abc)' lhe Arrhenius la\\' (17.23). 1/0 = * is called altempt. frequ enc)'. It s inverse is about the t ime rcqui red by lhe atom at 

l'Oom tempcraturc Lo pass the jump distancc. Für a methyl group IJo "" l013sec- l, Thc 

expollcnt ial factor reprcsent.s thc succes rat.e: lhe largcr thc baITier E(I) the rarer a crossing. 

Ir the shape of a potential is given OIlC get.s l ltc potential from thc activation energy Ea . 

It is assumed that lhe potential does not change with tcmpera ture. 

In general a large Q range is required at gooel cllergy resolution to get conclusive 

answcrs. Adamantan (fig. 17.6) is an cxceptionally gooel example. Best sui ted arc 

backscattering instruments. Time-of-ßight spcct rometers suffe!" from a sm all Q-range. 

More complex 3-dimcnsional jump models involvc jump matrices of lligher dimensions 

[6J. 
Possiblc reasons for wrong conclusiolls may oe the oceurrellce of multiple jumps. The 

neut ron distinghuishes oil ly the star ting and the final orientatioll. Double jumps about 

an easy axis may look as a single jump about a high barrier [7]. The scattering funet ion 

is calculated on the assumption of single jumps, howevcr. tvlonte Carlo simulations can 

clarify discrepancies. 

17.3.2 RotatiOllal t unnelling: single pa rticle mode l 

Stochast ic motions take their energy from a thermal bath. At low temperature they die 

out and a c1assical description fails. A quantummeehan ical theory is needed. In quan­

tum mechanics the indistinghuishable protons of a moleeule are connected by a common 

wave function . This introduces coherence effccts. Eigenencrgies of rotation are the so­

callcd librations in the meV regime - similar to harmonie oscillations - and t.he Be\\' law 

energy tUBnclling Illodes in t he J.leV regime. A "packet states" formalisme - deseribed 

in more detail below for methyl groups - givcs a qualitative picture. The moleeule can 

ex ist in three possible orientations 1123 >,1231 > alld 1312 >. Ir t he barrier between 

these orientations is large, Lhe orient at ion al subgroups are decoupled a11(1 moleeules can 

perform almost harmonie oscillations only (threefold degenerate). For lowcr banier the 

orientatiOllal substatcs are eoupled . In quantum mechanicallanguage: the wave functions 

overlap ami the librational st.ates split by tUllnelling. Thus rotational tunnelling is not 

a dynamical evcllt . Onl)' if olle could prepare a system in a GedankclI experiment in a 

single orientatioll it \\'Duld move int.o a Hew ar ientation within a time f. ,....., ...!... TUl1nelling w, 
energics fiw are of the order of peV. l\·lonographs are [4,8, 9]. 
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The Id rotor: solution based on 'fr ee rotor' fUllctions 

The canonical strateg)' diagona lizes the hamiltonian matrix. It is important to chose 

an appropl'iatc set of basis functiolls \4]. 
Thc simplest molccule consists of two atoms and allows two orientat ions in a double 

minimum potent.ial (H2• H20 .. ). T he ease was al ready eO llsidered in the scctiOil "Transla­

Liona l tUlIuelling" . Herc we want to consider a methyl group, the most in tensive)), studied 

system. lt is characterized by it s momentlll11 of incrtia 0 arouud its symmetry axis 0 1' -

equivalcnt.ly - by its rotat ion al eonst.an t. B = ;~. 
An obviolls set of basis func tions are t he free rotor functio lls c.1;p(im!p) . In t he single 

particJc model thc in teraction with t he surrounding is reOccted in a statie rotatiOilal 

potential V. Ta get the Hamiltonian H the kineLic rotational energy ha~ to be added 

H = ~0J' + V 
2 

ft2 (J2 
= - - -+ V 

20 d<p' 
,f' 

(17.39) = - B - +V 
d<p' 

A dimensionless representatioH of the eigenvalue (Schrötlinge!') equation is 

(17.40) 

with t hc sealed rotatiollal potential V' = "* 
N 

V'(<p) = L V{n( 1 - COS(311<p)) (17.<11) 
/1 = 1 

T hc eigenfnllctiollS are expanded into frce rotor fun ctiolls up to t he order 2i\'1+1 

M 

~ = L (lmexp(im!p) (1 7.42) 
111= -,\1 

with eigcnvectors Q. Onl)' n fe\\' matrix elements deviatc from zero. T he)' folio\\' from 

orthognalitj' relation of the angular fUll ctiolls 

/ exp(in<p)V(<p)exp(im<p)d<p = '~ z c5 2 nm 

J \~ 
cxp(in<p)V(<p)exp(i/11<p) d<p = 40n(m±3) 

/ exp( ill'P) ,:~, exp(i/11<p )d<p -m'onm (17.43) 
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Figure 17.7: Eigenenergies of a tunnelling methyl gl'Oups. Thc potential "3=0 represcnts 

t.he frce rotor with qualltUlll number J. Strang \/3 approaches a harmonie osci lla lor model ­

qU3ntlllll numbcr n - with cquidistant Iibrational müdes (not ye t reached at 1'3 = 25meV). 

Far a purei)' 3-fold potential OIlC obtains the (2M+l) dimensional Hamilton matrix 

9 + !'i a a v' a a 0 -'-' 
2 4 

a ti+ ~ a 0 v' a a -'-' 
2 4 

a 1 +-'--i a a I" a 0 -'-' 
2 4 

H = v' a a v' a a !'. -'-' -'-' ., 2 4 

a I" a a IN 
0 a -'-' 1 +-f 4 

a a v' a a 4+~ a -'-' ,I 2 

a a IN a a v' 
0 -'-' 9+ f ., 

Such band mat riccs are easily diagonaJised by standard progra lilS. The resulting eigenen-

ergies represent librations split by the tunnel effecL. 

\Vith increasing libralional quantum numbcr thc tunnel spli tting increases duc to the 

increasing overlap of wavcfunctions in excited states. Fig.l7.7 shows the eigenenergies as 

a function of increasing s t.rength F; of the hinderillg potential. Olle recognizes a huge 

isotope effecl with deuteration (BD = ~) duc a doubling or the scaled potent.ial \11 

(17.41). 

For zero potent ial the Hamilton matrix is a lready diagonal anel the eigcnvailles are 
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those of t hc free rotor J2 B. 

The ld rotor: pocket state fOl'lnalisme 

Pocket states are lIseful basis functions for strenger pot.ent.ials. T hey represent a single 

oricntation of a 111olecule. T hus 'ljJ =1 123 > mcaus that proton 1 of the methyl group 

is al position 1} 2 at 2} 3 at 3. A rotat.ion is repl'esented by cyclic permutation. \·Ve 

considcr the groundstate on I)'. As outlined for translational tunnclling pocket states are 

no eigellstaLes of the pl'Oblelll. T hc)' ovcrlap and t hus ean transfol'm into each other. Sincc 

wave fUll ctions deca)' exponcntially inLo a potential wall (Gamow factor) thc overlap 0 1' 

tunnclling matrix element is very sensi tive to the stl'cllgth ofthe pot.ential. The eigen"aluc 

matri x obtained from thc Hamiltonian is 

[ 

1123 > 
1231 > 
1312 > 

1123 > 1231 > 

Tl t 

The characterisl.ic polynom yields Cl unique eigenvalue A = 2t rclalecJ Lo the totally sym­

metrie A groundstatc anel a doubly cJegellcrate eigenvalue ~\ = ~t related to the right ami 

left ha ndcd E slates, respectively. T he matrix is formalI)' identical to a jump matrix. T he 

meaning of the cigenvalues is "er)' different, however. 

A tetrahedron Iike methane requircs 12 packet stales. T hc 9 eigenvalues are partially 

degenerate depending on the environmental s)'mmctry. Thc mat hematics becomes more 

complicated. 

1'0 obtain the scattcring function including intensitics of transitions the influcncc of 

proton spi ns via the F'auli principle has to be taken int.o aCCOllnt . The complcte t heOl')' 

with inclusion 01' spin wavefunctions is faund in ref.[8]. T he resulting scattcring function 

is normalized to the number 01' protons in the rotor 

. 2 2. 
(1 + 2Jo(QcI))o(w) + (- - -Jo(Qd))o(w) 

. 3 3 
2 2 

+ (:3 - :3 jo (QcI))(o(w + w,) + o(w - w,)) (l7A4) 

The first tenn reprcsents purei)' elastic scattering. Hs intellsit)' is called elastic incoherent 

strucllll'c facta r (EISF). The sccond term is duc Lo t ransitions between different but 

dcgenerate E-states. Finally there are inelastic A ~ E transitions between tunnelling 

substates. Thc latter terms are c5-functions only 8t low temperature. ß y caupling to 

phonons they broadcn and shift [10] un t il thcy merge into the single c1assical quasielastic 

Larentzian. 'fhe width of t llIlllclling liues can be interprcted as a lifet ime broadcning 
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due to transit ions into the first excited Iibrational level EOi of the same symmetry. EOI 

aets as activation energy alld can be obtained from an Arrhenius plot. The fi g.17.8 

shows this transition for acetamide CH3CON H21 thc most simple moleculc cont.aining 

the biologically imporla nt pept.ide groU)) . T he transition is an especia ll~' lIice example of 

8 

CH3CO NH2 T. 25.0K T.3t3 K 

6 

4 

2 

h \A ). 
o 

-50 0 50 ° 0 '0 -70 0 '0 "0 . 
Energy transfer (~eV) EMrgy Irans'., (,",'V) 

Figurc 17.8: High resolution spectra of acetamide at 3 tempera t ures: t ransition from 

methyl rotat.ional tunnelling to classical jump rcor ientation. 

Bohr1s corresponclance Principle. 

Here the question ar iscs1 why the tunnelling energy itself does not appear as activatioll 

eHerg)'. This is a remarquable consequencc of the Pauli principle: with change of thc 

spatial symmetry the spin state symllletry has to change too to conserve the symmetry 

of thc total wave fUlletioll. Thus A grouudstate ami E tunnel lcvel show different total 

spin. The spinless phollons cannot indllce t his transition (spin conservat ion). That.s t he 

reasoll wh)' the very small tunnel splittings are not. smcared out at kuT» h WI ' 

Stl'uctural information 

Tunnel ~pectra of malerials with nU1llY Illcthyl groups may show Illany tunnelling t ran­

sit ions due to the dilTerent rotationul potentials. Like in Ramml spee t.roscopy conclusiolls 

may be drawll on struetural propert.ies as molecules per unit ce ll or sit.e symmetries. 

17.3 .3 wlultiditllensional tunnelling 

Not always a rotation is a pure Illode. It might couple to other degrecs of frecdolll . 

Correspondingly the single particle model is no Ion ger applicable. \Vell e;;;tablishcd is 

so far a combilled rotat ion of the molecule anel its center of mass [11 ]. This type of 

dynamics is callcd ro lat ion-translat ioll-coupling. It is a special ease of man)' possible 

ty pes of multidimensional tUlInell ing. Each H C\\' model of coupled motion requircs t he 
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diagonalh;atioll of a !lew hamiltonian matrix wliich i~ always lI111 ch more complcx than 

t.he sr!,,!. This is hard ami somct.imc~ impossible work. Thc single particlc model is such 

attracti"e becallse it illvol"cs only propcrties of thc rotating group ami can he applied in 

an)' environment. 

17.4 Calculation of potentials 'ab-initio' 

Thc rcsult of an analysis of tunnelling spectra , IibratiOllal (E01 ) ami acti vat.ion (Ea ) ener­

gies is thc rolatiollal potential up to sOllle order of its Fourier compollcnts. The expOllcn­

tial dependcnce of lhc tunnel splitting on the baITier height makes tltis probe especially 

important. 

The determination of rolational potentials is Cl value in itself. Howcver, a deeper 

lInderstanding requires it.s deduction from more fundamental quant.ities. A step towards 

this goal is a paramctrisatioll of interacUons in asolid by atom-atom potentials 

(17.45) 

The first term represenls the repulsive, t.he secmlCl thc attractive van-cler-H'aals interac­

lions. In addition electrostatic terms may bc added. The total potential energy is giVCll 

as the sum over all pair potentials. Olle important postulate/propcrty of atom-atom 

potentials is their tranferability - at least within ccrtain cJasses of chemically related COIH­

pounds. Thus the dynamic properties of all unknown matcrial should be caJculable Oll thc 

basis of the strncture lI sing established pair potentials. This techniquc is used in studying 

reaction pathes in chemistry 01' funcUonalities in biology and pharmacy. 

\\' ith thc more ami more incrcasing power of computers it is possible to do cnergy 

calculatiolls really 'ab initio'. Quantum chemistry programs like GAUSSIAN9g minimize 

the encrgy of thc clctronic wave functions of a system of atoms. The aim is the salllc 

like with thc pair potential: c.g. to probe paths of a synthesis and thus avoid expensive 

practical t.ests in preparat.ive chemistry. 
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J.O Introduction 

The topic .texturc' has to be assigned to the contributions abaut elastic neutron scattering and 

the detennination of crystal und magnetic st ructures by means of Bragg scattering using either 

polycrystalline or single crystalline sam pies (compare Fig.18.1a ""d 18. ld, resp.). When 

perfonuing powder diffraction for the purposes of refinemcnts or cvcn dctcrminations of 

crystal (or magnetic) structures, Olle initially assumes statistical distributions of all cl}'staliite 

oricntations inside lhe polycrystalline material, thus cllsuring that rar the measurement of euch 

Bragg reflection hkl an almost equal and, with rcspcct to statistical relevance, a sufficicnt 

Ilumber of crystallites (small single crystals) is in reflection position. This is the prerequisite 

for an even intensity distribution on the Debye-Scherrer cones of a powder measurement (see 

Fig. 18.1 a). Non-statistical distributions of crystallites, e.g. in case of plate- or rod-like cystal 

grains or far non-powderized bulk sam pie material , result in prefcrred orientatiolls of special 

scattering planes hkl anel cause uneven (orientation dependent) intcnsity distributions on the 

Debye-Schereer cones (see Fig. 18.1b ami 18. 1c) appraoching the appearanee ofsingle crystal 

spots (Fig. 18.ld). Thc evolution of experimental intcnsities in crystal s tructure analysis is 

generally hampered by the prcscnce of preferred oricntation. For instance, special correction 

terms have to be applied dming structure refinement calculations . 

. . -./ --1- .0 .. . < , 
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~ 

! ;(~)\ \ • i . ~ , . ), . J I, I , i 
\ '. .. : V: I , , I , 
. '" .. 1'. . / ,> I. \, ,.:- :---:::;::::.~;:: ".. / 

./ ....". / 
,.., 
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(a) (b) (c) (d) 

Fig. 18.1: hkl d~ffractiol1 maxima (here X-ra)' scatterillg) showlI as sectiol1sfi'om Debye­
Scherfer cOlles obtained /rom Polycl)'slalline material 01 ral1dolll cl)'sta/liie orienlalions (a), 

weak (b) and strong (c) prelerred oriellfaliolls. (d) shows single cryslal diffractiol1 spots. 
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In this contribution, howcver, wc will exclusively foeus 011 the positive aspccts of preferred 

orientatiolls in polycrystalline material in view ofthe characterization and ehanges ofthe bulk 

material propcliies. In material science, mechanical treatment and deformation is artificially 

applied to generate preferrcd orientation and, thus, weil defincd material propcrties. In earth 

sciences, preferred arientation exists in rocks by natural defarmations over millions of years 

and, thus, bears important information Oll longtime geological processes. The study of pre~ 

ferred orientations in bulk polycrystalline material is an independent scientific discipline: the 

texture analysis [I, 2]. 

2.0 Anisotrop}' by Structul"c anti Tcxture 

Texture is a property of condensed crystallinc matter. In our daily life, we are often in contact 

\Vith solid state crystalline matter, e.g. minerals and rocks being the fundamental components 

oflhe cmih's crust, 01' metals and eeramics whieh are manufactured and used as tcehnological 

products. Crystalline matter is characterized by its specific crystal stmcturc whieh is defincd 

by a unit eell with its symmetrieal atOlnie arangement and by its three~dill1ell sional 

periodicily. This crystal structurc essentially detemlines the physical, chcmical und teclUlo~ 

logieal properties of a material , at least on a microseopie seale. The mieroscopic unit is 

considered to be a monocrystallinc aggregate. 

Generally, the properties of a single crystal are anisotropie, i.e. they are different in 

different crystallographie directions. Thc thermal conductivity of graphite represents a typical 

example of such a direction~dependent crystalline propcrty. The sheel-likc hexagonal crystal 

strueture built up by plane layers of carbon atOI11S with small inleratomic distances inside the 

layers and large dislances betwcen ncighbouring layers (Fig. 18.2) is rcsponsiblc for astrang 

anisotropy. The thermal conduelivity within the layers is about four limes larger comparcd to 

the conductivity perpendicular to the laycrs along the hexagonal axis. 

11 

Fig. 18.2: Graphite slructure buillllp 
by plane sheels oJe aloms (hale/led) 
arrallged perdelldicular 10 the hexa-

g01W! c~axis 

10011 

10101 

11001 

Fig. 18.3: Properly smface al/he Youllg 
modllllls oJ iron (Ieft) Jor mlY direcliol/s [hk/} 

oJ Ihe clibic clyslal 'yslcm (righl) 
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Further important structure reinted anisotropie propcrties of specinl technological re le­

vanee are e.g. mcchanical hardness, elast icity, thermal expansion, clectrical conductivity, 

magnet ic inductioll or corrosive resistance. The sing le-crysta llinc anisotropy may be 

described by a directioll depcndent three-dimcnsional property-specific surface as shown in 

Fig. 18.3 for the linear (elastic) Young l11 0dulus of iren with its cubic crystal structure. T hc 

directional dependcllce of a propcI1y E is a functiOll of well-dcfined crystallographic 

directiolls h: 
E (g) = fÜl) = f(hkl) (I) 

\Vith I'cpect to any dircction g in the three-dimensional space, the directional dependence arE 

can be cxpressed mathcmatically as ascries of spherical harmonics T with parameters A, ~l 

and v and its eoeffieients e aeeording to 

E(g) = LLLej'T)"(g) (2) 
l I' ,. 

The vast majority of solid erystalline matter, however, does not exist in form of single 

crystals but is of polyerystalline nature. The material is built up macroseopieally by a mult i­

lude of erystallites 01' grains whieh can bc arrangcd in many different orientations (eomparc 

Fig. 18.4). In ease of a statistical oricntation distribution of the crystallites the stmcture­

specific orientation dependcllces of the properties disappear maeroseopically and the material 

becomes quasi-isotropie. 

Fig. 18.4: Schema/fe represell/atioll o[ralldom (leß) alld pre[erl'ed oricllfatiolls (I'igh/) o[ 
graphil-Iype cIJ'sl"lliles (colllp"re Fig. J 8.2) 

This loss of anisotropy ean be compensated for by Ihe existenee 01' the generation of texture. 

Texturc is defined by the spal ial oricntation distribution of erystallites in polyclystalline 

matter. In ease of a statistical orientation distribution olle speaks of a random text ure. Thc 

above definiti on of textUl'c wh ich is widely aceeptcd and used taday disregards any effccts 

duc 10 different shapes 01' sizcs of the crystallites. A (non-random) lexlure perfonns a transfer 

of structure relevant mieroscopie single-erystalline anisotrapies 10 the polyerystallinc bulk 
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material. Texture is an important parameter in view of the properties of condensed crystalline 

matter, besides of other material parameters as structure, phase composition, grain boundaries, 

01' strain [3]. The fonnation and changes of texture are driven 01' controlled by outer 

influcnces, eithcr already during cystallization by e.g. the existence of non~hydrostatic 

conditions during crystal growth or after crystallization by natural deformation duc to tectonic 

events with regard to geological material or, with regard to manufaetured materials, by 

artificial deformation ofproducts by mechanical treatments like rolling or casting. 

The mcan value of a property E of a texturized polyerystal is expressed, aceording to 

equation (2), by an integration of over all crystallitc orientatiolls with the aid of a so-ca lied 

orielltation distribution funetiOil f(g): 

f E(g)J(g)dg L:L:L:-1-
, p ,, 2-'+ I 

(3), 

Thus, E is expressed mathematically by a folding of structural coefficicnts e and text ure 

coefficients C. The fuH mathematical deeriptioll of this so-ca lied harmonie se ries expansion 

method has been developed by HJ. Bunge [4]. Thc aetual goal of a texturc analysis is the 

experimental determination of the orientation dis tribution funelion by diffraction measure­

ments. 

3. Ol'icntafion Distl'ibution FUliction 

Thc texture of a polyerystalline sampie is expressed by its orientatiOll distribution function 

f(g), generally abbreviated as DDF, according to the definition 

I dV 
f(g) = - ­

V dg 
(4), 

Thus, the ODF is defined by the volume fraetion of erystallites that havc the orientation g 

within a certain infinitesimal orientation element dg. The orienlation g can be described by a 

tranSfOllllation matrix [gid rcpresenting the orientation of the individual crystallites (eoor­

dinate system KK) with reference to a eommon sampie coordinatc system KI' (Fig. 18.5). 

Fig. 18.5: Schell/aNc represelltation 0/ a texlurized sampIe in a eoordillale system Kp will1 
individual orien/alion o( crvstalliles (md theil' eoordil/ale Sl'stem KK 
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The axes of the cartesian Kp coordinate system are selected in accordance with cxtcrnal (or 

visible) deformation or texture characteristics of the sampie. Some conunonly used orient­

atiol1s of the sampie co ordinate system are shown in Fig. 18.6. 

y 

x 

I(onsv~(se 
~-=;m;;r-71 

rOlltng L-_ ___ ---"'-_ 

Plane 01 
F ollalian 

=-: ~=~ ~~~~~~::~ 
-- - _/// 

- - - - "'''' 

Fig. 18.6: Usual definitions of coordinate axes oJ cartesian coordillate ~ystems Kp Jor 
rolle<! me/al sampIes (left) and geomaterial (right) by direction (md plane ofrollil1g (md by 

Iil1ealioJl and plane qffoliatioJl, respeclively. 

For material/metal texturcs the Euler space is traditionally usee! as oricntation space by 

describing the oricntation g of the cryslallites by the three Eulcrian angles 4'11 $ , 4'2. The 

corrcsponding coordinate transformation is perfarmed by three subsequcllt rotations abaut the 

Eulerian anglcs in the sampie coordinate system as depicted in Fig. 18.7. 

(a) Z z 
(b) 

<, 
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y 
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~=---.O'''-' -/==;p y 
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X K,. • Sjltcuan 
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(c) z z (d) 

-, 
z 

y 

y 

x x 

Fig. 18.7: Definition oJthe Euleriall angles f/J/, (/), tp] (md transformations ofsample (Kp) (md 
clystal (KxJ eoordinate sytems: 

(a) identieal oriel1latioll ol/he axes 0/ Kp am/ KK (b) rotation oJthe z-axis oJ KK by f/JJ 

(c) rotatioll 0/ file x-axis 0/ KK by cP (d) rotatioll 0/ file z-oxis 0/ KK bei tp 

18-5 



It is eonvenient to plot these Eulerian parameters as eartesian coordinates in a three·dimensio· 

ual space which is called the Euler (oricntation) space (Fig. 18 .8). Each crystal orientat ion is 

rcprescnted by a point in the Euler space. The orientations of all crystallites of the ensemble 

are then represented by a point distribution in Euler space. A texture obtained as a eontinuous 

distribution funetion cau be represented by equilevel contour lines (Fig. 18.8) which may bc 

complcted to equilevel surfaees as it is showll in the example in Fig. 18.9. anel its planar 

sections in Fig. 18.10. The Euler space is a dislorted space with a metde quite different from 

the usual three-dimensional space. Texlures of geological sampies are usually visualized by 

other, more descriptive representations which are eloser to COlllmOIl sense (see chapter 5. 1.). 

'1'/ <1'/ 

.-/i . 
. -'. . -. .. 

Fig. 18.8: C'J'stallite oriel1latiol1s in Eulerian ougles: Olle c/J's tallie (left), oll cryslalliles 
(middle) \I'ith equilel'el C011fow'!il1es (righl) 

/ , / 

/ 
/ 

I 
I 
I 
I 

ßI,",_~ 

90' 

----

Fig. 18.9: ODF 0/ a CII rol/illg 
lexture represemed by an equilel'cl 

orienla/ion sill/ace in fh e 3·dim 

Fig. 18.10 (r ight): ODF represellt­
ation 0/ Fig. 18.9 by {( sequel1ce of 

seclions with COlIs/allt fP) 
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4.0 Experimcntal Tcxturc Analysis 

The material texture and its ODF cmmot be measured directly without destroying the 

specimcn. The ODr can only be constructed. Two different types of measurements are 

applied. The traditional methad is the single grain analysis based on optical methods where 

the orientations of reprcsentative single grains are directly observed llsing universal stage 

microscopy on a polishcd sampie surface. A faster and much more efficient alternative 10 the 

rather painslaking single grain analysis are diffraclioll mcthods lIsing either neutrons or X­

rays. ßragg scattcring intensities arc measured as a fUllction ofthe sam pie orientatioll. 

4.1 Definition of n Pole Figure 

A pole figurc represents the oricntation distribution of a particular crystal direction [hkl] or 

the normal to the scattering plane Otkl) of the sampie. The crystal directiol1 is first projected 

onto a sphere of unit radius around the sampie. The prenctrat ing point P on the sphere (Fig. 

18.11) is defined by two angles, a pole distance a alld an azimuth ß. This sphere is then 

projected onto a plane in order to represent the pole on paper. Various spherical projections 

are in use, the most common in texture analysis is the stcreographic projection (see Fig. 
\ 

18.11). Fig. 18.12 shows examples of some crystal plane distributions and their associated 

pole figure representation. 

N 
N 

E 

s 

Fig. J 8.11: Repl'escJ1tatioll o[ a plane (hk/) by its normal (md its pole 011 fhe surrolllu!ing 
sphere P defilled by polar coordiallles a, ß (lefl). Stereographie projee/ion 0/ P illfo p. 

i/lside Ihe (halched) equalorial pla/le (right) 
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(a) (b) 

~Ii 
G" ~' " .: .~ . ~ .,.1 

,.:., 

(c) (d) 

4.2 Experimental Pole figul'es 

Fig. 18.12: Examples ol clJ'slal­
lagraphie planes (top) (lud theil' 
accessOJY pole jigures (b0 I10m) 
(or a 11I'o-dimcnsiol1al (0) aud a 
Ihree-dimensional (b) single 
clyslal willt Olle fixed pole per 
plane alld laI' a po/ycryslallille 
sampIe (c (II/d cl) with (f scalter oj 
poles; 

(a) (OOl)-plalle alld ils cOlllller­
parI (00-1) (lIorlll-sOI/III 
normal directiol1s) 

(b) cl/bic basis plalles (100), 
(010), (001) (left) alld body 
diagollal plalles {lll} (right) 

(c) spread ~r differwtly orienled 
(001) planes 

(d) spread 01 differenlly oriellled 
cl/bic basis planes {100} 

An experimental (hk I) pole figure is obtained by diffraction mcthods by measuring the 

intcnsity of a Bragg re flection (hkl) for a variel)' of different sampie orientations. Usually, at 

least so rar, olle uses monochromatic neutrons (er X-rays). lhe simples t instrumental setup is 

that of a rour-cifcle diffrac tometer equipped with a Euleriall cradle (cp, X rotation axcs) as 

sam pie goniometer (Pig. 18 .13) and a s imple counting tube, i.e. an inst rument as used foe 

s ing le crystal s(ruc(ure investigations. A stationary detector is positioned in the peak 

maximum of arefleetion, emd sampie oricntation dependent measurements are perfonned, e.g. 

in a step scalUling mode, rcalizing an equal area pole figure grid (Fig. 18. 13). 

w--
20 - : 

Fig. 18.13: ElllericU1 cu/die with rotation axes rp. X (0) = 2et2 position) (left) (md Iypical 

(a,ß)- polefigure sall/Ilillg grid (righl) 
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Fig. 18.14: Var;a/;oll 0/ rej/eclioll 
i11fe11sities lI'ith ({Jl'otalioll (Z 
fixed) o[ a quarlzil sampIe 

measured wilh a large linear 
delector in Jülich 

Rather than using a single counting tube it is more efficient 10 cmploy a large position­

sensitive detector which covers a \Vide scattcring range 20 and whieh allows the simultancous 

measuremcnt of many (hk!) reflections (see Fig. 18.14) ami, thus, thc collection of 

experimental data for man)' pole figures in only Olle sam pie sean. The pole figure s are 

constructed (I) by conversion of the individual sampie orientatiolls (er, xJ into pole figure 

coordinates (a, ~), (2) by interpolation for points of an almost equispaccd (a, ß)-grid in the 

pole figure projection (see Fig. 18.13) and (3) by graphically representing the pole figures 

with the corrcspondillg reflection intensitics (compare Fig. 18.15). 

' I 

' I .•.. 
~~: x - , ,,;t 

• ' . 1 

• . . -:-(~ 

.. I 

m!"H nu,x (.) 
0.07 15.80 , 

Fig. 18.15: CompariSOl1 0/ c-axis pole jigul'es (0001) o[ CI lexlurized quartzite obtail1edfi'om 
single grain analysis by V-stage microscopy (Ieft) mul neutron diffracliol1 (rigllt) based Oll 

illvesli~aliol1S 0/ abollt oue hundred alld olle million ~rajl1s, respeclively. 

4.3 Pole Figurcs from Neutrons and X-Rnys 

Thc advantages and drawbacks of both neutron and X-ray diffraction for texture analysis are 

obvious. Texture is a statistical description of crystallitc orientations and therefore requires a 

large Ilumber of crystallites or grains in order to gel a meaningful sampling. Reproducible 
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pole figures require numbers of 100.1 10 lOs grains flS gooel figures. Thc knwon propertics ofX­

rays (large absorption in thc sflmple anel a small beam diameter) limi t its usc to (I) flat, thin 

sampies, alld (2) fine grained material with grain sizes in the order of 10 to about 100 pm. 

These !imitations allow to study onl)' a surface of fl sam pie because the X-mys penetrate the 

sam pie just a few microns. X-mys therefore probe the localtexture at the sample sUlface. Duc 

to thc high and orientation dependent absorption and limitations duc to defocusing if a flat 

sampie is rotated (see Fig. 18.16), on I)' incomplete poJe figures can be obtained. 

b 

IJJ U\(;\ 

~.~~~ 

,~~~JL 
Fig. 18.16: X-ray difFaclioll pal/ems ofa 

flor ollorfl/Osit samp/e in (wo different 
orienfalions (a and b) {md me{IIIIlClIlrOl1 
dilfracrioll diaj!ram (c) 01011 orie11lalions 

Fig. 18.17: Comparisoll ofX-ray (Ieft) alld 
neu/rOll pole jigllres (right) 0/ a com·se 
graincd de[ofmed marhle specimen [5} 

Neutron bcams, on the other hand, are large up to 100 x 50 IlUll cross scction, anel in general 

weak ly absorbcd by most materia ls. Compared to X-ray photons, neutrons are absorbed by 

less thall three orders of magnitude and are therefore in need of large sam pies. \Vhile this may 

be a drawback in many investigations, it is of great advantage in texture analysis where the 

global texture of the total vohulle has to be explored. Due to their ability to penetrate matter, 

neutrons are weIl suited for the analysis of the bulk of a thick sampie with several cm in 

diameter. Thus it is possiblc to study also coarse grained material \Vith reasonable grain 

statistics even if grain sizcs range up to millimeters in diameter (Fig. 18.17). Neutron 
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measurcments can bc perfonned in transmission geomctry on spherical , cylindrical or cvcn 

irrcgular shaped specimens 3nd complete pole fi gures are obtained willlOut applying any 

intcnsity correctiolls. Neutron diffraction measurcmcnts can bc calTied out at a much higher 

dcgree of accuracy thall olher techniques 10 ca1culate Ihe oricntation distribution fUllction. 

5.0 Pole Figurcs all(l ODF 

An experimental pole fi g UTC Phkl yields the oricntation distribution of Ihe crystallites with 

rcspect 10 olle particular crystallographic direction [hkl] whielt represents the aeluat scattering 

vector f oflhe diffraction experiment. There is 110 information, howcver, on the orientatioll of 

Fig. J 9.18: Scanering experimenr with scatteril1g vector § = [hk/} perpendicular to scatterillg 
plane (hk/) (hatched) yields 110 information 011 (he orientatiol1 of any [uvw] inside the plane 

the crystallites perpendicular to the scattering vector, Le. inside the plane (hkl) (comparc Fig. 

18.18). As the pole figure rcprescnts a two-dimensional oricntation distribution, it is thus an 

integral of the three-dimensional orientation distribution funetion f(g) taken over a rotation 

.bOla scaUering vector g = [lud): 

I 
Phkl{)') = 2" J f(g)d\l' with y = {IX, ß} 

,..t{lM) 

(5). 

Equation (5) may be called the fundamental relation of texture analysis. lt is evident that the 

OD!' f(g) is generally not complctely determined by one pole fi gurc. One nceds the additional 

information of other crystallographic directions, Le. other pole figures. The factor 1/2n in 

equation (5) results from a normalization with respect to Ihe definition of a stati stical 

orientation distribution: 

f(g)st3tistical = 1, f f(g)dy = I, Phkl(a, ß)statisticJI = 

Pole densities are expressed in multiples oflhe random dcnsity (m.r.d.). 
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5. t Pole Figurc Invcrsion 

Thc determination of the ODF f(g) from equation (5) i5 called pole figure inversion. Different 

mathematical procedures have beeil developcd 10 calculate the OOF from experimental pole 

figures. Depending Oll the method, the calculatcd ODF is a continuolls or a slep fUl1ctioil . A 

widely applied method in texture analyses of high symmetry materials (metals) i5 the series­

expansion or harmonie method developed by I·!. J. Bunge [6] (eompare ehapter 3.0). Analo­

gous to the classical procedure in single crystal structure determination, thc ODF is expandcd 

illto its cOITesponding Fourier orthogonal scries using slirface spherical hamlOnic fllnctions 

with coefficients C (see equation (2». A similar expansion is performed with the experimental 

pole densities P yielding the cocfficients F(hkl). A system of linear equations and appropriate 

transfonnatiolls of coeffici ents are llsed 10 detcrmine the unkllown coefficients C from the 

experimentally k.nowl1 coefficients F. Routine computer pro grams are availablc 10 perform 

these calculations. The calculated coefficicnts C are those texture coefficients C wh ich have 

been uscd in equation (3) 10 describe the anisotropy of macroscopic physical properties of a 

texturized polycrystal. 

After the ODr has been determined it is possiblc to calculate pole figures of all planes 

(hkI), also of those whiclt have not been 01' cannot been measured, for instance, because of 

extinctioll. It is also useful to recalculate experimental pole figures from the ODF in order to 

estimate 01' control the reliability ofthe texture analysis performcd. 

A different mathematical approach to the ODr calculation is the discretization method 

bascd on the maximum entropy concept [7] using a finit scr ies expansion into indicator 

functions. This method was introduced into the program MENTEX by H. Schacben [8] . The 

so-callcd \VIMV-method [9] which is rather COlllmon in geological texture analysis is based 

Oll certain probability assumptions of f(g) which may thell be furt her improved by iterative 

refncments. 

rC (8) 
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Fig. 18.19: 
Represenlation 0/ a 

lexIllre compollent l 
by CI GCllIssiall 

dis/riblll iOll /llIIc/ion 
f(g) o[ haljil'idlh b'. (0' 

de/Wles fhe deviation 
0/ cJ)'sfalllie 

oriellfat;olls /r0111 gC 
(al oI = O"). 

II
c represenls a sampIe 
fixed axis (see [10J) 



Apart [rom the global description of Ihe texture in Ihe total orientation space, texture 

can also be clescribcd hy a certain llulllber of texture model componcnts, although this 

description includes only restricted areas of the orientation space. Each component 10 be 

described, for instancc, by a Gaussian distribution curve is givcll by (t) a prcferred orientation 

gC locally restricted in orientation space, (2) a ha lfwidth bC characterizing the sprcad around gC 

(see Fig. 18.19) and (3) an intcnsily Je indicating the vallllne share of all crystallites belonging 

10 timt component. Thc ODF approximation by means oftexture components is cxpressed by 

f(g) = R + 1: I' f(g) (7). 

The quantity R givcs the volmne ffaction of thc randomly oricnted crystallites, Le. wh ich are 

not restricted in the orientatiol1 space. The component method [10] can bc applied to 

compositc experimental pole figures, also of multi-phase geological material of an)' 

er)'stallographie symmetry. 

5.2 Inverse l)ole Figures 

The mathcmatical procedurc of pole figure inversion includes the ealculation of eoefficicnts H 

of so-ca lied inverse pole figures. \Vhile the pole figures discussed so far are dcfined for Olle 

particular cr)'stallographic direction [hkl] and variable sampie orientatiolls (compare equation 

(5)), the inverse pole figures represent shares of main crystallographie directions, e.g. basis 

axis, face and body diagonal of the cubic crystal system, in a fixed smnple oricntation (Fig. 

18.20). Usually, thc inverse pole figure is represented as stereographie projcetion with respect 

to the crystal eoordinate system KKI while the ,standard ' pole figure is defined as 

stereographie projection with respect to the sampie coordinate system Kp (compare Fig. 18.5). 

{III} 

filii} 

6.0 Examples of Textul'e Analyses 

{IW/ 

Fig. 18.20: inverse pole figure o[ a 
cold dm"," AI wire (<ce [2]) by 
representaliofl 0/ Ihe pre/erred 
arien/al ions 0/ /he most relevanl 
cl)lstallographic direcliolls (cubic 
axis [100), [ace-diagonal [IlO) and 
body-diagollal [l} I)) illside Ihe 
sampIe. Pole del1sities (Ire shown by 
eqllileveJ confOllr fines iJ1111.r.d. 

Texture appears in a geeat variety. A multitude of different types is kown according to 

different Illcchanisms of text ure formation during crystallization (grain growth) rmd rccr)'stal-
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lization (generation of dislocatiolls), by deform ation during materials processing (plastie 

deformation, s lip and twinning) and as complex superpositions in the eourse of natural 

seismic processes in gcological lexture dcvelopmcnt. 

6.1 Types ofPl'cfclTcd Oricntatioll 

One frequently occuring special type of texture are the so-called fibre textures. A fibre texture 

is typically found in a s3mple form whieh is charac terized by a main axis (e.g. a cylindcr or a 

wire) with strong preferred orientation of the crystallites along this fibre axis and a 3600 

rotation symmetry around this axis, Le. 110 preferred orientation perpendicular to the fibre 

axis. For instance, the texture of cold drawn metal wires with fcc structure is a <111 > fibre 

texture wherc cubic <111 > direct ions (zone axis) are oriented parallel to the wire axis. 

Another texture type are preferred orientations of special planes, e.g. the hexagonal basis 

plane of graphite (see Fig. 18.4), stackcd parallel to each other on a surface plane. e.g. a motor 

piston. hut without any preferred orientation within this plane (graphite as lubricant for better 

gliding). 

More general types comprise bolh the orientatioll of a plane (hk I) alld a zonc axis 

[uvw]. Such a sys tem of glide defonnation texture is rcpresented by (hkl) [uvw] or more 

general {hkl} <uvw>. There is a preferred orientation of a special crystallographic directioll 

<uvw> within the (hkl) planes which are oricnted parallel to each other. The deformation of a 

fee metal resuhs in a {1I1 }<11 0> texturc, where eubie {111} planes glidc along <110> 

di rect ions. Geological deformation textures are described by mineral specific glide systems. 

6.2 Gencral Ojcctivcs . 

The major objcetives oftexturc analysis are differcnt in materials and earth seiences. \Vhile in 

material sciences Ihe major cmphas is is on the development and contral of required preferred 

orienlations under weil defined experimental conditions of material s processing in order to 

evaltlate specific (anisotropie) macroscopic physical propcrties for special technological 

applicatiolls, the problcm in geosciences is just thc oppositc and l11uch Illore complex. The 

geologist begins with the end product, the rock as it occurs in nature, and attempts 10 

reconstruct the proccsses by which the text ure has been formed. Tlte texture is a fingerprint of 

the cClrth's history and, simultaneously, informs on anisotropies of elastic, magnetic and 

thermal properties of rocks cOllstitllting the crust anel the lIpper mantle. Anisotropy nceds 10 

be laken into accmmt in the interpretation of seismic data, development of geological models, 

and geophysical prospecling. 
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In the following, twa experimental ex am pies of tex ture analysis are givcn basecl on 

resllit s from the Jülich neutron text ure diffractometer. 

6.3 Rolling all(l Rec)'stallization Tcxtul'e of Copper 

Olle project in the field of applications of neutrons in materials seicnce Wfl S concernecl with 

investigatiol1s on the longtimc stability of copper textures flI). The rolling texture of copper 

(Fig. 18.2 1) is characlcrized by Ihree main componenls [12]: Ihe ,copper' - {l12) <111>, Ihe 

,brass'- {IIO)<112> and Ihc ,S'-componenl {l23)<634>. The main componenl of 

recrystalli zed copper is the ,cube' ·componcill {OOl }< 100> and a minor cOlllponent 

{l22)<212> (Fig. 18.22). 

Fig. 18.21 : JHeasllred pole jiglles 0/ a Cu rollillg texlure; illdicaled are ideal arien/atiolls 0/ 
fil e copper (Jl'iangle), fhe brass (square) (lI1d ,he S-compouellt (eire/e) 

0 0 °0 oa 

@ 
0 0 

@ 
0 

+ .\:0.) -
0 0 0 

00 aO 00 

Fig. 18.22: A10dellillg 0/ a Cu rec/ystallizatioll text ure by supe/position 0/ the mail1 mutthe 
mi/lol" compo/lellls {001 }<I 00> (ieft) (md {122} <212> (ce/ltel), respectively 

A high purity copper sheet was cold rolled to a final thickncss reduction of 95%. This sheet of 

1 mm thickllCSS was cut into plates of lOxlO 111m
2

. Apart of these platcs was aJU\ealed at 

300°C for 20 min to achieve recrysta llization. Two cubes, eaeh of 10 111m edge lcngth, of 

purely rolled copper ami purely recrystallized copper where then prepared by glueing ten 

plates of thc respective materials on top of each other. Identieal orientatiol1s of the individual 

plates was taken care of. Neutron diffractiol1 pole figures (Fig. 18.23) have been repeatedly 

performed on both specimcns over aperiod of about six years in which 110 f1ll1her treatment of 

the spceimells was undertakcll. 
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Fig. 18.23: Experillleutaluellfrou pole figure .. 0[0 rolled (left) aud a reclystallized (right) 

copper specimen in 1990, J 994, alld 1996 lI'itJ/Olif ony trealmelll in belll'cen 

The textures, quantitatively 3nalysed by model calculations are found unstable Qver 

the time of invesligation. All quantitative results are summarized in Table 1. The initially 

almost complete rolling texture reeedes by abaul 30% in sampie volume in favour of 

recrystallization. In the recrystallized specimen, the initial amount of recrystallization texture 

is redllced from 89% 10 66% in favour of a wndoml)' oriented portion. The somewhat 

surprising findings of ,Iiving textures' are rcmarkablc with respect 10 the kincmatics of the 

physical processes involved, and also with respect to the desired longtime stability of material 

properties in tcchnological applications. 

Tnble 1: Longlime variatiol1S oflhe lexture ofrolled (top) mut rec/J1sfallized eopper (bottom) 
as measured by neutroll diffraeliol1 (md Clnatysed by the compollenl method lISillg the prograIlI 
lvlULTEX [JO). Texturc parameters are given il1 Vo/% of fhe lIIa;11 eOll/pollenfs. The 
oriCl1faliol1 deviations of fhe clJlsfallites fi'olll fhe l'al'iOIlS jibre axes are givell by Ihe full widlh 
alha(fmaxillllllll (FJVHAl) of Gallssiall dislribllliolls. 

Rolle d Cu~specllnen 
Component 

" 
S" "co )er" "brass" "cube" 

Year Vol% FWHM Vol% FWHM Vol % FWI-lM Vo1% FWI-lM 
1990 36 13 24 11 22 13 3 10 
1994 27 13 19 11 20 13 21 11 
1996 24 13 15 11 17 13 28 11 

R 11' d C ecrysta lze u-spccunen 
Component "cube" . 012}<212> random 

Vear Vol% FWHM Vol% FWI-lM Vol % 
1990 61 9 28 13 11 
1994 54 10 32 11 14 
1996 50 9 16 11 34 
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Thc ncut ron diffract ion pole figurcs of thc starting material have been used for a 

calculation of a three-dimensional ODF according to the series expansion method (Fig. 

18.24). 

rr--"~ "~"'-"-;-r---':--'---T--r 
p[g» 

'f'2"'cons t . OOF w·" 'fz=const. 

0 

\C<g,), 0 

Cl 
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~ 
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~, I l@ 
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@c,. 
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2 .. 1 12 6 '0 Ja L 

Fig. 18.24: ODFs o[rolled and reclJ'stallized copper according 10 nelllron pole jigure dala. 
The ODFs {Ire represenled by seelions o[ consf. <p} inlhe I"ree-dimensional Eulerian space 

6.4 Natural Deformation Tcxtul'c of Quartz 

Quartz (Si02) is the most naturally occuring mineral. Among all minerals naturally deformed 

qllartzi tes display the largest variety of texture types [13]. The var iation has been associated 

with conditiolls of metamorphie grade and with the deformation history. QlIartzites bear 

information on the tectonic deformation mechanisms by thc formation of intracrystallinc glide 

systems which are temperaturc dependent and strongly influenced by water. Due 10 its optical 

properties, quartz can be investigated by single grain analysis llsing optical microscopy 

(compare chapler 4.0). U-stage results can be compared with neutron diffraction pole figures 

on the global texture (see Fig. 18. 15). 

The Jülich neutron texture diffractometer has been used for texture studies on 

quartzites originating from different geological zones [14]. The quartzite to be discussed here 

was collccted from thc (late Proterozoic 10 emly Papaeozoic) Pan-African Nosib quartzitc of 

the Tomakas area in the Kaoko belt. North-\Vcst Namibia, a 560 million years old geological 

fonnation {1S]. Pole figure measurements have been performed on a cube-shapcd specimcn of 

20 111111 cdgc size. Grain sizes varied between 0.03 and 0.83 mm. 
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Fig. 18.25: ExperimcnfalnClllrOl1 diffractiofl pattern (poiflls)oI a quarlzite specimen as meal1 
diagram 0/ abollI 500 d((ferenl samp/e orienlaliollS dllring pole fig l/re scmmil1g alld /ull­

pattern profile fil (solid lilie) lor separation %verlappil1g peaks (dollell curves). The 
indexing is aeoordillg 10 fhe hexagonal qllartz slrllcllIre. 

The pole figure data processing, wh ich is adapted to the special potential of the position­

sensitive detcctor and the automatie recording of complete diffraetion patterns for each 

sampie orientation, is performed stepwise in a sem i-automatie way by (I) adcling up all 

diagrams and preparing a Illeau diagram of all sampie orientatiol1s, (2) profile fitting the sum 

diagram (Fig. 18.25) in order to separate overlapping reflections and to determine orientation­

independent refl cetion parameters, i.c. peak positions and halfwidths, (3) profile fitting the 

individual diagrams for the determination ofthe integrated peak intensities, i.e. the orientatioll 

Fig. 18.26: Experimental pole figures of a Ilall/rally de/onned qllartzile. A 10 101 0/ 14 pole 
ligures is oblained simultaneollsly /rom a single pole figure scau al the lexlure d([(raclome/er 
SV7-b a/lhe FRJ-2 rettc/ar ill Jülich The instrumeJ1l is equipped wilh ({ large linear deleclor. 
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depcndcnt pole densities, anel (4) graphienl represcnlation of thc pole dCllsities in stereo­

graphie projection lIsing a normalizcd gl' id in multiples of mndom distribution. Thc 

experimental pole figures are shown in Fig. 18.26. 

Pole figure inversion and OOF calculations has been perronncd usillg the program 

MENTEX [8]. Experimental and calculated pole figures of seme hkl are presented in Fig. 

18.27. The (aal) pole figure is ofspecial imp0l1ancc for thc quartz structure, because (aal) 

infofms on the orientation distribution of Ihe optically relevant hexagonal [001] axes ,md thus 

pcrmits a comparison to an individual grain analysis al an U-stage (see Fig. t 8.15). \Vhile the 

oplical data are confined to this [OOIJ dircction, the neutron data permit an overall description 

of the quartz texture by additional information on preferred orientatien of other quatiz­

relevant planes and fenns Iike prisms and rhombs. The interpretation of the quartz lextllre is 

givcn in the typical nomcnclature ofa geologist (compare foig. 18.27): 

<-X iz 

Fig. 18.27: Obser!'ed and calelll­
lI/ed neutron pole figures (X, Y: 
see lexI). 

Top roll': 
experimental polefigures {m}, 
{r+z} and {al (<ee lexI). 

Secmlel roH': 
corresponding model pole figures 
recalculated from lire GDF. 

Boltom roU': 
ca/cl/talion sO/I/te ,1Il1observed' 
polefigllres {e}. {I} and {z} (see 
leXI). 

(!) The{ c) pole figure (000 I) shows a coucentratiou of c-axes around Y (direction pcrpend­

icular to the direction X of maximum elongation and perpcndicular to the direction Z of 

maximum sh0l1ening) and a girdle cJose to the YZ-planc (plane of foliation) indieating 

that the investigated rock was predominantly dcformed by a prisl1l slip mechanism with a 

conlribution oflhe slip along rhomb anel basal planes. 

(2) 'fhe pole figure of the crysta llographic {al prisms (11-20) exhibits two nearly separatcd 

conccnlrations arolilld linear fabric and Ihe shear direction. Thc a-axis maximum is at Ihe 

margin oflhe pole figure with an angle ofabout 25° to the foliati0l1 plane. 
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(3) Preferred orientations of the first order priSIllS {m} (10-10) show a pronollllccd COllccnt­

ration parallel to the Iineation direction. 

(4) Poles ofthe positive and negative rhombs Ir) (10-11) and {z) (01-11) show a tendeney of 

symmetry in their alignment with respect to the shear plane. 

Structural geologists compare those loeal quartzite textures (I) with the texture of other rocks 

of the same region in order to recognize thc regional tectonic transport direction (whieh in our 

cxample was cast - east south cast), and (2) with the texture of quartzites of different geo­

Jogical origin in order to rccognize quartz-specifie deformation mechanisllls. 
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List of most important symbols 
<",> Thermal average 

ß* = 21[' b x C b* _ _,," _ Basis vectors ortlte reciprocallatticc 
a, (b xc)' - - .. " ~ - .. , 

a. b, c. a , ß. Y Basis vectors ofthe unit cell and an gl es 
A Vector potential 
A ' )J Dipole operator 

b. bcoh • binc, b+, b. 
Neutron scattcri llg length, coherent, illcohcrent, J=I+~; J=I- .!..; unit: 

2 2 
fm=10-15m 

28 Scattering anQle L ( k, k') 

0 Incident angle s angle between k and the surface 
S' Scattered angle = angle bctween k' and thc surface 
8, Angle of total reflection 
S, Angle oftransmitted beam = angle between k( and the surface 
e = 2,9979246 ' 10' m/s Veloeit)' ofl ight 

d clhkl Inter-Iattice plane distallee 
I) (E-E') Delta function 

d" d
2

" 
Single- and double-differential cross sectiOll 

dn' dndE' 
E, E ' EnerRY of ineidentlseattered oartic1e, un it: cV (meV, ~cV) 
E E1eet rie field 
f(Q) - f + if ', f,,(Q) Fonn faetor, magnetic fonn factor 
y, - - 1.913 Magnetic dipole moment of the neutron expressed in nuclcar 

magnetons 

y = _ 1.833 ' 10' rad Gyromagnetic ratio of the neutron 

s'l' 
Q - h~'+kQ'+I~' Reciprocallattice vector 

G (r,t), G, (r,t) Pair- , self-correlation func tion 
H Magnet ie field 
h - 6,626 ' 10-34 Js; Planck's quantllll1 of action (reduccd) 

h = ~ = 6,582 , 10- 16 eVs 
2" 

neo - E - E' Energy transfer of the scattcring process 
k, \Vave vector ofthe trallsmitted wave (reflectometrv) 
k' Wave veetor ofthe scattered wave 

2" • Wave veetor (in general: ofthe incident wave) k=- ,k 
J. -

!in Wave veetor in matter with index of refraction n 
kß = 1.381,10'" J/K Boltzmann's constant 

A Wave length, uni!: nm - 10-:;0 m 

Ac - hI rne = 2.426 pm Compton wave length 
L, L I Quantum Ilumber of orbi tal momcntum and its operator 
111n, I1lc Neutron mass, eleclron mass 



M Vector of ll1fl:gnctisation 
1111 - 9.274 . 10.24 J I T Boh1" 5 magneton 

Jb Vector oflhe magnetic dipole moment ofthe neutron 
IIN ~ 5.05 1 . 10.27 J I T Nuclear magneton 
n Index of ren·action 
n,Ml Solid angle and its element 
P, P' Polarisation before/after scattering 
'I-' Quanturll mcchanical probability amplitude 
<",;11",,> \Vave functiolls oflhe initial and final state 

Q. ~ Is. - Is.' Scattering veelar 

R Reflect ivity 

ßld Position veetar of atom cl in cell I 
.2 Classic radius of thc electron 

ro~ --2 ~2.8179 fm 
nlee 

0: Pauli's spin matrix 

"A Absorption cross sectiOll 

O'coh. O'inc Coherent and incoherent cross section 

O'tot Total cross seetion (absorption and scattering) 
S coh (Q, (0), Coherent and incoherent scattering function 
S;" (Q, (0) 

S(Q), S,,(Q), SN(Q), ScCQ) Structure factoc (static), magnetic, nuclear charge structure factor 
S (Q, t) Intermediate scattering function 
SLQ,roL Scattering function. dynamic stmcture factor 
S,S Spin quantmll number and its operator 
T Transmissivijy 
V(r) Interaction potential 

General conventions' < 

s Scalar 
v Vcctor 
y Unit vector 

M Matrix 
0 Operator 
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