001     811869
005     20240712101012.0
024 7 _ |a 10.5194/acp-16-8831-2016
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/12147
|2 Handle
024 7 _ |a WOS:000381213300007
|2 WOS
024 7 _ |a altmetric:9844654
|2 altmetric
037 _ _ |a FZJ-2016-04211
082 _ _ |a 550
100 1 _ |a Schlag, Patrick
|0 P:(DE-Juel1)4548
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands
260 _ _ |a Katlenburg-Lindau
|c 2016
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1470725476_28346
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network). Including equivalent black carbon an average particulate mass concentration of 9.50 µg m−3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). There were 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 µg m−3) observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance.Source apportionment of OA was performed season-wise by positive matrix factorization (PMF) using the multilinear engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8–16 % contribution to total OA, averaged season-wise) and biomass burning (0–23 %). Secondary organic aerosols (SOAs, 61–84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
536 _ _ |a ACTRIS - Aerosols, Clouds, and Trace gases Research Infrastructure Network (262254)
|0 G:(EU-Grant)262254
|c 262254
|f FP7-INFRASTRUCTURES-2010-1
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 1
|u fzj
700 1 _ |a Blom, Marcus Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Canonaco, Francesco
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Henzing, Jeroen Sebastiaan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Moerman, Marcel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Prévôt, André Stephan Henry
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Holzinger, Rupert
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.5194/acp-16-8831-2016
|g Vol. 16, no. 14, p. 8831 - 8847
|0 PERI:(DE-600)2069847-1
|n 14
|p 8831 - 8847
|t Atmospheric chemistry and physics
|v 16
|y 2016
|x 1680-7324
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/811869/files/acp-16-8831-2016.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/811869/files/acp-16-8831-2016.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/811869/files/acp-16-8831-2016.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/811869/files/acp-16-8831-2016.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/811869/files/acp-16-8831-2016.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/811869/files/acp-16-8831-2016.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:811869
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)4548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)4528
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2016
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21