000811872 001__ 811872
000811872 005__ 20210129223942.0
000811872 0247_ $$2doi$$a10.1021/acs.jpcc.6b01467
000811872 0247_ $$2ISSN$$a1932-7447
000811872 0247_ $$2ISSN$$a1932-7455
000811872 0247_ $$2WOS$$aWOS:000379457000003
000811872 037__ $$aFZJ-2016-04214
000811872 041__ $$aEnglish
000811872 082__ $$a540
000811872 1001_ $$0P:(DE-Juel1)159561$$aKoposova, Ekaterina$$b0
000811872 245__ $$aInfluence of Meso-Substitution of the Porphyrin Ring on Enhanced Hydrogen Evolution in a Photochemical System
000811872 260__ $$aWashington, DC$$bSoc.$$c2016
000811872 3367_ $$2DRIVER$$aarticle
000811872 3367_ $$2DataCite$$aOutput Types/Journal article
000811872 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1470998916_26438
000811872 3367_ $$2BibTeX$$aARTICLE
000811872 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811872 3367_ $$00$$2EndNote$$aJournal Article
000811872 520__ $$aThis study establishes the relationships between the structure of a series of meso-substituted tin(IV) porphyrins and their efficiency as photosensitizers for hydrogen generation in the Sn(IV)P/Pt–TiO2 nanocomposite system. The electrochemical properties of a series of SnPs, the catalytic performance of Pt nanomodifications, and the morphology of the Pt/TiO2 nanocomposites were characterized by electrochemical and electron microscopy methods. The dependence of photocatalytic performance on the structure for a series of Sn(IV) meso-substituted phenyl porphyrins was studied, and possible mechanisms are discussed employing the results of the electrochemical studies. It was found that the time course and type of the photochemically reduced species of Sn(IV)Ps, which are essential intermediates, are important factors and depend on the electronegativity of the metal center, the character of meso-substituents of the porphyrin ring, and pH and are correlated with the redox potential sequence of the respective Sn(IV)Ps: SnTMPyP > SnTPyP > SnTPPS > SnTPPC. Optimization of the experimental parameters was performed with regard to the SnPs with different functional groups, pH values, concentrations of Pt/TiO2, light intensity, and Pt nanoparticles with different surface stabilizers. Finally, the maximum hydrogen yield under visible light was obtained from the system of Sn(IV) meso-tetra(4-pyridyl)porphyrin dichloride (SnTPyP) sensitized TiO2/Pt prepared by the citrate method/EDTA at pH 9.0. This demonstrates that the photochemically reduced species of SnTPyP are relatively long lived, so they have enough time to complete electron transfer to TiO2 and/or Pt. The adsorption of SnTPyP on the TiO2/Pt surface is therefore not essential for hydrogen generation. Moreover, this study demonstrates for the first time the synergic effect of the excitation of TiO2 and mostly Q-bands of Sn(IV)P (wavelength range 390–650 nm), which enhances the efficiency of photocatalytic hydrogen generation in the system. The Soret band of Sn(IV)TPyP was found to produce a minor (about 23%) contribution to the photocatalytic activity of the porphyrin sensitizer in this system. Possible processes involved are discussed, and mechanisms are proposed explaining different aspects of a series of photocatalytic systems with SnPs and Pt catalysts for hydrogen production under visible light. These structure–function relationships are essential to effectively harness solar energy for hydrogen production as well as for a wide range of energy and environmentally related problems.
000811872 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000811872 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x1
000811872 588__ $$aDataset connected to CrossRef
000811872 7001_ $$0P:(DE-Juel1)156305$$aLiu, Xiao$$b1$$ufzj
000811872 7001_ $$0P:(DE-HGF)0$$aPendin, Andrey$$b2
000811872 7001_ $$0P:(DE-Juel1)129410$$aThiele, Björn$$b3$$ufzj
000811872 7001_ $$0P:(DE-HGF)0$$aShumilova, Galina$$b4
000811872 7001_ $$0P:(DE-HGF)0$$aErmolenko, Yury$$b5
000811872 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b6$$ufzj
000811872 7001_ $$0P:(DE-Juel1)128710$$aMourzina, Youlia$$b7$$eCorresponding author
000811872 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.6b01467$$gVol. 120, no. 26, p. 13873 - 13890$$n26$$p13873 - 13890$$tThe @journal of physical chemistry <Washington, DC> / C$$v120$$x1932-7455$$y2016
000811872 8564_ $$uhttps://juser.fz-juelich.de/record/811872/files/acs.jpcc.6b01467.pdf$$yRestricted
000811872 8564_ $$uhttps://juser.fz-juelich.de/record/811872/files/acs.jpcc.6b01467.gif?subformat=icon$$xicon$$yRestricted
000811872 8564_ $$uhttps://juser.fz-juelich.de/record/811872/files/acs.jpcc.6b01467.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000811872 8564_ $$uhttps://juser.fz-juelich.de/record/811872/files/acs.jpcc.6b01467.jpg?subformat=icon-180$$xicon-180$$yRestricted
000811872 8564_ $$uhttps://juser.fz-juelich.de/record/811872/files/acs.jpcc.6b01467.jpg?subformat=icon-640$$xicon-640$$yRestricted
000811872 8564_ $$uhttps://juser.fz-juelich.de/record/811872/files/acs.jpcc.6b01467.pdf?subformat=pdfa$$xpdfa$$yRestricted
000811872 909CO $$ooai:juser.fz-juelich.de:811872$$pVDB
000811872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128710$$aForschungszentrum Jülich$$b7$$kFZJ
000811872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129410$$aForschungszentrum Jülich$$b3$$kFZJ
000811872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b6$$kFZJ
000811872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128710$$aForschungszentrum Jülich$$b7$$kFZJ
000811872 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000811872 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x1
000811872 9141_ $$y2016
000811872 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811872 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2014
000811872 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811872 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811872 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811872 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811872 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811872 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811872 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811872 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811872 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000811872 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000811872 980__ $$ajournal
000811872 980__ $$aVDB
000811872 980__ $$aUNRESTRICTED
000811872 980__ $$aI:(DE-Juel1)PGI-8-20110106
000811872 980__ $$aI:(DE-Juel1)IBG-2-20101118
000811872 981__ $$aI:(DE-Juel1)IBG-2-20101118