000811873 001__ 811873
000811873 005__ 20240708133632.0
000811873 0247_ $$2doi$$a10.1002/macp.201600005
000811873 0247_ $$2ISSN$$a0025-116X
000811873 0247_ $$2ISSN$$a1022-1352
000811873 0247_ $$2ISSN$$a1521-3935
000811873 0247_ $$2WOS$$aWOS:000382964300001
000811873 037__ $$aFZJ-2016-04215
000811873 082__ $$a540
000811873 1001_ $$0P:(DE-Juel1)156496$$aCádiz Bedini, Andrew P.$$b0$$eCorresponding author$$ufzj
000811873 245__ $$aSonophotolytically Synthesized Silicon Nanoparticle-Polymer Composite Ink from a Commercially Available Lower Silane
000811873 260__ $$aWeinheim$$bWiley-VCH$$c2016
000811873 3367_ $$2DRIVER$$aarticle
000811873 3367_ $$2DataCite$$aOutput Types/Journal article
000811873 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1470991995_26435
000811873 3367_ $$2BibTeX$$aARTICLE
000811873 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000811873 3367_ $$00$$2EndNote$$aJournal Article
000811873 520__ $$aThe preparation of a printable silicon ink using semiconductor grade and commercially available trisilane (Si3H8) is reported. The synthesis is carried out in solution at room temperature or below in N2 atmosphere at ambient pressure and involves an initial sonication step, followed by irradiation with ultraviolet light. The production of higher order silanes via ultrasound using gas chromatography is demonstrated and nuclear magnetic resonance measurements are used to show that a combined sonophotolytic treatment yields a highly branched silicon hydride polymer. In addition, scanning electron microscopy (SEM) images are used to ascertain the sonocatalytic production of silicon nanoparticles. Furthermore, it is argued that these particles are partially responsible for enabling dramatically accelerated polymer growth, not otherwise observed in the same amount of time using ultraviolet light alone. Finally, the utility of the ink used in this study is demonstrated for the field of printable electronics by fabricating amorphous silicon thin films by spin-coating and atmospheric pressure chemical vapor deposition with optoelectronic properties approaching those of state-of-the-art plasma enhanced chemical vapor deposition (PECVD) material
000811873 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000811873 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x1
000811873 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000811873 588__ $$aDataset connected to CrossRef
000811873 7001_ $$0P:(DE-Juel1)130271$$aMuthmann, Stefan$$b1
000811873 7001_ $$0P:(DE-Juel1)139583$$aFlohre, Jan$$b2$$ufzj
000811873 7001_ $$0P:(DE-Juel1)129410$$aThiele, Björn$$b3$$ufzj
000811873 7001_ $$0P:(DE-Juel1)133857$$aWillbold, Sabine$$b4$$ufzj
000811873 7001_ $$0P:(DE-Juel1)130225$$aCarius, Reinhard$$b5$$ufzj
000811873 773__ $$0PERI:(DE-600)1475026-0$$a10.1002/macp.201600005$$gVol. 217, no. 15, p. 1655 - 1660$$n15$$p1655 - 1660$$tMacromolecular chemistry and physics$$v217$$x1022-1352$$y2016
000811873 8767_ $$86045903$$92016-08-23$$d2016-09-01$$eColour charges$$jZahlung erfolgt$$pmacp.201600005
000811873 909CO $$ooai:juser.fz-juelich.de:811873$$popenCost$$pOpenAPC$$pVDB
000811873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156496$$aForschungszentrum Jülich$$b0$$kFZJ
000811873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139583$$aForschungszentrum Jülich$$b2$$kFZJ
000811873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129410$$aForschungszentrum Jülich$$b3$$kFZJ
000811873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133857$$aForschungszentrum Jülich$$b4$$kFZJ
000811873 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich$$b5$$kFZJ
000811873 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000811873 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x1
000811873 9141_ $$y2016
000811873 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000811873 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOL CHEM PHYS : 2014
000811873 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000811873 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000811873 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000811873 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000811873 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000811873 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000811873 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000811873 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000811873 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000811873 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000811873 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000811873 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x2
000811873 980__ $$ajournal
000811873 980__ $$aVDB
000811873 980__ $$aI:(DE-Juel1)IEK-5-20101013
000811873 980__ $$aI:(DE-Juel1)IBG-2-20101118
000811873 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000811873 980__ $$aUNRESTRICTED
000811873 980__ $$aAPC
000811873 981__ $$aI:(DE-Juel1)IMD-3-20101013
000811873 981__ $$aI:(DE-Juel1)IBG-2-20101118
000811873 981__ $$aI:(DE-Juel1)ZEA-3-20090406