001     811873
005     20240708133632.0
024 7 _ |a 10.1002/macp.201600005
|2 doi
024 7 _ |a 0025-116X
|2 ISSN
024 7 _ |a 1022-1352
|2 ISSN
024 7 _ |a 1521-3935
|2 ISSN
024 7 _ |a WOS:000382964300001
|2 WOS
037 _ _ |a FZJ-2016-04215
082 _ _ |a 540
100 1 _ |a Cádiz Bedini, Andrew P.
|0 P:(DE-Juel1)156496
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Sonophotolytically Synthesized Silicon Nanoparticle-Polymer Composite Ink from a Commercially Available Lower Silane
260 _ _ |a Weinheim
|c 2016
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1470991995_26435
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The preparation of a printable silicon ink using semiconductor grade and commercially available trisilane (Si3H8) is reported. The synthesis is carried out in solution at room temperature or below in N2 atmosphere at ambient pressure and involves an initial sonication step, followed by irradiation with ultraviolet light. The production of higher order silanes via ultrasound using gas chromatography is demonstrated and nuclear magnetic resonance measurements are used to show that a combined sonophotolytic treatment yields a highly branched silicon hydride polymer. In addition, scanning electron microscopy (SEM) images are used to ascertain the sonocatalytic production of silicon nanoparticles. Furthermore, it is argued that these particles are partially responsible for enabling dramatically accelerated polymer growth, not otherwise observed in the same amount of time using ultraviolet light alone. Finally, the utility of the ink used in this study is demonstrated for the field of printable electronics by fabricating amorphous silicon thin films by spin-coating and atmospheric pressure chemical vapor deposition with optoelectronic properties approaching those of state-of-the-art plasma enhanced chemical vapor deposition (PECVD) material
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Muthmann, Stefan
|0 P:(DE-Juel1)130271
|b 1
700 1 _ |a Flohre, Jan
|0 P:(DE-Juel1)139583
|b 2
|u fzj
700 1 _ |a Thiele, Björn
|0 P:(DE-Juel1)129410
|b 3
|u fzj
700 1 _ |a Willbold, Sabine
|0 P:(DE-Juel1)133857
|b 4
|u fzj
700 1 _ |a Carius, Reinhard
|0 P:(DE-Juel1)130225
|b 5
|u fzj
773 _ _ |a 10.1002/macp.201600005
|g Vol. 217, no. 15, p. 1655 - 1660
|0 PERI:(DE-600)1475026-0
|n 15
|p 1655 - 1660
|t Macromolecular chemistry and physics
|v 217
|y 2016
|x 1022-1352
909 C O |o oai:juser.fz-juelich.de:811873
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156496
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)139583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129410
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133857
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130225
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACROMOL CHEM PHYS : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21